USA/GLOBAL : +1-949-461-9292
EUROPE : +39-011-3052-794
CONTACTEZ-NOUS
Contrôle de qualité des pièces usinées

Inspection des pièces usinées

PIÈCES USINÉES

inspection à partir d'un modèle CAO à l'aide de la profilométrie 3D

Auteur :

Duanjie Li, PhD

Révisé par

Jocelyn Esparza

Inspection de pièces usinées avec un profilomètre

INTRODUCTION

La demande d'usinage de précision capable de créer des géométries complexes est en hausse dans un large éventail d'industries. Qu'il s'agisse de l'aérospatiale, de la médecine, de l'automobile, des engrenages, des machines ou des instruments de musique, l'innovation et l'évolution continues poussent les attentes et les normes de précision vers de nouveaux sommets. Par conséquent, nous constatons une augmentation de la demande de techniques et d'instruments d'inspection rigoureux afin de garantir la plus haute qualité des produits.

Importance de la profilométrie 3D sans contact pour le contrôle des pièces

La comparaison des propriétés des pièces usinées avec leurs modèles CAO est essentielle pour vérifier les tolérances et le respect des normes de production. L'inspection pendant la période de service est également cruciale, car l'usure des pièces peut nécessiter leur remplacement. L'identification en temps utile de tout écart par rapport aux spécifications requises permet d'éviter des réparations coûteuses, des arrêts de production et une réputation ternie.

Contrairement à une technique de palpage, le NANOVEA Profilers optiques effectuez des numérisations de surfaces 3D sans contact, permettant des mesures rapides, précises et non destructives de formes complexes avec la plus haute précision.

OBJECTIF DE MESURE

Dans cette application, nous présentons le NANOVEA HS2000, un profileur 3D sans contact doté d'un capteur à grande vitesse, qui effectue une inspection complète de la dimension, du rayon et de la rugosité de la surface. 

Le tout en moins de 40 secondes.

NANOVEA

HS2000

MODÈLE DE CAO

Une mesure précise de la dimension et de la rugosité de surface de la pièce usinée est essentielle pour s'assurer qu'elle répond aux spécifications, tolérances et finitions de surface souhaitées. Le modèle 3D et le dessin technique de la pièce à inspecter sont présentés ci-dessous. 

VUE EN FAUSSE COULEUR

La vue en fausses couleurs du modèle CAO et la surface de la pièce usinée scannée sont comparées dans la FIGURE 3. La variation de hauteur sur la surface de l'échantillon peut être observée par le changement de couleur.

Trois profils 2D sont extraits du balayage de la surface 3D, comme indiqué sur la FIGURE 2, afin de vérifier davantage la tolérance dimensionnelle de la pièce usinée.

COMPARAISON DES PROFILS ET RÉSULTATS

Les profils 1 à 3 sont illustrés aux FIGURES 3 à 5. Un contrôle quantitatif de la tolérance est effectué en comparant le profil mesuré avec le modèle CAO afin de respecter des normes de fabrication rigoureuses. Le profil 1 et le profil 2 mesurent le rayon de différentes zones sur la pièce usinée incurvée. La variation de hauteur du profil 2 est de 30 µm sur une longueur de 156 mm, ce qui répond à l'exigence de tolérance souhaitée de ±125 µm. 

En définissant une valeur limite de tolérance, le logiciel d'analyse peut déterminer automatiquement la réussite ou l'échec de la pièce usinée.

Inspection de pièces de machines avec un profilomètre

La rugosité et l'uniformité de la surface de la pièce usinée jouent un rôle important pour garantir sa qualité et sa fonctionnalité. La FIGURE 6 est une surface extraite du scan parent de la pièce usinée qui a été utilisée pour quantifier l'état de surface. La rugosité moyenne de la surface (Sa) a été calculée à 2,31 µm.

CONCLUSION

Dans cette étude, nous avons montré comment le profileur sans contact NANOVEA HS2000, équipé d'un capteur à haute vitesse, effectue un contrôle complet des dimensions et de la rugosité de la surface. 

Les scans haute résolution permettent aux utilisateurs de mesurer la morphologie détaillée et les caractéristiques de surface des pièces usinées et de les comparer quantitativement avec leurs modèles CAO. L'instrument est également capable de détecter tous les défauts, y compris les rayures et les fissures. 

L'analyse avancée des contours est un outil inégalé qui permet non seulement de déterminer si les pièces usinées répondent aux spécifications définies, mais aussi d'évaluer les mécanismes de défaillance des composants usés.

Les données présentées ici ne représentent qu'une partie des calculs possibles avec le logiciel d'analyse avancé qui est fourni avec chaque profileur optique NANOVEA.

 

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Fretting Wear Testing Tribologie

Évaluation de l'usure par frottement

ÉVALUATION DE L'USURE PAR FROTTEMENT

Évaluation de l'usure par frottement dans l'aviation

Auteur :

Duanjie Li, PhD

Révisé par

Jocelyn Esparza

Évaluation de l'usure par fretting dans les mines et la métallurgie

INTRODUCTION

L'usure par frottement est "un processus d'usure particulier qui se produit dans la zone de contact entre deux matériaux soumis à une charge et à un mouvement relatif minime sous l'effet de vibrations ou d'une autre force". Lorsque les machines sont en fonctionnement, des vibrations se produisent inévitablement dans les assemblages boulonnés ou goupillés, entre des composants qui ne sont pas destinés à bouger, ainsi que dans les accouplements et les roulements oscillants. L'amplitude de ce mouvement de glissement relatif est souvent de l'ordre du micromètre ou du millimètre. Ce mouvement répétitif de faible amplitude provoque une usure mécanique localisée importante et un transfert de matière à la surface, ce qui peut entraîner une réduction de l'efficacité de la production et des performances de la machine, voire l'endommager.

Importance de l'aspect quantitatif
Évaluation de l'usure par frottement

L'usure par frottement implique souvent plusieurs mécanismes d'usure complexes se produisant au niveau de la surface de contact, notamment l'abrasion à deux corps, l'adhérence et/ou l'usure par fatigue par frottement. Afin de comprendre le mécanisme d'usure par frottement et de sélectionner le meilleur matériau pour la protection contre l'usure par frottement, une évaluation fiable et quantitative de l'usure par frottement est nécessaire. Le comportement à l'usure par frottement est considérablement influencé par l'environnement de travail, tel que l'amplitude de déplacement, la charge normale, la corrosion, la température, l'humidité et la lubrification. Un polyvalent tribomètre capable de simuler différentes conditions de travail réalistes sera idéal pour l'évaluation de l'usure par fretting.

Steven R. Lampman, ASM Handbook : Volume 19 : Fatigue et Fracture
http://www.machinerylubrication.com/Read/693/fretting-wear

OBJECTIF DE MESURE

Dans cette étude, nous avons évalué les comportements d'usure par fretting d'un échantillon d'acier inoxydable SS304 à différentes vitesses d'oscillation et températures afin de mettre en évidence la capacité de l'acier inoxydable SS304 à résister à l'usure par fretting. NANOVÉA T50 Le tribomètre permet de simuler le processus d'usure par frottement du métal d'une manière bien contrôlée et surveillée.

NANOVEA

T50

CONDITIONS DE TEST

La résistance à l'usure par frottement d'un échantillon d'acier inoxydable SS304 a été évaluée par NANOVEA Tribomètre utilisant un module d'usure à mouvement alternatif linéaire. Une bille en WC (6 mm de diamètre) a été utilisée comme contre-matériau. La trace d'usure a été examinée à l'aide d'un NANOVEA Profileur 3D sans contact. 

L'essai de fretting a été réalisé à température ambiante (RT) et à 200 °C pour étudier l'effet de la haute température sur la résistance à l'usure par frottement de l'échantillon de SS304. Une plaque chauffante sur le plateau de l'échantillon a chauffé l'échantillon pendant l'essai de fretting à 200 °C. Le taux d'usure, Ka été évaluée à l'aide de la formule K=V/(F×s)V est le volume usé, F est la charge normale, et s est la distance de glissement.

Veuillez noter qu'une boule de WC comme contre-matériau a été utilisée comme exemple dans cette étude. Tout matériau solide de différentes formes et finitions de surface peut être appliqué à l'aide d'un dispositif de fixation personnalisé afin de simuler la situation d'application réelle.

PARAMÈTRES D'ESSAI

des mesures d'usure

RÉSULTATS ET DISCUSSION

Le profil 3D de la trace d'usure permet de déterminer directement et avec précision la perte de volume de la trace d'usure calculée par l'analyse de la trace d'usure. NANOVEA Logiciel d'analyse des montagnes. 

L'essai d'usure alternatif à faible vitesse de 100 tr/min et à température ambiante présente une petite trace d'usure de 0,014 mm.³. En comparaison, l'essai d'usure par frottement effectué à une vitesse élevée de 1000 tr/min crée une trace d'usure nettement plus importante, d'un volume de 0,12 mm.³. Ce processus d'usure accéléré peut être attribué à la chaleur élevée et aux vibrations intenses générées pendant l'essai d'usure par frottement, qui favorisent l'oxydation des débris métalliques et entraînent une forte abrasion des trois corps. L'essai d'usure par frottement à une température élevée de 200 °C forme une plus grande trace d'usure de 0,27 mm³.

L'essai d'usure par frottement à 1000 tr/min présente un taux d'usure de 1,5×10-4 mm³/Nm, soit près de neuf fois plus que lors d'un essai d'usure alternatif à 100 tr/min. L'essai d'usure par frottement à une température élevée accélère encore le taux d'usure à 3,4×10-4 mm³/Nm. Une différence aussi importante dans la résistance à l'usure mesurée à différentes vitesses et températures montre l'importance de simuler correctement l'usure de contact pour des applications réalistes.

Le comportement de l'usure peut changer radicalement lorsque de petites modifications des conditions d'essai sont introduites dans le tribosystème. La polyvalence de la NANOVEA Le tribomètre permet de mesurer l'usure dans diverses conditions, notamment la température élevée, la lubrification, la corrosion et autres. Le contrôle précis de la vitesse et de la position par le moteur avancé permet aux utilisateurs d'effectuer le test d'usure à des vitesses allant de 0,001 à 5000 tr/min, ce qui en fait un outil idéal pour les laboratoires de recherche et d'essai pour étudier l'usure de contact dans différentes conditions tribologiques.

Traces d'usure par frottement dans diverses conditions

sous le microscope optique

Traces d'usure par frottement dans différentes conditions au microscope optique

PROFILS 3D DES PISTES D'USAGE

fournir plus d'informations sur la compréhension fondamentale
du mécanisme d'usure par frottement

profils d'usure 3d - fretting

RÉSUMÉ DES RÉSULTATS DES TRACES D'USURE

mesurée à l'aide de différents paramètres d'essai

CONCLUSION

Dans cette étude, nous avons mis en évidence la capacité de la NANOVEA Tribomètre pour évaluer le comportement de l'usure de contact d'un échantillon d'acier inoxydable SS304 de manière bien contrôlée et quantitative. 

La vitesse et la température de l'essai jouent un rôle essentiel dans la résistance à l'usure par frottement des matériaux. La chaleur élevée et les vibrations intenses pendant l'usure par frottement ont entraîné une accélération substantielle de l'usure de l'échantillon de SS304, de près de neuf fois. La température élevée de 200 °C a encore augmenté le taux d'usure à 3,4×10-4 mm3/Nm. 

La polyvalence de la NANOVEA Le tribomètre est un outil idéal pour mesurer l'usure de contact dans diverses conditions, notamment la température élevée, la lubrification, la corrosion et autres.

NANOVEA Les tribomètres offrent des tests d'usure et de friction précis et répétables en utilisant des modes rotatifs et linéaires conformes aux normes ISO et ASTM, avec des modules optionnels d'usure à haute température, de lubrification et de tribo-corrosion disponibles dans un système pré-intégré. Notre gamme inégalée est une solution idéale pour déterminer l'ensemble des propriétés tribologiques des revêtements, films et substrats minces ou épais, souples ou durs.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE