USA/GLOBAL : +1-949-461-9292
EUROPE : +39-011-3052-794
CONTACTEZ-NOUS

Cartographie de l'usure progressive des revêtements de sol à l'aide d'un tribomètre

Cartographie de l'usure progressive des revêtements de sol

Utilisation d'un tribomètre avec profilomètre intégré

Préparé par

FRANK LIU

INTRODUCTION

Les matériaux de revêtement de sol sont conçus pour être durables, mais ils subissent souvent l'usure due aux activités quotidiennes telles que les déplacements et l'utilisation des meubles. Pour garantir leur longévité, la plupart des types de revêtements de sol sont dotés d'une couche d'usure protectrice qui résiste aux dommages. Cependant, l'épaisseur et la durabilité de la couche d'usure varient en fonction du type de revêtement de sol et du niveau de circulation piétonnière. De plus, les différentes couches de la structure du revêtement de sol, telles que les revêtements UV, les couches décoratives et les vernis, ont des taux d'usure variables. C'est là qu'intervient la cartographie de l'usure progressive. En utilisant le tribomètre NANOVEA T2000 avec un Profilomètre 3D sans contact, une surveillance et une analyse précises des performances et de la longévité des matériaux de revêtement de sol peuvent être effectuées. En fournissant des informations détaillées sur le comportement à l'usure de divers matériaux de revêtement de sol, les scientifiques et les professionnels techniques peuvent prendre des décisions plus éclairées lors de la sélection et de la conception de nouveaux systèmes de revêtement de sol.

IMPORTANCE DE LA CARTOGRAPHIE DE L'USURE PROGRESSIVE POUR LES PANNEAUX DE SOL

Les essais de revêtements de sol sont traditionnellement axés sur le taux d'usure d'un échantillon pour déterminer sa résistance à l'usure. Cependant, la cartographie de l'usure progressive permet d'analyser le taux d'usure de l'échantillon tout au long du test, ce qui fournit des informations précieuses sur le comportement de l'échantillon face à l'usure. Cette analyse approfondie permet d'établir des corrélations entre les données de frottement et le taux d'usure, ce qui permet d'identifier les causes profondes de l'usure. Il convient de noter que les taux d'usure ne sont pas constants tout au long des essais d'usure. Ainsi, l'observation de la progression de l'usure donne une évaluation plus précise de l'usure de l'échantillon. Dépassant les méthodes d'essai traditionnelles, l'adoption de la cartographie de l'usure progressive a contribué à des avancées significatives dans le domaine des essais de revêtements de sol.

Le tribomètre NANOVEA T2000 avec profilomètre 3D sans contact intégré est une solution révolutionnaire pour les tests d'usure et les mesures de perte de volume. Sa capacité à se déplacer avec précision entre la goupille et le profilomètre garantit la fiabilité des résultats en éliminant tout écart de rayon ou d'emplacement des traces d'usure. Mais ce n'est pas tout : les capacités avancées du profilomètre 3D sans contact permettent des mesures de surface à grande vitesse, réduisant le temps de numérisation à quelques secondes seulement. Avec la capacité d'appliquer des charges allant jusqu'à 2 000 N et d'atteindre des vitesses d'essorage allant jusqu'à 5 000 tr/min, le NANOVEA T2000 Tribomètre offre polyvalence et précision dans le processus d’évaluation. Il est clair que cet équipement joue un rôle essentiel dans la cartographie de l'usure progressive.

 

FIGURE 1: Montage de l'échantillon avant l'essai d'usure (à gauche) et profilométrie de la piste d'usure après l'essai d'usure (à droite).

OBJECTIF DE MESURE

Des tests de cartographie d'usure progressive ont été réalisés sur deux types de revêtements de sol : la pierre et le bois. Chaque échantillon a subi un total de 7 cycles de test, avec des durées de test croissantes de 2, 4, 8, 20, 40, 60 et 120 s, permettant une comparaison de l'usure dans le temps. Après chaque cycle d'essai, la piste d'usure a été profilée à l'aide du profilomètre sans contact NANOVEA 3D. À partir des données recueillies par le profileur, le volume du trou et le taux d'usure peuvent être analysés à l'aide des fonctions intégrées dans le logiciel NANOVEA Tribometer ou dans notre logiciel d'analyse de surface, Mountains.

NANOVEA

T2000

échantillons de test de cartographie d'usure pour le bois et la pierre

 LES ÉCHANTILLONS 

PARAMÈTRES DE L'ESSAI DE CARTOGRAPHIE DE L'USURE

CHARGE40 N
DURÉE DU TESTvarie
VITESSE200 tr/min
RADIUS10 mm
DISTANCEvarie
MATÉRIAU DE LA BOULECarbure de tungstène
DIAMÈTRE DE LA BOULE10 mm

Les durées d'essai utilisées au cours des 7 cycles étaient les suivantes 2, 4, 8, 20, 40, 60 et 120 secondesrespectivement. Les distances parcourues étaient les suivantes 0,40, 0,81, 1,66, 4,16, 8,36, 12,55 et 25,11 mètres.

RÉSULTATS DE LA CARTOGRAPHIE DE L'USURE

PARQUET EN BOIS

Cycle d'essaiMax COFMin COFAvg. COF
10.3350.1240.275
20.3370.2070.295
30.3800.2290.329
40.3930.2650.354
50.3520.2050.314
60.3450.1990.312
70.3150.2110.293

 

ORIENTATION RADIALE

Cycle d'essaiPerte totale de volume (µm3)Distance totale
Parcouru (m)
Taux d'usure
(mm/Nm) x10-5
Taux d'usure instantané
(mm/Nm) x10-5
12962476870.401833.7461833.746
23552452271.221093.260181.5637
35963713262.88898.242363.1791
48837477677.04530.629172.5496
5120717995115.40360.88996.69074
6147274531827.95293.32952.89311
7185131921053.06184.34337.69599
taux d'usure progressive du bois par rapport à la distance totale

FIGURE 2 : Taux d'usure en fonction de la distance totale parcourue (gauche)
et taux d'usure instantanée en fonction du cycle d'essai (à droite) pour les revêtements de sol en bois.

cartographie de l'usure progressive des sols en bois

FIGURE 3 : Graphique COF et vue 3D de la trace d'usure de l'essai #7 sur un revêtement de sol en bois.

cartographie de l'usure profil extrait

FIGURE 4 : Analyse transversale de la piste d'usure en bois de l'essai #7

cartographie de l'usure progressive analyse du volume et de la surface

FIGURE 5 : Analyse du volume et de la surface de la trace d'usure sur l'échantillon de bois Test #7.

RÉSULTATS DE LA CARTOGRAPHIE DE L'USURE

SOLS EN PIERRE

Cycle d'essaiMax COFMin COFAvg. COF
10.2490.0350.186
20.3490.1970.275
30.2940.1540.221
40.5030.1240.273
50.5480.1060.390
60.5100.1290.434
70.5270.1810.472

 

ORIENTATION RADIALE

Cycle d'essaiPerte totale de volume (µm3)Distance totale
Parcouru (m)
Taux d'usure
(mm/Nm) x10-5
Taux d'usure instantané
(mm/Nm) x10-5
1962788460.40595.957595.9573
28042897311.222475.1852178.889
313161478552.881982.355770.9501
431365302157.041883.2691093.013
51082173218015.403235.1802297.508
62017496034327.954018.2821862.899
74251206342053.064233.0812224.187
taux d'usure des revêtements de sol en pierre par rapport à la distance
tableau du taux d'usure instantanée des revêtements de sol en pierre

FIGURE 6 : Taux d'usure en fonction de la distance totale parcourue (gauche)
et taux d'usure instantané en fonction du cycle d'essai (à droite) pour un revêtement de sol en pierre.

sol en pierre profil 3d de la piste d'usure

FIGURE 7 : Graphique COF et vue 3D de la piste d'usure de l'essai #7 sur un revêtement de sol en pierre.

profil extrait de la cartographie de l'usure progressive du sol en pierre
revêtement de sol en pierre profil extrait profondeur et hauteur maximales surface du trou et du sommet

FIGURE 8 : Analyse transversale de la piste d'usure en pierre de l'essai #7.

analyse du volume de la cartographie de l'usure progressive des sols en bois

FIGURE 9 : Analyse du volume et de la surface des traces d'usure sur l'échantillon de pierre #7.

DISCUSSION

Le taux d'usure instantané est calculé à l'aide de l'équation suivante :
cartographie de l'usure progressive de la formule de revêtement de sol

Où V est le volume d'un trou, N est la charge et X est la distance totale, cette équation décrit le taux d'usure entre les cycles d'essai. Le taux d'usure instantané peut être utilisé pour mieux identifier les changements du taux d'usure tout au long de l'essai.

Les deux échantillons ont des comportements d'usure très différents. Au fil du temps, le revêtement de sol en bois commence par présenter un taux d'usure élevé, mais diminue rapidement pour atteindre une valeur plus faible et stable. Pour le revêtement de sol en pierre, le taux d'usure semble commencer par une valeur faible et tendre vers une valeur plus élevée au fil des cycles. Le taux d'usure instantané est également peu cohérent. La raison spécifique de cette différence n'est pas certaine, mais elle peut être due à la structure des échantillons. Le revêtement de sol en pierre semble être constitué de particules lâches ressemblant à des grains, qui s'useraient différemment par rapport à la structure compacte du bois. Des tests et des recherches supplémentaires seraient nécessaires pour déterminer la cause de ce comportement d'usure.

Les données relatives au coefficient de frottement (COF) semblent correspondre au comportement d'usure observé. Le graphique du COF pour le revêtement de sol en bois semble cohérent tout au long des cycles, complétant son taux d'usure régulier. Pour le revêtement de sol en pierre, le COF moyen augmente tout au long des cycles, de la même manière que le taux d'usure augmente également avec les cycles. On observe également des changements apparents dans la forme des graphiques de frottement, ce qui suggère des changements dans la manière dont la bille interagit avec l'échantillon de pierre. Ces changements sont particulièrement visibles dans les cycles 2 et 4.

CONCLUSION

Le tribomètre NANOVEA T2000 démontre sa capacité à réaliser une cartographie de l'usure progressive en analysant le taux d'usure entre deux échantillons de revêtements de sol différents. La pause du test d'usure continue et le balayage de la surface avec le profilomètre sans contact NANOVEA 3D fournissent des informations précieuses sur le comportement d'usure du matériau au fil du temps.

Le tribomètre NANOVEA T2000 avec le profilomètre 3D sans contact intégré fournit une grande variété de données, y compris les données COF (coefficient de frottement), les mesures de surface, les relevés de profondeur, la visualisation de la surface, la perte de volume, le taux d'usure, et bien plus encore. Cet ensemble complet d'informations permet aux utilisateurs de mieux comprendre les interactions entre le système et l'échantillon. Avec son chargement contrôlé, sa haute précision, sa facilité d'utilisation, son chargement élevé, sa large plage de vitesse et ses modules environnementaux supplémentaires, le tribomètre NANOVEA T2000 fait passer la tribologie au niveau supérieur.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Commentaire