USA/GLOBAL : +1-949-461-9292
EUROPE : +39-011-3052-794
CONTACTEZ-NOUS

Effet de l'humidité sur la tribologie des revêtements DLC

Importance de l'évaluation de l'usure du DLC dans l'humidité

Les revêtements en carbone de type diamant (DLC) possèdent des propriétés tribologiques améliorées, à savoir une excellente résistance à l'usure et un très faible coefficient de frottement (COF). Les revêtements DLC confèrent les caractéristiques du diamant lorsqu'ils sont déposés sur différents matériaux. Les propriétés tribo-mécaniques favorables rendent les revêtements DLC préférables dans diverses applications industrielles, telles que les pièces aérospatiales, les lames de rasoir, les outils de coupe de métal, les roulements, les moteurs de motos et les implants médicaux.

Les revêtements DLC présentent un très faible COF (inférieur à 0,1) contre les billes d'acier sous vide poussé et dans des conditions sèches.12. Cependant, les revêtements DLC sont sensibles aux changements de conditions environnementales, en particulier à l'humidité relative (HR).3. Les environnements à forte humidité et concentration d'oxygène peuvent entraîner une augmentation significative du COF4. Une évaluation fiable de l'usure dans une humidité contrôlée simule des conditions environnementales réalistes des revêtements DLC pour les applications tribologiques. Les utilisateurs sélectionnent les meilleurs revêtements DLC pour les applications cibles avec une comparaison appropriée
des comportements d'usure du DLC exposé à différentes humidités.



Objectif de la mesure

Cette étude présente le Nanovea Tribomètre équipé d'un contrôleur d'humidité, c'est l'outil idéal pour étudier le comportement à l'usure des revêtements DLC à diverses humidités relatives.

 

 



Procédure d'essai

La résistance au frottement et à l'usure des revêtements DLC a été évaluée par le tribomètre Nanovea. Les paramètres de test sont résumés dans le tableau 1. Un contrôleur d’humidité fixé à la tribo-chambre contrôlait avec précision l’humidité relative (HR) avec une précision de ± 1%. Après les tests, les traces d'usure sur les revêtements DLC et les cicatrices d'usure sur les billes de SiN ont été examinées à l'aide d'un microscope optique.

Remarque : N'importe quel matériau de bille solide peut être appliqué pour simuler les performances de différents couplages de matériaux dans des conditions environnementales telles que dans un lubrifiant ou à haute température.







Résultats et discussion

Les revêtements DLC sont parfaits pour les applications tribologiques en raison de leur faible friction et de leur résistance supérieure à l'usure. Le frottement du revêtement DLC présente un comportement dépendant de l'humidité, comme le montre la figure 2. Le revêtement DLC présente un COF très faible de ~0,05 tout au long du test d'usure dans des conditions relativement sèches (10% HR). Le revêtement DLC présente un COF constant de ~0,1 pendant l'essai lorsque l'humidité relative augmente à 30%. La phase initiale de rodage du COF est observée au cours des 2000 premiers tours lorsque l'humidité relative dépasse 50%. Le revêtement DLC présente un COF maximal de ~0,20, ~0,26 et ~0,33 pour des HR de 50, 70 et 90%, respectivement. Après la période de rodage, le COF du revêtement DLC reste constant à ~0,11, 0,13 et 0,20 pour des HR de 50, 70 et 90%, respectivement.

 



La figure 3 compare les cicatrices d'usure des billes SiN et la figure 4 compare les traces d'usure du revêtement DLC après les tests d'usure. Le diamètre de la cicatrice d'usure était plus petit lorsque le revêtement DLC était exposé à un environnement à faible humidité. La couche de transfert DLC s'accumule sur la surface de la bille SiN pendant le processus de glissement répétitif au niveau de la surface de contact. À ce stade, le revêtement DLC glisse contre sa propre couche de transfert qui agit comme un lubrifiant efficace pour faciliter le mouvement relatif et limiter la perte de masse supplémentaire causée par la déformation par cisaillement. Un film de transfert est observé dans la cicatrice d'usure de la bille en SiN dans des environnements à faible HR (par exemple 10% et 30%), ce qui entraîne un processus d'usure décéléré sur la bille. Ce processus d'usure se reflète sur la morphologie de la trace d'usure du revêtement DLC, comme le montre la figure 4. Le revêtement DLC présente une trace d'usure plus petite dans les environnements secs, en raison de la formation d'un film de transfert DLC stable à l'interface de contact, qui réduit considérablement la friction et le taux d'usure.


 


Conclusion




L'humidité joue un rôle essentiel dans les performances tribologiques des revêtements DLC. Le revêtement DLC possède une résistance à l'usure considérablement améliorée et un faible frottement supérieur dans des conditions sèches en raison de la formation d'une couche graphitique stable transférée sur la contrepartie coulissante (une bille de SiN dans cette étude). Le revêtement DLC glisse contre sa propre couche de transfert, qui agit comme un lubrifiant efficace pour faciliter le mouvement relatif et limiter la perte de masse supplémentaire causée par la déformation par cisaillement. Aucun film n'est observé sur la bille de SiN avec une humidité relative croissante, ce qui entraîne une augmentation du taux d'usure de la bille de SiN et du revêtement DLC.

Le tribomètre Nanovea propose des tests d'usure et de friction reproductibles en utilisant les modes rotatif et linéaire conformes aux normes ISO et ASTM, avec des modules d'humidité en option disponibles dans un système pré-intégré. Il permet aux utilisateurs de simuler l'environnement de travail à différentes humidités, offrant ainsi aux utilisateurs un outil idéal pour évaluer quantitativement les comportements tribologiques des matériaux dans différentes conditions de travail.



En savoir plus sur le tribomètre Nanovea et le service de laboratoire

1 C. Donnet, Surf. Coat. Technol. 100-101 (1998) 180.

2 K. Miyoshi, B. Pohlchuck, K.W. Street, J.S. Zabinski, J.H. Sanders, A.A. Voevodin, R.L.C. Wu, Wear 225-229 (1999) 65.

3 R. Gilmore, R. Hauert, Surf. Coat. Technol. 133-134 (2000) 437.

4 R. Memming, H.J. Tolle, P.E. Wierenga, Thin Solid Coatings 143 (1986) 31


MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Analyse de la surface d'un centime en 3D avec la profilométrie sans contact

Importance de la profilométrie sans contact pour les pièces de monnaie

La monnaie est très appréciée dans la société moderne car elle est échangée contre des biens et des services. Les pièces de monnaie et les billets de papier circulent entre les mains de nombreuses personnes. Le transfert constant de monnaie physique crée une déformation de surface. La 3D de Nanovea Profilomètre scanne la topographie des pièces de monnaie frappées au cours de différentes années pour étudier les différences de surface.

Les caractéristiques des pièces de monnaie sont facilement reconnaissables par le grand public puisqu’il s’agit d’objets courants. Un centime est idéal pour présenter la puissance du logiciel avancé d’analyse de surface de Nanovea : Mountains 3D. Les données de surface collectées avec notre profilomètre 3D permettent des analyses de haut niveau sur une géométrie complexe avec soustraction de surface et extraction de contours 2D. La soustraction de surface avec un masque, un tampon ou un moule contrôlé compare la qualité des processus de fabrication tandis que l'extraction de contour identifie les tolérances grâce à l'analyse dimensionnelle. Le logiciel 3D Profilometer et Mountains 3D de Nanovea étudie la topographie submicronique d'objets apparemment simples, comme des pièces de monnaie.



Objectif de la mesure

La surface supérieure complète de cinq pennies a été scannée à l'aide du capteur de lignes à haute vitesse de Nanovea. Le rayon intérieur et extérieur de chaque penny a été mesuré à l'aide du logiciel d'analyse avancée Mountains. Une extraction de la surface de chaque penny dans une zone d'intérêt avec soustraction directe de la surface a quantifié la déformation de la surface.

 



Résultats et discussion

Surface 3D

Le profilomètre Nanovea HS2000 n'a pris que 24 secondes pour scanner 4 millions de points dans une zone de 20mm x 20mm avec un pas de 10um x 10um pour acquérir la surface d'un penny. Vous trouverez ci-dessous une carte de hauteur et une visualisation 3D du scan. La vue 3D montre la capacité du capteur haute vitesse à capter de petits détails imperceptibles à l'œil nu. De nombreuses petites rayures sont visibles sur la surface du penny. La texture et la rugosité de la pièce de monnaie vues dans la vue 3D sont étudiées.

 










Analyse dimensionnelle

Les contours du penny ont été extraits et l'analyse dimensionnelle a permis d'obtenir les diamètres intérieur et extérieur de l'arête. Le rayon extérieur était en moyenne de 9,500 mm ± 0,024 tandis que le rayon intérieur était en moyenne de 8,960 mm ± 0,032. Les autres analyses dimensionnelles que Mountains 3D peut effectuer sur des sources de données 2D et 3D sont les mesures de distance, la hauteur de marche, la planéité et les calculs d'angle.







Soustraction de surface

La figure 5 montre la zone d'intérêt pour l'analyse de la soustraction de surface. Le penny de 2007 a été utilisé comme surface de référence pour les quatre pennies plus anciens. La soustraction de surface à partir de la surface du penny 2007 montre les différences entre les pennies avec des trous/peaks. La différence de volume total de la surface est obtenue en additionnant les volumes des trous/pointes. L'erreur RMS indique dans quelle mesure les surfaces des pennies correspondent les unes aux autres.


 









Conclusion





Le High-Speed HS2000L de Nanovea a numérisé cinq pièces de monnaie frappées à des années différentes. Le logiciel Mountains 3D a comparé les surfaces de chaque pièce en utilisant l'extraction des contours, l'analyse dimensionnelle et la soustraction de surface. L'analyse définit clairement le rayon intérieur et extérieur entre les pennies tout en comparant directement les différences de caractéristiques de surface. Avec la capacité du profilomètre 3D de Nanovea à mesurer n'importe quelle surface avec une résolution de l'ordre du nanomètre, combinée aux capacités d'analyse de Mountains 3D, les applications possibles en matière de recherche et de contrôle de la qualité sont infinies.

 


MAINTENANT, PARLONS DE VOTRE CANDIDATURE