EUA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
FALE CONOSCO

Categoria: Testes mecânicos a alta temperatura

 

Dureza de Arranhão a Alta Temperatura usando um Tribômetro

DUREZA DE ARRANHÕES A ALTAS TEMPERATURAS

USANDO UM TRIBÔMETRO

Preparado por

DUANJIE, PhD

INTRODUÇÃO

A dureza mede a resistência dos materiais à deformação permanente ou plástica. Desenvolvido originalmente por um mineralogista alemão Friedrich Mohs em 1820, o teste de dureza de arranhões determina a dureza de um material a arranhões e abrasão devido ao atrito de um objeto cortante.1. A escala de Mohs é um índice comparativo e não uma escala linear, portanto uma medição de dureza de arranhões mais precisa e qualitativa foi desenvolvida como descrito na norma ASTM G171-03.2. Ele mede a largura média do risco criado por um estilete de diamante e calcula o número de dureza do risco (HSP).

IMPORTÂNCIA DA MEDIÇÃO DA DUREZA DOS ARRANHÕES EM ALTAS TEMPERATURAS

Os materiais são selecionados com base nas exigências do serviço. Para aplicações que envolvem mudanças significativas de temperatura e gradientes térmicos, é fundamental investigar as propriedades mecânicas dos materiais a altas temperaturas para estar plenamente ciente dos limites mecânicos. Os materiais, especialmente os polímeros, geralmente amolecem a altas temperaturas. Muitas falhas mecânicas são causadas pela deformação por fluência e fadiga térmica ocorrendo apenas a temperaturas elevadas. Portanto, uma técnica confiável para medir a dureza a altas temperaturas é necessária para garantir uma seleção adequada dos materiais para aplicações a altas temperaturas.

OBJETIVO DA MEDIÇÃO

Neste estudo, o Tribômetro NANOVEA T50 mede a dureza ao risco de uma amostra de Teflon em diferentes temperaturas, desde a temperatura ambiente até 300ºC. A capacidade de realizar medições de dureza a riscos em alta temperatura torna o NANOVEA Tribômetro um sistema versátil para avaliações tribológicas e mecânicas de materiais para aplicações em altas temperaturas.

NANOVEA

T50

CONDIÇÕES DE TESTE

O Tribômetro NANOVEA T50 Free Weight Standard foi usado para realizar os testes de dureza de arranhões em uma amostra de Teflon a temperaturas que variam da temperatura ambiente (RT) a 300°C. O teflon tem um ponto de derretimento de 326,8°C. Foi utilizada uma ponta diamantada cônica de ângulo de ápice de 120° com raio de ponta de 200 µm. A amostra de teflon foi fixada no estágio rotativo da amostra com uma distância de 10 mm até o centro do estágio. A amostra foi aquecida por um forno e testada a temperaturas de RT, 50°C, 100°C, 150°C, 200°C, 250°C e 300°C.

PARÂMETROS DE TESTE

da medição da dureza de arranhões a alta temperatura

FORÇA NORMAL 2 N
VELOCIDADE DE DESLIZAMENTO 1 mm/s
DISTÂNCIA DE DESLIZAMENTO 8mm por temperatura
ATMOSPHERE Ar
TEMPERATURA RT, 50°C, 100°C, 150°C, 200°C, 250°C, 300°C.

RESULTADOS & DISCUSSÃO

Os perfis de arranhões da amostra de Teflon em diferentes temperaturas são mostrados no FIGURA 1 para comparar a dureza do arranhão em diferentes temperaturas elevadas. O acúmulo de material nas bordas da trilha de arranhão se forma à medida que a ponta se desloca a uma velocidade constante viaja com uma carga constante de 2 N e arado na amostra de Teflon, empurrando e deformando o material no arranhão para o lado.

Os rastros de arranhões foram examinados sob o microscópio ótico, como mostrado na FIGURA 2. As larguras dos arranhões medidas e os números calculados de dureza de arranhão (HSP) são resumidos e comparados na FIGURA 3. A largura do arranhão medida pelo microscópio está de acordo com a medida usando o Perfilômetro NANOVEA - a amostra de Teflon exibe uma largura de arranhão maior a temperaturas mais altas. Sua largura de arranhão aumenta de 281 para 539 µm à medida que a temperatura se eleva de RT para 300oC, resultando na diminuição do HSP de 65 para 18 MPa.

A dureza dos arranhões em temperaturas elevadas pode ser medida com alta precisão e repetibilidade usando o Tribômetro NANOVEA T50. Ele fornece uma solução alternativa a partir de outras medições de dureza e faz do NANOVEA Tribometer um sistema mais completo para avaliações tribo-mecânicas abrangentes em alta temperatura.

FIGURA 1: Perfis de arranhões após os testes de dureza de arranhão em diferentes temperaturas.

FIGURA 2: Arranhões sob o microscópio após as medições em diferentes temperaturas.

FIGURA 3: Evolução da largura da pista de Arranhões e da dureza da Arranhão em relação à temperatura.

CONCLUSÃO

Neste estudo, mostramos como o Tribômetro NANOVEA mede a dureza dos arranhões a temperaturas elevadas em conformidade com a norma ASTM G171-03. O teste de dureza de arranhões com carga constante fornece uma solução alternativa simples para comparar a dureza dos materiais usando o tribômetro. A capacidade de realizar medições de dureza de arranhões a temperaturas elevadas faz do Tribômetro NANOVEA uma ferramenta ideal para avaliar as propriedades tribo-mecânicas de materiais a altas temperaturas.

O Tribômetro NANOVEA também oferece testes de desgaste e atrito precisos e repetíveis usando os modos rotativo e linear conforme ISO e ASTM, com módulos opcionais de desgaste a alta temperatura, lubrificação e tribo-corrosão disponíveis em um sistema pré-integrado. O Perfilômetro 3D sem contato opcional está disponível para imagens 3D de alta resolução de faixas de desgaste, além de outras medições de superfície, como rugosidade.

1 Wredenberg, Fredrik; PL Larsson (2009). "Teste de arranhão de metais e polímeros: Experimentos e numéricos". Desgaste 266 (1-2): 76
2 ASTM G171-03 (2009), "Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Transição Precisa de Vidro Localizado com Nanoindentação DMA

Transição Precisa de Vidro Localizado com Nanoindentação DMA

Saiba mais
 
Imagine um cenário em que uma amostra a granel é aquecida uniformemente a uma taxa constante. Quando um material a granel aquece e se aproxima de seu ponto de fusão, ele começará a perder sua rigidez. Se as indentações periódicas (testes de dureza) forem realizadas com a mesma força alvo, a profundidade de cada indentação deve aumentar constantemente, uma vez que a amostra está se tornando mais macia (ver figura 1). Isto continua até que a amostra comece a derreter. Neste ponto, será observado um grande aumento na profundidade por travessão. Usando este conceito, a mudança de fase em um material pode ser observada utilizando oscilações dinâmicas com uma amplitude de força fixa e medindo seu deslocamento, ou seja, Análise Mecânica Dinâmica (DMA).   Leia sobre a Transição Precisa de Vidro Localizado!

Medição de Relaxamento de Tensão usando Nanoindentação

Saiba mais

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

ASTM D7187 Efeito da temperatura usando Nanoscratching

ASTM D7187, a resistência da tinta a arranhões e mares desempenha um papel vital em seu uso final. A pintura automotiva suscetível a arranhões torna difícil e dispendiosa a manutenção e o reparo. Diferentes arquiteturas de revestimento do primer, camada de base e camada transparente foram desenvolvidas para obter a melhor resistência a riscos/mar. Teste de Nanoscratch foi desenvolvido como um método de teste padrão para medir os aspectos mecanicistas do comportamento de arranhões/mar de revestimentos de pintura, conforme descrito na ASTM D7187. Diferentes mecanismos elementares de deformação, ou seja, deformação elástica, deformação plástica e fratura, ocorrem com diferentes cargas durante o teste de arranhão. Ele fornece uma avaliação quantitativa da resistência plástica e da resistência à fratura dos revestimentos de pintura.

ASTM D7187 Efeito da temperatura usando Nanoscratching

Propriedades mecânicas do teflon a alta temperatura

Em temperaturas elevadas, o calor altera as propriedades mecânicas do teflon, como dureza e viscoelasticidade, o que pode resultar em falhas mecânicas. É necessária uma medição confiável do comportamento termomecânico de materiais poliméricos para avaliar quantitativamente os materiais candidatos para aplicações em altas temperaturas. O Nanomódulo da Nanovea Testador Mecânico estuda a Dureza, o Módulo de Young e a Fluência aplicando a carga com um piezo de alta precisão e medindo a evolução da força e do deslocamento. Um forno avançado cria uma temperatura uniforme ao redor da ponta de indentação e da superfície da amostra durante todo o teste de nanoindentação, de modo a minimizar o efeito da deriva térmica.

Propriedades mecânicas do teflon a alta temperatura utilizando a nanoindentação

Análise Termomecânica de Solda usando Nanoindentação

As juntas de solda são submetidas a tensões térmicas e/ou externas quando a temperatura excede 0,6 Tm onde Tm é o ponto de derretimento do material em Kelvin. O comportamento rastejante das soldas a temperaturas elevadas pode influenciar diretamente a confiabilidade das interconexões de solda. Como resultado, é necessária uma análise termomecânica confiável e quantitativa da solda em diferentes temperaturas. O Nanomódulo da Nanovea Testador Mecânico aplica a carga por um piezoelétrico de alta precisão e mede diretamente a evolução da força e do deslocamento. O forno de aquecimento avançado proporciona uma temperatura uniforme na ponta e na superfície da amostra, o que garante a precisão da medição e minimiza a influência do desvio térmico.

Análise Termomecânica de Solda usando Nanoindentação

 

Tribologia de Alta Temperatura

Dureza de Arranhão a Alta Temperatura usando Tribômetro

Os materiais são selecionados com base nas exigências do serviço. Para aplicações que envolvem mudanças significativas de temperatura e gradientes térmicos, é fundamental investigar as propriedades mecânicas dos materiais a altas temperaturas para estar plenamente ciente dos limites mecânicos. Os materiais, especialmente os polímeros, geralmente amolecem a altas temperaturas. Muitas falhas mecânicas são causadas pela deformação por fluência e fadiga térmica ocorrendo apenas a temperaturas elevadas. Portanto, uma técnica confiável para medir a dureza de arranhões a altas temperaturas é necessária para garantir uma seleção adequada dos materiais para aplicações a altas temperaturas.

Dureza de Arranhão a Alta Temperatura usando Tribômetro