EUA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
FALE CONOSCO

Categoria: Umidade e Tribologia dos Gases

 

Teste de desgaste de revestimento de vidro por Tribômetro

Teste de desgaste de revestimento de vidro por Tribômetro

Saiba mais

UMIDADE NO REVESTIMENTO DE VIDRO

TESTE DE DESGASTE POR TRIBÔMETRO

Preparado por

DUANJIE LIPhD

INTRODUÇÃO

O revestimento de vidro autolimpante cria uma superfície de vidro de fácil limpeza que evita a acumulação de sujeira, sujeira e manchas. Sua característica de autolimpeza reduz significativamente a freqüência, tempo, energia e custos de limpeza, tornando-a uma escolha atraente para uma variedade de aplicações residenciais e comerciais, tais como fachadas de vidro, espelhos, vidros de chuveiro, janelas e pára-brisas.

IMPORTÂNCIA DA RESISTÊNCIA AO DESGASTE DE REVESTIMENTO DE VIDRO AUTOLIMPANTE

Uma aplicação principal do revestimento autolimpante é a superfície exterior da fachada de vidro nos arranha-céus. A superfície do vidro é frequentemente atacada por partículas de alta velocidade transportadas por ventos fortes. A condição climática também desempenha um papel importante na vida útil do revestimento de vidro. Pode ser muito difícil e caro tratar a superfície do vidro e aplicar o novo revestimento quando o antigo falhar. Portanto, a resistência ao desgaste do revestimento de vidro sob
diferentes condições climáticas são críticas.


A fim de simular as condições ambientais realistas do revestimento autolimpante em diferentes condições climáticas, é necessária uma avaliação de desgaste repetível em uma umidade controlada e monitorada. Isto permite aos usuários comparar corretamente a resistência ao desgaste dos revestimentos autolimpantes expostos a diferentes graus de umidade e selecionar o melhor candidato para a aplicação visada.

OBJETIVO DA MEDIÇÃO

Neste estudo, mostramos que o NANOVEA O T100 Tribômetro equipado com um controlador de umidade é uma ferramenta ideal para investigar a resistência ao desgaste de revestimentos de vidro autolimpantes em diferentes graus de umidade.

NANOVEA

T100

PROCEDIMENTOS DE TESTE

As lâminas do microscópio de vidro soda cálcica foram revestidas com revestimentos de vidro autolimpantes com duas receitas de tratamento diferentes. Estes dois revestimentos são identificados como Revestimento 1 e Revestimento 2. Uma lâmina de vidro nu não revestido também é testada para comparação.


NANOVEA Tribômetro equipado com um módulo de controle de umidade foi utilizado para avaliar o comportamento tribológico, por exemplo, coeficiente de atrito, COF e resistência ao desgaste dos revestimentos de vidro autolimpantes. Uma ponta esférica de WC (6 mm de diâmetro) foi aplicada contra as amostras testadas. O COF foi registrado in situ. O controlador de umidade acoplado à tribocâmara controlou com precisão o valor da umidade relativa (UR) na faixa de ±1 %. A morfologia da trilha de desgaste foi examinada ao microscópio óptico após os testes de desgaste.

CARGA MÁXIMA 40 mN
RESULTADOS & DISCUSSÃO

Os testes de desgaste pin-on-disk em diferentes condições de umidade foram realizados sobre o vidro revestido e não revestido
amostras. O COF foi registrado in situ durante os testes de desgaste, como mostrado em
FIGURA 1 e o COF médio está resumido em FIGURA 2. FIGURA 4 compara as faixas de desgaste após os testes de desgaste.


Como mostrado em
FIGURA 1O vidro não revestido exibe um alto COF de ~0,45 uma vez que o movimento de deslizamento começa no 30% RH, e aumenta progressivamente para ~0,6 no final do teste de desgaste de 300 reversão. Em comparação, o
As amostras de vidro revestido Coating 1 e Coating 2 mostram um COF baixo abaixo de 0,2 no início do teste. O COF
de Coating 2 estabiliza em ~0,25 durante o resto do teste, enquanto Coating 1 exibe um aumento acentuado de COF em
~250 revoluções e o COF atinge um valor de ~0,5. Quando os testes de desgaste são realizados no 60% RH, o
O vidro não revestido ainda apresenta um COF mais alto de ~0,45 durante todo o teste de desgaste. Os revestimentos 1 e 2 exibem os valores de COF de 0,27 e 0,22, respectivamente. No 90% RH, o vidro não revestido possui um COF elevado de ~0,5 no final do teste de desgaste. Os revestimentos 1 e 2 exibem COF comparável de ~0,1 quando o teste de desgaste começa. O revestimento 1 mantém um COF relativamente estável de ~0,15. O revestimento 2, entretanto, falha em ~100 rotações, seguido por um aumento significativo de COF para ~0,5 no final do teste de desgaste.


O baixo atrito do revestimento de vidro autolimpante é causado por sua baixa energia superficial. Ele cria uma estática muito alta
ângulo de contato com a água e baixo ângulo de rolagem. Isto leva à formação de pequenas gotas de água na superfície do revestimento no 90% RH, como mostrado no microscópio em
FIGURA 3. Também resulta na diminuição da média de COF de ~0,23 para ~0,15 para Revestimento 2 à medida que o valor de RH aumenta de 30% para 90%.

FIGURA 1: Coeficiente de atrito durante os testes pin-on-disk em diferentes humidades relativas.

FIGURA 2: Média de COF durante os testes pin-on-disk em diferentes humidades relativas.

FIGURA 3: Formação de pequenas gotículas de água sobre a superfície do vidro revestido.

FIGURA 4 compara as faixas de desgaste na superfície do vidro após os testes de desgaste em diferentes graus de umidade. O revestimento 1 exibe sinais de desgaste leve após os testes de desgaste no RH do 30% e 60%. Possui uma grande pista de desgaste após o teste no 90% RH, de acordo com o aumento significativo de COF durante o teste de desgaste. O revestimento 2 apresenta quase nenhum sinal de desgaste após os testes de desgaste tanto em ambiente seco quanto úmido, e também apresenta um COF baixo constante durante os testes de desgaste em diferentes graus de umidade. A combinação de boas propriedades tribológicas e baixa energia superficial torna o Coating 2 um bom candidato para aplicações de revestimento de vidro autolimpante em ambientes agressivos. Em comparação, o vidro não revestido mostra faixas de desgaste maiores e COF mais alto em diferentes humidades, demonstrando a necessidade da técnica de revestimento autolimpante.

FIGURA 4: Desgaste de trilhas após os testes pin-on-disk em diferentes humidades relativas (ampliação de 200x).

CONCLUSÃO

NANOVEA O T100 Tribometer é uma ferramenta superior para avaliação e controle de qualidade de revestimentos de vidro autolimpantes em diferentes condições de umidade. A capacidade de medição in-situ do COF permite aos usuários correlacionar diferentes estágios do processo de desgaste com a evolução do COF, o que é fundamental para melhorar a compreensão fundamental do mecanismo de desgaste e das características tribológicas dos revestimentos de vidro. Com base na análise tribológica abrangente sobre os revestimentos de vidro autolimpantes testados em diferentes condições de umidade, mostramos que o Coating 2 possui um COF baixo constante e resistência superior ao desgaste tanto em ambientes secos quanto úmidos, tornando-o um melhor candidato para aplicações de revestimentos de vidro autolimpantes expostos a diferentes intempéries.


NANOVEA Os tribômetros oferecem testes de desgaste e atrito precisos e repetíveis usando os modos rotativo e linear compatíveis com ISO e ASTM, com módulos opcionais de desgaste a alta temperatura, lubrificação e tribo-corrosão disponíveis em um sistema pré-integrado. O profiler 3D sem contato opcional está disponível para alta temperatura.
resolução 3D da pista de desgaste, além de outras medidas de superfície, como rugosidade. 

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Efeito da Umidade na Tribologia de Revestimento DLC

Importância da Avaliação de Desgaste em DLC em Umidade

Os revestimentos de carbono tipo diamante (DLC) possuem propriedades tribológicas aprimoradas, nomeadamente excelente resistência ao desgaste e um coeficiente de atrito (COF) muito baixo. Os revestimentos DLC conferem características de diamante quando depositados em diferentes materiais. Propriedades tribomecânicas favoráveis tornam os revestimentos DLC preferíveis em diversas aplicações industriais, como peças aeroespaciais, lâminas de barbear, ferramentas de corte de metal, rolamentos, motores de motocicletas e implantes médicos.

Os revestimentos DLC apresentam COF muito baixo (abaixo de 0,1) contra esferas de aço sob alto vácuo e condições secas12. Entretanto, os revestimentos DLC são sensíveis a mudanças nas condições ambientais, particularmente a umidade relativa do ar (RH)3. Ambientes com alta concentração de umidade e oxigênio podem levar a um aumento significativo da concentração de COF4. A avaliação confiável do desgaste em umidade controlada simula condições ambientais realistas de revestimentos DLC para aplicações tribológicas. Os usuários selecionam os melhores revestimentos DLC para aplicações específicas com comparação adequada
dos comportamentos de desgaste do DLC expostos a diferentes umidades.



Objetivo da medição

Este estudo apresenta o Nanovea Tribômetro equipado com um controlador de umidade é a ferramenta ideal para investigar o comportamento de desgaste de revestimentos DLC em diversas umidades relativas.

 

 



Procedimento de teste

A resistência ao atrito e ao desgaste dos revestimentos DLC foram avaliadas pelo Tribômetro Nanovea. Os parâmetros de teste estão resumidos na Tabela 1. Um controlador de umidade conectado à tribocâmara controlou com precisão a umidade relativa (UR) com uma precisão de ±1%. Marcas de desgaste em revestimentos DLC e cicatrizes de desgaste em esferas de SiN foram examinadas usando um microscópio óptico após os testes.

Nota: Qualquer material de esfera sólida pode ser aplicado para simular o desempenho de diferentes materiais de acoplamento sob condições ambientais, como lubrificante ou alta temperatura.







Resultados e Discussão

Os revestimentos DLC são ótimos para aplicações tribológicas devido a seu baixo atrito e resistência superior ao desgaste. O atrito do revestimento DLC apresenta comportamento dependente da umidade mostrada na Figura 2. O revestimento DLC apresenta um COF muito baixo de ~0,05 durante todo o teste de desgaste em condições relativamente secas (10% RH). O revestimento DLC apresenta um COF constante de ~0,1 durante o teste, pois o RH aumenta para 30%. O estágio inicial de rodagem do COF é observado nas primeiras 2000 revoluções quando o RH sobe acima de 50%. O revestimento DLC mostra um COF máximo de ~0,20, ~0,26 e ~0,33 em RH de 50, 70 e 90%, respectivamente. Após o período de rodagem, o COF do revestimento DLC permanece constante em ~0,11, 0,13 e 0,20 em RH de 50, 70 e 90%, respectivamente.

 



A Figura 3 compara as cicatrizes de desgaste da bola SiN e a Figura 4 compara as pistas de desgaste do revestimento DLC após os testes de desgaste. O diâmetro da cicatriz de desgaste era menor quando o revestimento DLC foi exposto a um ambiente com baixa umidade. A camada de DLC de transferência se acumula na superfície da esfera SiN durante o processo de deslizamento repetitivo na superfície de contato. Nesta fase, o revestimento DLC desliza contra sua própria camada de transferência que atua como um lubrificante eficiente para facilitar o movimento relativo e conter a perda de massa adicional causada pela deformação por cisalhamento. Uma película de transferência é observada na cicatriz de desgaste da esfera SiN em ambientes de baixo RH (por exemplo, 10% e 30%), resultando em um processo de desgaste desacelerado da esfera. Este processo de desgaste reflete na morfologia da pista de desgaste do revestimento DLC, como mostrado na Figura 4. O revestimento DLC apresenta uma pista de desgaste menor em ambientes secos, devido à formação de uma película de transferência de DLC estável na interface de contato que reduz significativamente o atrito e a taxa de desgaste.


 


Conclusão




A umidade desempenha um papel vital no desempenho tribológico dos revestimentos DLC. O revestimento DLC possui resistência ao desgaste significativamente melhorada e baixo atrito superior em condições secas devido à formação de uma camada grafítica estável transferida para a contraparte deslizante (uma bola de SiN neste estudo). O revestimento DLC desliza contra sua própria camada de transferência, que atua como um lubrificante eficiente para facilitar o movimento relativo e restringir ainda mais a perda de massa causada pela deformação por cisalhamento. Não é observado um filme na esfera de SiN com o aumento da umidade relativa, levando a um aumento da taxa de desgaste na esfera de SiN e no revestimento DLC.

O Tribômetro Nanovea oferece testes repetíveis de desgaste e fricção usando modos rotativos e lineares em conformidade com ISO e ASTM, com módulos de umidade opcionais disponíveis em um sistema pré-integrado. Ele permite aos usuários simular o ambiente de trabalho com diferentes umidades, fornecendo aos usuários uma ferramenta ideal para avaliar quantitativamente o comportamento tribológico dos materiais sob diferentes condições de trabalho.



Saiba mais sobre o Nanovea Tribômetro e Serviço de Laboratório

1 C. Donnet, Surf. Coat. Technol. 100–101 (1998) 180.

2 K. Miyoshi, B. Pohlchuck, K.W. Street, J.S. Zabinski, J.H. Sanders, A.A. Voevodin, R.L.C. Wu, Wear 225-229 (1999) 65.

3 R. Gilmore, R. Hauert, Surf. Coat. Technol. 133–134 (2000) 437.

4 R. Memming, H.J. Tolle, P.E. Wierenga, Thin Solid Coatings 143 (1986) 31


AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO