Arquivos Mensais: março 2020
Rendimento e resistência à tração do aço e do alumínio
Importância da Resistência ao Rendimento e da Medição da Resistência à Tração Final usando a Indentação
Tradicionalmente, a Resistência ao Rendimento e a Resistência à Tração Final têm sido testadas usando uma grande máquina de teste de tração que requer uma enorme resistência para separar amostras de teste. É caro e demorado usinar adequadamente muitos cupons de teste para um material onde cada amostra só pode ser testada uma vez. Pequenos defeitos na amostra criam uma variação perceptível nos resultados de teste. Configurações e alinhamentos diferentes dos testadores de tração no mercado muitas vezes resultam em variações substanciais na mecânica e nos resultados dos testes.
Objetivo da medição
Nesta aplicação, a Nanovea Testador Mecânico mede a resistência ao escoamento e a resistência à tração final de amostras de liga metálica de aço inoxidável SS304 e alumínio Al6061. As amostras foram escolhidas por seus valores comumente reconhecidos de resistência ao escoamento e resistência à tração final, mostrando a confiabilidade dos métodos de indentação da Nanovea.
Procedimento e procedimentos de teste
Os testes de resistência ao escoamento e resistência à tração final foram realizados no Nanovea Mechanical Tester na Microindentação modo. Uma ponta de diamante cilíndrica e plana de 200 μm de diâmetro foi usada para essa aplicação. As ligas SS304 e Al6061 foram selecionadas por sua ampla aplicação industrial e pelos valores comumente reconhecidos de resistência ao escoamento e resistência à tração final, a fim de mostrar o grande potencial e a confiabilidade do método de indentação. As amostras foram polidas mecanicamente até um acabamento espelhado antes do teste para evitar a influência da rugosidade da superfície ou de defeitos nos resultados do teste. As condições de teste estão listadas na Tabela 1. Mais de dez testes foram realizados em cada amostra para garantir a repetibilidade dos valores de teste.
Resultados e Discussão
As curvas de carga-deslocamento das amostras de liga SS304 e Al6061 são mostradas na Figura 3 com as marcas de indentação plana no interior das amostras de teste. A análise da curva de carga em forma de "S", utilizando algoritmos especiais desenvolvidos pela Nanovea, calcula a Resistência ao Rendimento e a Resistência à Tensão Final. Os valores são calculados automaticamente pelo software, conforme resumido na Tabela 1. Os valores da Resistência ao Rendimento e da Resistência à Tensão Final obtidos por testes de tração convencionais são listados para comparação.
Conclusão
Neste estudo, demonstramos a capacidade do Nanovea Mechanical Tester em avaliar a resistência ao escoamento e a resistência à tração final de amostras de chapas de aço inoxidável e liga de alumínio. A configuração experimental simples reduz significativamente o tempo e o custo de preparação de amostras necessárias para testes de tração. O pequeno tamanho do recuo torna possível realizar múltiplas medições em uma única amostra. Este método permite medições YS/UTS em pequenas amostras e áreas localizadas, fornecendo uma solução para mapeamento YS/UTS e detecção de defeitos locais de dutos ou estrutura automática.
Todos os módulos Nano, Micro ou Macro do Testador Mecânico Nanovea incluem modos de teste de indentação, desgaste e desgaste em conformidade com ISO e ASTM, fornecendo a gama de testes mais ampla e fácil de usar disponível em um único sistema. A linha incomparável da Nanovea é uma solução ideal para determinar toda a gama de propriedades mecânicas de revestimentos, filmes e substratos finos ou espessos, macios ou duros, incluindo dureza, módulo de Young, tenacidade à fratura, adesão, resistência ao desgaste e muitos outros. Além disso, o perfilador 3D sem contato opcional e o módulo AFM estão disponíveis para imagens 3D de alta resolução de indentação, arranhões e marcas de desgaste, além de outras medições de superfície, como rugosidade.
AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO
Tribologia de carga dinâmica
Tribologia de carga dinâmica
Introdução
O desgaste ocorre em praticamente todos os setores industriais e impõe custos de ~0,75% do PIB1. A pesquisa em tribologia é vital para melhorar a eficiência da produção, o desempenho da aplicação, assim como a conservação do material, da energia e do meio ambiente. Vibração e oscilação ocorrem inevitavelmente em uma ampla gama de aplicações tribológicas. A vibração externa excessiva acelera o processo de desgaste e reduz o desempenho de serviço, o que leva a falhas catastróficas nas peças mecânicas.
Os tribômetros convencionais de carga morta aplicam cargas normais por pesos de massa. Tal técnica de carga não apenas limita as opções de carga a uma carga constante, mas também cria intensas vibrações não controladas a altas cargas e velocidades, levando a avaliações de comportamento de desgaste limitadas e inconsistentes. Uma avaliação confiável do efeito da oscilação controlada no comportamento de desgaste dos materiais é desejável para P&D e CQ em diferentes aplicações industriais.
Alta carga inovadora da Nanovea tribômetro tem capacidade de carga máxima de 2.000 N com sistema de controle de carga dinâmico. O avançado sistema pneumático de carregamento de ar comprimido permite aos usuários avaliar o comportamento tribológico de um material sob altas cargas normais com a vantagem de amortecer vibrações indesejadas criadas durante o processo de desgaste. Portanto, a carga é medida diretamente, sem necessidade de molas amortecedoras usadas em projetos mais antigos. Um módulo de carregamento oscilante eletroímã paralelo aplica oscilação bem controlada de amplitude desejada de até 20 N e frequência de até 150 Hz.
O atrito é medido com alta precisão diretamente pela força lateral aplicada ao suporte superior. O deslocamento é monitorado in situ, fornecendo informações sobre a evolução do comportamento de desgaste das amostras de teste. O teste de desgaste sob carga oscilatória controlada também pode ser realizado em ambientes de corrosão, alta temperatura, umidade e lubrificação para simular as condições reais de trabalho para as aplicações tribológicas. Uma alta velocidade integrada perfilômetro sem contato mede automaticamente a morfologia da trilha de desgaste e o volume de desgaste em poucos segundos.
Objetivo da medição
Neste estudo, mostramos a capacidade do Tribômetro de Carga Dinâmica Nanovea T2000 em estudar o comportamento tribológico de diferentes revestimentos e amostras de metal sob condições de carga com oscilação controlada.
Procedimento de teste
O comportamento tribológico, por exemplo, coeficiente de atrito, COF e resistência ao desgaste de um revestimento resistente ao desgaste de 300 µm de espessura foi avaliado e comparado pelo Tribômetro Nanovea T2000 com um tribômetro convencional de carga morta usando um pino na configuração de disco seguindo a ASTM G992.
Amostras separadas revestidas com Cu e TiN contra uma bola de Al₂0₃ de 6 mm sob oscilação controlada foram avaliadas pelo Modo Tribologia de Carga Dinâmica do Tribômetro Nanovea T2000.
Os parâmetros de teste estão resumidos na Tabela 1.
O profilômetro 3D integrado equipado com um sensor de linha varre automaticamente a pista de desgaste após os testes, proporcionando a medição mais precisa do volume de desgaste em segundos.
Resultados e Discussão
Sistema de carga pneumática vs. Sistema de carga morta
O comportamento tribológico de um revestimento resistente ao desgaste usando Nanovea T2000 Tribometer é comparado a um tribômetro convencional de carga morta (DL). A evolução do COF do revestimento é mostrada na Fig. 2. Observamos que o revestimento exibe um valor de COF comparável de ~0,6 durante o teste de desgaste. Entretanto, os 20 perfis de seção transversal em diferentes locais da pista de desgaste na Fig. 3 indicam que o revestimento sofreu um desgaste muito mais severo sob o sistema de carga morta.
Vibrações intensas foram geradas pelo processo de desgaste do sistema de carga morta em alta carga e velocidade. A enorme pressão concentrada na face de contato combinada com uma alta velocidade de deslizamento cria um peso substancial e uma vibração na estrutura que leva a um desgaste acelerado. O tribômetro convencional de carga morta aplica carga usando pesos de massa. Este método é confiável em cargas de contato mais baixas sob condições de desgaste suave; entretanto, sob condições de desgaste agressivo em cargas e velocidades maiores, a vibração significativa faz com que os pesos saltem repetidamente, resultando em uma pista de desgaste desigual causando uma avaliação tribológica não confiável. A taxa de desgaste calculada é de 8,0±2,4 x 10-4 mm3/N m, mostrando uma alta taxa de desgaste e grande desvio padrão.
O tribômetro Nanovea T2000 é projetado com um sistema de carga de controle dinâmico para amortecer as oscilações. Ele aplica a carga normal com ar comprimido que minimiza a vibração indesejada criada durante o processo de desgaste. Além disso, o controle ativo de carga em loop fechado garante que uma carga constante seja aplicada durante todo o teste de desgaste e a ponta segue a mudança de profundidade da pista de desgaste. Um perfil de pista de desgaste significativamente mais consistente é medido como mostrado na Fig. 3a, resultando em uma baixa taxa de desgaste de 3,4±0,5 x 10-4 mm3/N m.
A análise da pista de desgaste mostrada na Fig. 4 confirma o teste de desgaste realizado pelo sistema de carga pneumática de ar comprimido do Nanovea T2000 Tribometer cria uma pista de desgaste mais suave e mais consistente em comparação com o tribômetro convencional de carga morta. Além disso, o tribômetro Nanovea T2000 mede o deslocamento da ponta durante o processo de desgaste, fornecendo uma visão mais detalhada do progresso do comportamento do desgaste in situ.
Oscilação controlada sobre o desgaste da amostra de Cu
O módulo eletroímã de carga oscilante paralelo do Nanovea T2000 Tribômetro permite aos usuários investigar o efeito das oscilações de amplitude e freqüência controladas sobre o comportamento de desgaste dos materiais. O COF das amostras do Cu é registrado in situ, como mostrado na Fig. 6. A amostra Cu exibe um COF constante de ~0,3 durante a primeira medição de 330 voltas, significando a formação de um contato estável na interface e uma pista de desgaste relativamente suave. Enquanto o teste de desgaste continua, a variação do COF indica uma mudança no mecanismo de desgaste. Em comparação, os testes de desgaste sob uma oscilação controlada em amplitude de 5 N a 50 N apresentam um comportamento de desgaste diferente: o COF aumenta prontamente no início do processo de desgaste, e mostra uma variação significativa ao longo do teste de desgaste. Tal comportamento do COF indica que a oscilação imposta na carga normal desempenha um papel no estado de deslizamento instável no contato.
A Fig. 7 compara a morfologia da via de desgaste medida pelo profilômetro óptico integrado sem contato. Pode-se observar que a amostra Cu sob uma amplitude de oscilação controlada de 5 N exibe uma pista de desgaste muito maior com um volume de 1,35 x 109 µm3, em comparação com 5,03 x 108 µm3 sob nenhuma oscilação imposta. A oscilação controlada acelera significativamente a taxa de desgaste por um fator de ~2,7, mostrando o efeito crítico da oscilação sobre o comportamento de desgaste.
Oscilação Controlada no Desgaste do Revestimento TiN
As faixas de COF e de desgaste da amostra de revestimento TiN são mostradas na Fig. 8. O revestimento de TiN apresenta comportamentos de desgaste significativamente diferentes sob oscilação, conforme indicado pela evolução do COF durante os testes. O revestimento de TiN mostra um COF constante de ~0,3 após o período de rodagem no início do teste de desgaste, devido ao contato deslizante estável na interface entre o revestimento de TiN e a esfera Al₂O₃. Entretanto, quando o revestimento de TiN começa a falhar, a esfera Al₂O₃ penetra através do revestimento e desliza contra o substrato de aço fresco embaixo. Uma quantidade significativa de resíduos de revestimento TiN duro é gerada na pista de desgaste ao mesmo tempo, transformando um desgaste estável de deslizamento de dois corpos em desgaste por abrasão de três corpos. Tal mudança das características do par de materiais leva ao aumento das variações na evolução do COF. A oscilação imposta de 5 N e 10 N acelera a falha do revestimento de TiN de ~400 rotações para menos de 100 rotações. Os maiores rastros de desgaste nas amostras de revestimento TiN após os testes de desgaste sob a oscilação controlada estão de acordo com tal mudança no COF.
O avançado sistema de carga pneumática do Nanovea T2000 Tribômetro possui uma vantagem intrínseca como um amortecedor de vibrações naturalmente rápido em comparação com os sistemas tradicionais de carga morta. Esta vantagem tecnológica dos sistemas pneumáticos é verdadeira em comparação com os sistemas controlados por carga que utilizam uma combinação de servomotores e molas para aplicar a carga. A tecnologia garante uma avaliação de desgaste confiável e melhor controlada em cargas elevadas, como demonstrado neste estudo. Além disso, o sistema ativo de carga em circuito fechado pode alterar a carga normal para um valor desejado durante testes de desgaste para simular aplicações da vida real vistas em sistemas de freio.
Em vez de ter influência das condições de vibração descontrolada durante os testes, mostramos o Nanovea T2000 Dynamic-Load Tribometer que permite aos usuários avaliar quantitativamente os comportamentos tribológicos dos materiais sob diferentes condições de oscilação controlada. As vibrações têm um papel significativo no comportamento de desgaste das amostras de metal e revestimento cerâmico.
O módulo de carga oscilante de eletroímã paralelo fornece oscilações controladas com precisão em amplitudes e frequências definidas, permitindo aos usuários simular o processo de desgaste sob condições reais quando as vibrações ambientais são freqüentemente um fator importante. Na presença de oscilações impostas durante o desgaste, tanto o Cu quanto as amostras de revestimento TiN exibem uma taxa de desgaste substancialmente maior. A evolução do coeficiente de atrito e do deslocamento da ponta medida in situ são indicadores importantes para o desempenho do material durante as aplicações tribológicas. O profilômetro 3D integrado sem contato oferece uma ferramenta para medir com precisão o volume de desgaste e analisar a morfologia detalhada das faixas de desgaste em segundos, fornecendo mais informações sobre o entendimento fundamental do mecanismo de desgaste.
O T2000 é equipado com um motor auto-ajustável, de alta qualidade e alto torque com uma velocidade interna de 20 bits e um codificador de posição externa de 16 bits. Ele permite que o tribômetro forneça uma faixa inigualável de velocidades de rotação de 0,01 a 5000 rpm que podem mudar em saltos escalonados ou em taxas contínuas. Ao contrário dos sistemas que utilizam um sensor de torque localizado em baixo, o Tribômetro Nanovea utiliza uma célula de carga de alta precisão localizada em cima para medir com precisão e separadamente as forças de atrito.
Os Tribômetros Nanovea oferecem testes de desgaste e atrito precisos e repetíveis usando os modos rotativo e linear compatíveis com ISO e ASTM (incluindo testes de 4 esferas, arruela de pressão e bloco sobre anel), com módulos opcionais de desgaste em alta temperatura, lubrificação e tribo-corrosão disponíveis em um sistema pré-integrado. A gama inigualável do Nanovea T2000 é uma solução ideal para determinar a gama completa de propriedades tribológicas de revestimentos, filmes e substratos finos ou grossos, macios ou duros.
AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO
Análise de textura de casca de laranja para pintura usando Perfilometria 3D
Análise de textura de casca de laranja para pintura usando Perfilometria 3D
Introdução
O tamanho e a frequência das estruturas de superfície sobre os substratos afetam a qualidade dos revestimentos brilhantes. A textura de casca de laranja da tinta, nomeada por sua aparência, pode se desenvolver a partir da influência do substrato e da técnica de aplicação da tinta. Os problemas de textura são geralmente quantificados pela ondulação, comprimento de onda e o efeito visual que eles têm sobre os revestimentos brilhantes. As menores texturas resultam na redução do brilho enquanto as maiores resultam em ondulações visíveis na superfície revestida. A compreensão do desenvolvimento dessas texturas e sua relação com substratos e técnicas é fundamental para o controle de qualidade.
Importância da Perfilometria para Medição de Textura
Diferentemente dos instrumentos 2D tradicionais usados para medir a textura do brilho, a medição 3D sem contato fornece rapidamente uma imagem 3D usada para entender as características da superfície com a capacidade adicional de investigar rapidamente as áreas de interesse. Sem a velocidade e a análise em 3D, um ambiente de controle de qualidade dependeria apenas de informações em 2D que oferecem pouca previsibilidade de toda a superfície. A compreensão das texturas em 3D permite a melhor seleção de medidas de processamento e controle. A garantia do controle de qualidade de tais parâmetros depende muito de uma inspeção quantificável, reproduzível e confiável. Nanovea 3D sem contato Perfilômetros utilizam a tecnologia confocal cromática para ter a capacidade exclusiva de medir os ângulos acentuados encontrados durante a medição rápida. Os Profilômetros Nanovea são bem-sucedidos onde outras técnicas não conseguem fornecer dados confiáveis devido ao contato da sonda, à variação da superfície, ao ângulo ou à refletividade.
Objetivo da medição
Nesta aplicação, a Nanovea HS2000L mede a textura de casca de laranja de uma tinta brilhante. Há infinitos parâmetros de superfície calculados automaticamente a partir da varredura da superfície 3D. Aqui analisamos uma superfície 3D escaneada quantificando as características da textura de casca de laranja da tinta.
O Nanovea HS2000L quantificou os parâmetros de isotropia e altura da tinta de casca de laranja. A textura de casca de laranja quantificou a direção do padrão aleatório com a isotropia 94,4%. Os parâmetros de altura quantificam a textura com uma diferença de altura de 24,84µm.
A curva da relação de rolamento na Figura 4 é uma representação gráfica da distribuição de profundidade. Esta é uma característica interativa dentro do software que permite ao usuário visualizar as distribuições e porcentagens em profundidades variáveis. Um perfil extraído na Figura 5 fornece valores úteis de rugosidade para a textura de casca de laranja. A extração de pico acima de um limiar de 144 mícrons mostra a textura de casca de laranja. Estes parâmetros são facilmente ajustados a outras áreas ou parâmetros de interesse.
Conclusão
Nesta aplicação, o Perfilômetro Nanovea HS2000L 3D Sem-Contato caracteriza com precisão tanto a topografia quanto os detalhes nanométricos da textura da casca de laranja da tinta em um revestimento brilhante. As áreas de interesse das medidas de superfície 3D são rapidamente identificadas e analisadas com muitas medidas úteis (Dimensão, Textura de acabamento rugoso, Topografia de forma, Planaridade de deformação plana, Área de volume, Passo-Altura, etc.). As seções transversais 2D escolhidas rapidamente fornecem um conjunto completo de recursos de medição de superfície sobre a textura de brilho. Áreas especiais de interesse podem ser analisadas posteriormente com um módulo AFM integrado. A velocidade do Perfilômetro Nanovea 3D varia de <1 mm/s a 500 mm/s para adequação em aplicações de pesquisa para as necessidades de inspeção de alta velocidade. Os Perfilômetros Nanovea 3D têm uma ampla gama de configurações para se adequar à sua aplicação.
AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO
Categorias
- Notas de Aplicação
- Tribologia Block-on-Ring
- Tribologia da Corrosão
- Teste de Fricção | Coeficiente de Fricção
- Testes Mecânicos de Alta Temperatura
- Tribologia de Alta Temperatura
- Tribologia em Umidade e Gases
- Testes Mecânico de Umidade
- Indentação | Deslizamento e Relaxamento
- Indentação | Resistência à Fratura
- Indentação | Dureza e Elástico
- Indentação | Perda e Armazenamento
- Indentação | Stress vs Deformação
- Indentação | Resistência ao Rendimento e Fadiga
- Testes de Laboratório
- Tribologia Linear
- Teste Mecânico em Líquidos
- Tribologia Líquida
- Tribologia de Baixa Temperatura
- Testes Mecânicos
- Comunicado à imprensa
- Perfilometria | Planicidade e Distorções
- Perfilometria | Geometria e Forma
- Perfilometria | Rugosidade e Acabamento
- Perfilometria | Altura e Espessura dos degraus
- Perfilometria | Textura e Grão
- Perfilometria | Volume e Área
- Teste de Perfilometria
- Tribologia Ring-on-Ring
- Tribologia Rotacional
- Teste de Arranhões | Falha Adesiva
- Teste de Arranhões | Falha Coesiva
- Teste de Arranhão | Desgaste Multi-Pass
- Teste de Arranhão | Dureza de Arranhão
- Tribologia de Teste de Arranhões
- Feiras e Eventos
- Testes de Tribologia
- Sem Categoria
Arquivos
- setembro 2023
- agosto 2023
- junho 2023
- maio 2023
- julho 2022
- maio 2022
- abril 2022
- janeiro 2022
- dezembro 2021
- novembro 2021
- outubro 2021
- setembro 2021
- agosto 2021
- julho 2021
- junho 2021
- maio 2021
- março 2021
- fevereiro 2021
- dezembro 2020
- novembro 2020
- outubro 2020
- setembro 2020
- julho 2020
- maio 2020
- abril 2020
- março 2020
- fevereiro 2020
- janeiro 2020
- novembro 2019
- outubro 2019
- setembro 2019
- agosto 2019
- julho 2019
- junho 2019
- maio 2019
- abril 2019
- março 2019
- janeiro 2019
- dezembro 2018
- novembro 2018
- outubro 2018
- setembro 2018
- julho 2018
- junho 2018
- maio 2018
- abril 2018
- março 2018
- fevereiro 2018
- novembro 2017
- outubro 2017
- setembro 2017
- agosto 2017
- junho 2017
- maio 2017
- abril 2017
- março 2017
- fevereiro 2017
- janeiro 2017
- novembro 2016
- outubro 2016
- agosto 2016
- julho 2016
- junho 2016
- maio 2016
- abril 2016
- março 2016
- fevereiro 2016
- janeiro 2016
- dezembro 2015
- novembro 2015
- outubro 2015
- setembro 2015
- agosto 2015
- julho 2015
- junho 2015
- maio 2015
- abril 2015
- março 2015
- fevereiro 2015
- janeiro 2015
- novembro 2014
- outubro 2014
- setembro 2014
- agosto 2014
- julho 2014
- junho 2014
- maio 2014
- abril 2014
- março 2014
- fevereiro 2014
- janeiro 2014
- dezembro 2013
- novembro 2013
- outubro 2013
- setembro 2013
- agosto 2013
- julho 2013
- junho 2013
- maio 2013
- abril 2013
- março 2013
- fevereiro 2013
- janeiro 2013
- dezembro 2012
- novembro 2012
- outubro 2012
- setembro 2012
- agosto 2012
- julho 2012
- junho 2012
- maio 2012
- abril 2012
- março 2012
- fevereiro 2012
- janeiro 2012
- dezembro 2011
- novembro 2011
- outubro 2011
- setembro 2011
- agosto 2011
- julho 2011
- junho 2011
- maio 2011
- novembro 2010
- janeiro 2010
- abril 2009
- março 2009
- janeiro 2009
- dezembro 2008
- outubro 2008
- agosto 2007
- julho 2006
- março 2006
- janeiro 2005
- abril 2004