USA/GLOBAL : +1-949-461-9292
EUROPE : +39-011-3052-794
CONTACTEZ-NOUS

Test d'usure des pistons

Test d'usure des pistons

Utilisation d'un tribomètre

Préparé par

FRANK LIU

INTRODUCTION

La perte par frottement représente environ 10% de l'énergie totale du carburant d'un moteur diesel.[1]. 40-55% de la perte par friction provient du système de cylindre de puissance. La perte d'énergie due au frottement peut être diminuée par une meilleure compréhension des interactions tribologiques qui se produisent dans le système de cylindre de puissance.

Une partie importante de la perte par frottement dans le système de cylindre de puissance provient du contact entre la jupe du piston et la chemise du cylindre. L'interaction entre la jupe du piston, le lubrifiant et les interfaces du cylindre est assez complexe en raison des changements constants de force, de température et de vitesse dans un moteur réel. L'optimisation de chaque facteur est essentielle pour obtenir des performances optimales du moteur. Cette étude se concentre sur la reproduction des mécanismes à l'origine des forces de frottement et de l'usure aux interfaces jupe du piston - lubrifiant - chemise du cylindre (P-L-C).

 Schéma du système de vérins de puissance et des interfaces jupe de piston-lubrifiant-revêtement de vérin.

[1] Bai, Dongfang. Modélisation de la lubrification de la jupe du piston dans les moteurs à combustion interne. Diss. MIT, 2012

IMPORTANCE DE TESTER LES PISTONS AVEC DES TRIBOMÈTRES

L'huile moteur est un lubrifiant bien conçu pour son application. Outre l'huile de base, des additifs tels que des détergents, des dispersants, des améliorants de viscosité (VI), des agents anti-usure/anti-friction et des inhibiteurs de corrosion sont ajoutés pour améliorer ses performances. Ces additifs influent sur le comportement de l'huile dans différentes conditions de fonctionnement. Le comportement de l'huile affecte les interfaces P-L-C et détermine si une usure importante par contact métal-métal ou une lubrification hydrodynamique (très peu d'usure) se produit.

Il est difficile de comprendre les interfaces P-L-C sans isoler la zone des variables externes. Il est plus pratique de simuler l'événement avec des conditions représentatives de son application réelle. Le site NANOVEA Tribomètre est idéal pour cela. Équipé de plusieurs capteurs de force, d'un capteur de profondeur, d'un module de lubrifiant goutte à goutte et d'un étage linéaire alternatif, le NANOVEA Le T2000 est capable de reproduire fidèlement les événements qui se produisent dans un bloc moteur et d'obtenir des données précieuses pour mieux comprendre les interfaces P-L-C.

Module liquide sur le tribomètre NANOVEA T2000

Le module goutte à goutte est crucial pour cette étude. Comme les pistons peuvent se déplacer à une vitesse très rapide (supérieure à 3 000 tr/min), il est difficile de créer un film mince de lubrifiant en immergeant l'échantillon. Pour remédier à ce problème, le module de goutte-à-goutte est capable d'appliquer une quantité constante de lubrifiant sur la surface de la jupe du piston.

L'application d'un lubrifiant frais élimine également le risque que des contaminants d'usure délogés influencent les propriétés du lubrifiant.

NANOVEA T2000

Tribomètre à charge élevée

OBJECTIF DE MESURE

Les interfaces jupe du piston - lubrifiant - chemise du cylindre seront étudiées dans ce rapport. Les interfaces seront reproduites en effectuant un essai d'usure linéaire alternatif avec un module de lubrifiant goutte à goutte.

Le lubrifiant sera appliqué à température ambiante et à chaud pour comparer les conditions de démarrage à froid et de fonctionnement optimal. Le COF et le taux d'usure seront observés pour mieux comprendre le comportement des interfaces dans des applications réelles.

PARAMÈTRES D'ESSAI

pour les essais tribologiques sur les pistons

CHARGE ............................ 100 N

DURÉE DU TEST ............................ 30 minutes

VITESSE ............................ 2000 rpm

AMPLITUDE ............................ 10 mm

DISTANCE TOTALE ............................ 1200 m

REVÊTEMENT DE LA JUPE ............................ Moly-graphite

MATÉRIAU DE LA BROCHE ............................ Alliage d'aluminium 5052

DIAMÈTRE DE LA BROCHE ............................ 10 mm

LUBRIFIANT ............................ Huile moteur (10W-30)

APPROX. DÉBIT ............................ 60 mL/min

TEMPÉRATURE ............................ Température ambiante et 90°C

RÉSULTATS DES ESSAIS DE RÉCIPROCITÉ LINÉAIRE

Dans cette expérience, l'A5052 a été utilisé comme contre-matériau. Alors que les blocs moteurs sont généralement fabriqués en aluminium moulé tel que l'A356, l'A5052 a des propriétés mécaniques similaires à l'A356 pour ce test de simulation [2].

Dans les conditions d'essai, une usure importante a été
observée sur la jupe du piston à température ambiante
par rapport à la température de 90°C. Les rayures profondes observées sur les échantillons suggèrent que le contact entre le matériau statique et la jupe du piston se produit fréquemment tout au long de l'essai. La viscosité élevée à température ambiante peut empêcher l'huile de remplir complètement les espaces aux interfaces et de créer un contact métal-métal. À une température plus élevée, l'huile s'amincit et est capable de s'écouler entre l'axe et le piston. Par conséquent, on observe une usure nettement moindre à une température plus élevée. La FIGURE 5 montre qu'un côté de la cicatrice d'usure s'est beaucoup moins usé que l'autre. Cela est très probablement dû à l'emplacement de la sortie d'huile. L'épaisseur du film de lubrifiant était plus importante d'un côté que de l'autre, provoquant une usure inégale.

 

 

[2] "Aluminium 5052 vs aluminium 356.0." MakeItFrom.com, makeitfrom.com/compare/5052-O-Aluminum/A356.0-SG70B-A13560-Cast-Aluminum

Le COF des essais de tribologie à mouvement alternatif linéaire peut être divisé en un passage haut et un passage bas. Le passage haut fait référence à l'échantillon se déplaçant dans la direction avant, ou positive, et le passage bas fait référence à l'échantillon se déplaçant dans la direction inverse, ou négative. On a observé que le COF moyen pour l'huile RT était inférieur à 0,1 dans les deux sens. Les COF moyens entre les passages étaient de 0,072 et 0,080. Le COF moyen de l'huile à 90°C s'est avéré différent entre les passages. Des valeurs moyennes de COF de 0,167 et 0,09 ont été observées. La différence de COF est une preuve supplémentaire que l'huile n'a pu mouiller correctement qu'un seul côté de l'axe. Un COF élevé a été obtenu lorsqu'un film épais s'est formé entre l'axe et la jupe du piston en raison de la lubrification hydrodynamique qui s'est produite. Un COF plus faible est observé dans l'autre sens lorsqu'une lubrification mixte se produit. Pour plus d'informations sur la lubrification hydrodynamique et la lubrification mixte, veuillez consulter notre note d'application sur Courbes de Stribeck.

Tableau 1 : Résultats d'un essai d'usure lubrifié sur des pistons.

FIGURE 1: Graphiques COF pour l'essai d'usure de l'huile à température ambiante A profil brut B passage élevé C passage bas.

FIGURE 2 : Graphiques COF pour un essai d'huile d'usure à 90°C A profil brut B passe haut C passe bas.

FIGURE 3 : Image optique d'une cicatrice d'usure provenant d'un test d'usure d'huile moteur RT.

FIGURE 4 : Volume d'un trou analyse de la cicatrice d'usure de l'essai d'usure de l'huile moteur RT.

FIGURE 5 : Scan de profilométrie d'une cicatrice d'usure provenant d'un test d'usure d'huile moteur RT.

FIGURE 6 : Image optique d'une cicatrice d'usure provenant d'un essai d'usure d'huile moteur à 90°C

FIGURE 7 : Volume de l'analyse d'un trou de la cicatrice d'usure provenant d'un essai d'usure d'huile moteur à 90°C.

FIGURE 8 : Balayage profilométrique d'une cicatrice d'usure provenant d'un essai d'usure d'huile moteur à 90°C.

CONCLUSION

Des essais d'usure par mouvement alternatif linéaire lubrifié ont été menés sur un piston afin de simuler les événements qui se produisent dans une machine à café.
moteur opérationnel en situation réelle. Les interfaces jupe du piston - lubrifiant - chemise du cylindre sont cruciales pour le fonctionnement d'un moteur. L'épaisseur du lubrifiant à l'interface est responsable de la perte d'énergie due à la friction ou à l'usure entre la jupe du piston et la chemise du cylindre. Pour optimiser le moteur, l'épaisseur du film doit être aussi fine que possible sans que la jupe du piston et la chemise du cylindre ne se touchent. Le défi, cependant, est de savoir comment les changements de température, de vitesse et de force affecteront les interfaces P-L-C.

Avec sa large gamme de charge (jusqu'à 2000 N) et de vitesse (jusqu'à 15000 tr/min), le tribomètre NANOVEA T2000 est capable de simuler les différentes conditions possibles dans un moteur. Les études futures possibles sur ce sujet incluent le comportement des interfaces P-L-C sous différentes charges constantes, charges oscillantes, température du lubrifiant, vitesse et méthode d'application du lubrifiant. Ces paramètres peuvent être facilement ajustés avec le tribomètre NANOVEA T2000 pour donner une compréhension complète des mécanismes des interfaces jupe de piston-lubrifiant-revêtement de cylindre.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Commentaire