Tribologie des charges dynamiques
Tribologie des charges dynamiques
Introduction
L'usure se produit dans pratiquement tous les secteurs industriels et impose des coûts de ~0,75% du PIB1. La recherche en tribologie est essentielle pour améliorer l'efficacité de la production, les performances des applications, ainsi que la conservation des matériaux, de l'énergie et de l'environnement. Les vibrations et les oscillations sont inévitables dans un large éventail d'applications tribologiques. Des vibrations externes excessives accélèrent le processus d'usure et réduisent les performances de service, ce qui entraîne des défaillances catastrophiques des pièces mécaniques.
Les tribomètres conventionnels à charge morte appliquent des charges normales par des poids de masse. Une telle technique de chargement limite non seulement les options de chargement à une charge constante, mais elle crée également des vibrations intenses et incontrôlées à des charges et des vitesses élevées, ce qui conduit à des évaluations limitées et incohérentes du comportement d'usure. Une évaluation fiable de l'effet des oscillations contrôlées sur le comportement d'usure des matériaux est souhaitable pour la R&D et le CQ dans différentes applications industrielles.
La charge élevée révolutionnaire de Nanovea tribomètre a une capacité de charge maximale de 2000 N avec un système de contrôle de charge dynamique. Le système avancé de chargement pneumatique à air comprimé permet aux utilisateurs d'évaluer le comportement tribologique d'un matériau sous des charges normales élevées avec l'avantage d'amortir les vibrations indésirables créées pendant le processus d'usure. Par conséquent, la charge est mesurée directement sans avoir besoin des ressorts tampons utilisés dans les conceptions plus anciennes. Un module de charge oscillant à électro-aimant parallèle applique une oscillation bien contrôlée d'amplitude souhaitée jusqu'à 20 N et de fréquence jusqu'à 150 Hz.
La friction est mesurée avec une grande précision directement à partir de la force latérale appliquée au support supérieur. Le déplacement est surveillé in situ, ce qui donne un aperçu de l'évolution du comportement à l'usure des échantillons d'essai. Le test d'usure sous charge d'oscillation contrôlée peut également être effectué dans des environnements de corrosion, de température élevée, d'humidité et de lubrification pour simuler les conditions de travail réelles pour les applications tribologiques. Un haut débit intégré profilomètre sans contact mesure automatiquement la morphologie des traces d'usure et le volume d'usure en quelques secondes.
Objectif de la mesure
Dans cette étude, nous démontrons la capacité du tribomètre à charge dynamique Nanovea T2000 à étudier le comportement tribologique de différents échantillons de revêtement et de métal dans des conditions de charge d'oscillation contrôlée.
Procédure d'essai
Le comportement tribologique, par exemple le coefficient de friction, COF, et la résistance à l'usure d'un revêtement résistant à l'usure de 300 µm d'épaisseur a été évalué et comparé par le tribomètre Nanovea T2000 avec un tribomètre conventionnel à charge morte utilisant une configuration broche sur disque selon ASTM G992.
Des échantillons séparés recouverts de Cu et de TiN contre une bille d'Al₂0₃ de 6 mm sous oscillation contrôlée ont été évalués par le mode de tribologie de charge dynamique du tribomètre Nanovea T2000.
Les paramètres de l'essai sont résumés dans le tableau 1.
Le profilomètre 3D intégré, équipé d'un capteur de ligne, scanne automatiquement la piste d'usure après les essais, fournissant ainsi la mesure la plus précise du volume d'usure en quelques secondes.
Résultats et discussion
Système de chargement pneumatique vs. système de chargement mort
Le comportement tribologique d'un revêtement résistant à l'usure en utilisant le tribomètre Nanovea T2000 est comparé à un tribomètre conventionnel à charge morte (DL). L'évolution du COF du revêtement est présentée à la Fig. 2. Nous observons que le revêtement présente une valeur COF comparable de ~0.6 pendant le test d'usure. Cependant, les 20 profils de section transversale à différents endroits de la piste d'usure de la Fig. 3 indiquent que le revêtement a subi une usure beaucoup plus sévère sous le système de charge morte.
Des vibrations intenses ont été générées par le processus d'usure du système de charge morte à charge et vitesse élevées. La pression massive concentrée au niveau de la face de contact, combinée à une vitesse de glissement élevée, crée des vibrations importantes au niveau du poids et de la structure, entraînant une usure accélérée. Le tribomètre conventionnel à charge morte applique la charge à l'aide de poids de masse. Cette méthode est fiable pour des charges de contact faibles dans des conditions d'usure légères ; cependant, dans des conditions d'usure agressives à des charges et des vitesses plus élevées, les vibrations importantes font rebondir les poids de manière répétée, ce qui donne une trace d'usure irrégulière et une évaluation tribologique peu fiable. Le taux d'usure calculé est de 8,0±2,4 x 10-4 mm3/N m, ce qui montre un taux d'usure élevé et un écart-type important.
Le tribomètre Nanovea T2000 est conçu avec un système de chargement à contrôle dynamique pour amortir les oscillations. Il applique la charge normale avec de l'air comprimé, ce qui minimise les vibrations indésirables créées pendant le processus d'usure. En outre, le contrôle actif de la charge en boucle fermée garantit qu'une charge constante est appliquée tout au long de l'essai d'usure et que le stylet suit le changement de profondeur de la trace d'usure. Un profil de piste d'usure nettement plus cohérent est mesuré, comme le montre la figure 3a, ce qui se traduit par un faible taux d'usure de 3,4±0,5 x 10-4 mm3/N m.
L'analyse de la trace d'usure présentée à la figure 4 confirme que l'essai d'usure effectué par le système de chargement pneumatique à air comprimé du tribomètre Nanovea T2000 crée une trace d'usure plus lisse et plus cohérente par rapport au tribomètre conventionnel à charge morte. En outre, le tribomètre Nanovea T2000 mesure le déplacement du stylet pendant le processus d'usure, ce qui donne un aperçu supplémentaire de la progression du comportement d'usure in situ.
Oscillation contrôlée sur l'usure de l'échantillon de Cu
Le module d'électroaimant de charge à oscillation parallèle du tribomètre Nanovea T2000 permet aux utilisateurs d'étudier l'effet des oscillations à amplitude et fréquence contrôlées sur le comportement d'usure des matériaux. Le COF des échantillons de Cu est enregistré in situ comme le montre la figure 6. L'échantillon de Cu présente un COF constant de ~0,3 pendant la première mesure de 330 révolutions, ce qui signifie la formation d'un contact stable à l'interface et une piste d'usure relativement lisse. Lorsque le test d'usure se poursuit, la variation du COF indique un changement dans le mécanisme d'usure. En comparaison, les essais d'usure sous une oscillation contrôlée par une amplitude de 5 N à 50 N présentent un comportement d'usure différent : le COF augmente rapidement au début du processus d'usure, et montre une variation significative tout au long de l'essai d'usure. Ce comportement du COF indique que l'oscillation imposée dans la charge normale joue un rôle dans l'état de glissement instable au niveau du contact.
La figure 7 compare la morphologie des traces d'usure mesurées par le profilomètre optique sans contact intégré. On peut observer que l'échantillon de Cu soumis à une amplitude d'oscillation contrôlée de 5 N présente une trace d'usure beaucoup plus grande avec un volume de 1,35 x 109 µm3, comparé à 5,03 x 108 µm3 sans oscillation imposée. L'oscillation contrôlée accélère significativement la vitesse d'usure par un facteur de ~2.7, montrant l'effet critique de l'oscillation sur le comportement d'usure.
Oscillation contrôlée sur l'usure du revêtement de TiN
Le COF et les traces d'usure de l'échantillon de revêtement TiN sont présentés à la Fig. 8. Le revêtement TiN présente des comportements d'usure très différents sous oscillation, comme l'indique l'évolution du COF pendant les tests. Le revêtement TiN présente un COF constant de ~0,3 après la période de rodage au début du test d'usure, en raison du contact glissant stable à l'interface entre le revêtement TiN et la bille en Al₂O₃. Cependant, lorsque le revêtement TiN commence à céder, la bille Al₂O₃ pénètre à travers le revêtement et glisse contre le substrat en acier frais situé en dessous. Une quantité importante de débris de revêtement TiN dur est générée dans la piste d'usure au même moment, transformant une usure par glissement stable à deux corps en une usure par abrasion à trois corps. Un tel changement des caractéristiques du couple de matériaux conduit à des variations accrues de l'évolution du COF. L'oscillation imposée de 5 N et 10 N accélère la rupture du revêtement TiN de ~400 révolutions à moins de 100 révolutions. Les traces d'usure plus importantes sur les échantillons de revêtement TiN après les tests d'usure sous oscillation contrôlée sont en accord avec un tel changement de COF.
Le système de chargement pneumatique avancé du tribomètre Nanovea T2000 possède un avantage intrinsèque en tant qu'amortisseur de vibrations naturellement rapide par rapport aux systèmes traditionnels de charge morte. Cet avantage technologique des systèmes pneumatiques est vrai par rapport aux systèmes à charge contrôlée qui utilisent une combinaison de servomoteurs et de ressorts pour appliquer la charge. Cette technologie garantit une évaluation fiable et mieux contrôlée de l'usure à des charges élevées, comme le démontre cette étude. En outre, le système de chargement actif en boucle fermée peut modifier la charge normale à une valeur souhaitée pendant les tests d'usure afin de simuler les applications réelles observées dans les systèmes de freinage.
Au lieu de subir l'influence de conditions de vibrations non contrôlées pendant les essais, nous avons montré que le tribomètre à charge dynamique Nanovea T2000 permet aux utilisateurs d'évaluer quantitativement les comportements tribologiques des matériaux dans différentes conditions d'oscillations contrôlées. Les vibrations jouent un rôle important dans le comportement d'usure des échantillons de revêtement en métal et en céramique.
Le module de chargement oscillant à électroaimant parallèle fournit des oscillations contrôlées avec précision à des amplitudes et des fréquences définies, permettant aux utilisateurs de simuler le processus d'usure dans des conditions réelles où les vibrations environnementales sont souvent un facteur important. En présence d'oscillations imposées pendant l'usure, les échantillons de revêtement en Cu et en TiN présentent tous deux un taux d'usure considérablement accru. L'évolution du coefficient de friction et le déplacement du stylet mesurés in situ sont des indicateurs importants de la performance du matériau pendant les applications tribologiques. Le profilomètre 3D sans contact intégré offre un outil permettant de mesurer précisément le volume d'usure et d'analyser la morphologie détaillée des traces d'usure en quelques secondes, ce qui permet de mieux comprendre les mécanismes fondamentaux de l'usure.
Le T2000 est équipé d'un moteur auto-réglable, de haute qualité et à couple élevé, avec une vitesse interne de 20 bits et un codeur de position externe de 16 bits. Il permet au tribomètre de fournir une gamme inégalée de vitesses de rotation de 0,01 à 5000 tr/min qui peuvent changer par bonds ou en continu. Contrairement aux systèmes qui utilisent un capteur de couple situé en bas, le tribomètre Nanovea utilise une cellule de charge de haute précision située en haut pour mesurer avec précision et séparément les forces de friction.
Les tribomètres Nanovea offrent des essais d'usure et de friction précis et répétables en utilisant des modes rotatifs et linéaires conformes aux normes ISO et ASTM (y compris les essais à 4 billes, à rondelle de butée et à bloc sur bague), avec des modules optionnels d'usure à haute température, de lubrification et de tribo-corrosion disponibles dans un système pré-intégré. La gamme inégalée du Nanovea T2000 est une solution idéale pour déterminer la gamme complète des propriétés tribologiques des revêtements, films et substrats minces ou épais, mous ou durs.
MAINTENANT, PARLONS DE VOTRE CANDIDATURE
Catégories
- Notes d'application
- Bloc sur la tribologie des anneaux
- Corrosion Tribologie
- Essai de friction - Coefficient de friction
- Essais mécaniques à haute température
- Tribologie à haute température
- Humidité et gaz Tribologie
- Humidité Essais mécaniques
- Indentation | Fluage et relaxation
- Indentation | Ténacité à la rupture
- Indentation | Dureté et élasticité
- Indentation | Perte et stockage
- Indentation | Contrainte et déformation
- Indentation | Limite d'élasticité et fatigue
- Tests de laboratoire
- Tribologie linéaire
- Essais mécaniques des liquides
- Tribologie des liquides
- Tribologie à basse température
- Essais mécaniques
- Communiqué de presse
- Profilométrie - Planéité et gauchissement
- Profilométrie | Géométrie et forme
- Profilométrie | Rugosité et finition
- Profilométrie | Hauteur et épaisseur des marches
- Profilométrie | Texture et grain
- Profilométrie | Volume et surface
- Essais de profilométrie
- Tribologie "anneau sur anneau
- Tribologie rotationnelle
- Test de rayures | Défaillance de l'adhésif
- Essai de grattage | Défaillance de la cohésion
- Test de rayures | Usure multi-passages
- Test de rayures | Dureté à la rayure
- Test de rayure Tribologie
- Tradeshow
- Essais de tribologie
- Non classé
Archives
- septembre 2023
- août 2023
- juin 2023
- mai 2023
- juillet 2022
- mai 2022
- avril 2022
- janvier 2022
- décembre 2021
- novembre 2021
- octobre 2021
- septembre 2021
- août 2021
- juillet 2021
- juin 2021
- mai 2021
- mars 2021
- février 2021
- décembre 2020
- novembre 2020
- octobre 2020
- septembre 2020
- juillet 2020
- mai 2020
- avril 2020
- mars 2020
- février 2020
- janvier 2020
- novembre 2019
- octobre 2019
- septembre 2019
- août 2019
- juillet 2019
- juin 2019
- mai 2019
- avril 2019
- mars 2019
- janvier 2019
- décembre 2018
- novembre 2018
- octobre 2018
- septembre 2018
- juillet 2018
- juin 2018
- mai 2018
- avril 2018
- mars 2018
- février 2018
- novembre 2017
- octobre 2017
- septembre 2017
- août 2017
- juin 2017
- mai 2017
- avril 2017
- mars 2017
- février 2017
- janvier 2017
- novembre 2016
- octobre 2016
- août 2016
- juillet 2016
- juin 2016
- mai 2016
- avril 2016
- mars 2016
- février 2016
- janvier 2016
- décembre 2015
- novembre 2015
- octobre 2015
- septembre 2015
- août 2015
- juillet 2015
- juin 2015
- mai 2015
- avril 2015
- mars 2015
- février 2015
- janvier 2015
- novembre 2014
- octobre 2014
- septembre 2014
- août 2014
- juillet 2014
- juin 2014
- mai 2014
- avril 2014
- mars 2014
- février 2014
- janvier 2014
- décembre 2013
- novembre 2013
- octobre 2013
- septembre 2013
- août 2013
- juillet 2013
- juin 2013
- mai 2013
- avril 2013
- mars 2013
- février 2013
- janvier 2013
- décembre 2012
- novembre 2012
- octobre 2012
- septembre 2012
- août 2012
- juillet 2012
- juin 2012
- mai 2012
- avril 2012
- mars 2012
- février 2012
- janvier 2012
- décembre 2011
- novembre 2011
- octobre 2011
- septembre 2011
- août 2011
- juillet 2011
- juin 2011
- mai 2011
- novembre 2010
- janvier 2010
- avril 2009
- mars 2009
- janvier 2009
- décembre 2008
- octobre 2008
- août 2007
- juillet 2006
- mars 2006
- janvier 2005
- avril 2004