EUA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
FALE CONOSCO

Categoria: Indentação | Perda e armazenamento

 

Análise mecânica dinâmica da cortiça usando nanoindentação

ANÁLISE MECÂNICA DINÂMICA

DE CORTIÇA USANDO NANOINDENTAÇÃO

Preparado por

LIU FRANCA

INTRODUÇÃO

A Análise Mecânica Dinâmica (DMA) é uma técnica poderosa usada para investigar as propriedades mecânicas dos materiais. Nesta aplicação, nos concentramos na análise da cortiça, um material amplamente utilizado nos processos de vedação e envelhecimento do vinho. A cortiça, obtida da casca do carvalho Quercus suber, apresenta estruturas celulares distintas que proporcionam propriedades mecânicas semelhantes às dos polímeros sintéticos. Em um eixo, a cortiça tem estrutura de favo de mel. Os outros dois eixos são estruturados em múltiplos prismas retangulares. Isso confere à cortiça propriedades mecânicas diferentes, dependendo da orientação que está sendo testada.

IMPORTÂNCIA DO TESTE DE ANÁLISE MECÂNICA DINÂMICA (DMA) NA AVALIAÇÃO DAS PROPRIEDADES MECÂNICAS DA CORTIÇA

A qualidade das rolhas depende muito de suas propriedades mecânicas e físicas, que são cruciais para sua eficácia na vedação do vinho. Entre os principais fatores que determinam a qualidade da cortiça estão a flexibilidade, o isolamento, a resiliência e a impermeabilidade a gases e líquidos. Ao utilizar o teste de análise mecânica dinâmica (DMA), podemos avaliar quantitativamente as propriedades de flexibilidade e resiliência das rolhas, fornecendo um método confiável de avaliação.

O testador mecânico PB1000 da NANOVEA no Nanoindentação O modo DMA permite a caracterização dessas propriedades, especificamente o módulo de Young, o módulo de armazenamento, o módulo de perda e o tan delta (tan (δ)). O teste de DMA também permite a coleta de dados valiosos sobre mudança de fase, dureza, tensão e deformação do material de cortiça. Por meio dessas análises abrangentes, obtemos insights mais profundos sobre o comportamento mecânico das rolhas e sua adequação para aplicações de vedação de vinhos.

OBJETIVO DA MEDIÇÃO

Neste estudo, realizamos uma análise dinâmico-mecânica (DMA) em quatro rolhas de cortiça usando o NANOVEA PB1000 Mechanical Tester no modo de nanoindentação. A qualidade das rolhas de cortiça é rotulada como: 1 - Flor, 2 - Primeira, 3 - Colmatada, 4 - Borracha sintética. Os testes de indentação DMA foram realizados nas direções axial e radial para cada rolha de cortiça. Ao analisar a resposta mecânica das rolhas de cortiça, nosso objetivo foi obter informações sobre seu comportamento dinâmico e avaliar seu desempenho sob diferentes orientações.

NANOVEA

PB1000

PARÂMETROS DE TESTE

FORÇA MÁXIMA75 mN
TAXA DE CARREGAMENTO150 mN/min
TAXA DE DESLOCAÇÃO150 mN/min
AMPLITUDE5 mN
FREQÜÊNCIA1 Hz
CREEP60 s

tipo indenter

Bola

51200 Aço

3 mm de diâmetro

RESULTADOS

Nas tabelas e gráficos abaixo, o módulo de Young, o módulo de armazenamento, o módulo de perda e o tan delta são comparados entre cada amostra e orientação.

Módulo de Young: Stiffness; valores altos indicam stiff, valores baixos indicam flexible.

Módulo de armazenamento: Resposta elástica; energia armazenada no material.

Módulo de perda: Resposta viscosa; energia perdida devido ao calor.

Tan (δ): Amortecimento; valores altos indicam mais amortecimento.

ORIENTAÇÃO AXIAL

RolhaMÓDULO DE YOUNGMÓDULO DE ARMAZENAMENTOMÓDULO PERDIDOTAN
#(MPa)(MPa)(MPa)(δ)
122.567522.272093.6249470.162964
218.5466418.271533.1623490.17409
323.7538123.472673.6178190.154592
423.697223.580642.3470080.099539



ORIENTAÇÃO RADIAL

RolhaMÓDULO DE YOUNGMÓDULO DE ARMAZENAMENTOMÓDULO PERDIDOTAN
#(MPa)(MPa)(MPa)(δ)
124.7886324.565423.3082240.134865
226.6661426.317394.2862160.163006
344.0786743.614266.3659790.146033
428.0475127.941482.4359780.087173

MÓDULO DE YOUNG

MÓDULO DE ARMAZENAMENTO

MÓDULO PERDIDO

TAN DELTA

Entre as rolhas de cortiça, o módulo de Young não é muito diferente quando testado na orientação axial. Apenas as rolhas #2 e #3 apresentaram uma diferença aparente no módulo de Young entre as direções radial e axial. Como resultado, o módulo de armazenamento e o módulo de perda também serão maiores na direção radial do que na direção axial. A rolha #4 apresenta características semelhantes às das rolhas de cortiça natural, exceto no módulo de perda. Isso é bastante interessante, pois significa que a cortiça natural tem uma propriedade mais viscosa do que o material de borracha sintética.

CONCLUSÃO

A NANOVEA Testador Mecânico no modo Nano Scratch Tester permite a simulação de muitas falhas reais de revestimentos de pintura e revestimentos duros. Ao aplicar cargas crescentes de forma controlada e monitorada de perto, o instrumento permite identificar em que carga ocorrem falhas. Isso pode então ser usado como uma forma de determinar valores quantitativos de resistência a arranhões. Sabe-se que o revestimento testado, sem desgaste, apresenta uma primeira fissura a cerca de 22 mN. Com valores mais próximos de 5 mN, fica claro que a volta de 7 anos degradou a pintura.

A compensação do perfil original permite obter a profundidade corrigida durante o arranhão e também medir a profundidade residual após o arranhão. Isso fornece informações adicionais sobre o comportamento plástico versus elástico do revestimento sob carga crescente. Tanto as rachaduras quanto as informações sobre deformação podem ser de grande utilidade para melhorar o revestimento duro. Os desvios padrão muito pequenos também demonstram a reprodutibilidade da técnica do instrumento, o que pode ajudar os fabricantes a melhorar a qualidade de seu revestimento/pintura e a estudar os efeitos das intempéries.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Análise Mecânica Dinâmica (DMA) Varredura de Frequência em Polímero

VARREDURA DE FREQÜÊNCIA DMA

SOBRE POLÍMEROS USANDO NANOINDENTAÇÃO

Preparado por

Duanjie Li, PhD

INTRODUÇÃO

IMPORTÂNCIA DA ANÁLISE MECÂNICA DINÂMICA TESTE DE VARREDURA DE FREQÜÊNCIA

A mudança na frequência da tensão muitas vezes leva a variações no módulo complexo, que é uma propriedade mecânica crítica dos polímeros. Por exemplo, os pneus estão sujeitos a elevadas deformações cíclicas quando os veículos circulam na estrada. A frequência da pressão e da deformação muda à medida que o carro acelera para velocidades mais altas. Tal alteração pode resultar em variação nas propriedades viscoelásticas do pneu, que são fatores importantes no desempenho do carro. É necessário um teste confiável e repetível do comportamento viscoelástico de polímeros em diferentes frequências. O módulo Nano da NANOVEA Testador Mecânico gera carga senoidal por um atuador piezoelétrico de alta precisão e mede diretamente a evolução da força e do deslocamento usando célula de carga ultrassensível e capacitor. A combinação de fácil configuração e alta precisão o torna uma ferramenta ideal para varredura de frequência de Análise Mecânica Dinâmica.

Os materiais viscoelásticos apresentam tanto características viscosas quanto elásticas quando submetidos a deformações. Longas cadeias moleculares em materiais poliméricos contribuem para suas propriedades viscoelásticas únicas, ou seja, uma combinação das características tanto de sólidos elásticos quanto de fluidos newtonianos. Estresse, temperatura, freqüência e outros fatores desempenham um papel nas propriedades viscoelásticas. A Análise Mecânica Dinâmica, também conhecida como DMA, estuda o comportamento viscoelástico e o módulo complexo do material, aplicando uma tensão sinusoidal e medindo a mudança de deformação.

OBJETIVO DA MEDIÇÃO

Nesta aplicação, estudamos as propriedades viscoelásticas de uma amostra de pneu polido em diferentes frequências de DMA usando o Testador Mecânico Mais Poderoso, NANOVEA PB1000, em Nanoindentação modo.

NANOVEA

PB1000

CONDIÇÕES DE TESTE

FREQUÊNCIAS (Hz):

0.1, 1.5, 10, 20

TEMPO DE ARREPIO EM CADA FREQ.

50 seg

TENSÃO DE OSCILAÇÃO

0.1 V

TENSÃO DE CARGA

1 V

tipo indenter

Spherical

Diamante | 100 μm

RESULTADOS & DISCUSSÃO

A varredura de freqüência da Análise Mecânica Dinâmica na carga máxima permite uma medição rápida e simples das características viscoelásticas da amostra em diferentes freqüências de carga em um teste. O deslocamento de fase e as amplitudes das ondas de carga e deslocamento em diferentes freqüências podem ser usados para calcular uma variedade de propriedades viscoelásticas fundamentais do material, incluindo Módulo de armazenamento, Módulo de perdas e Tan (δ) como resumido nos gráficos a seguir. 

As freqüências de 1, 5, 10 e 20 Hz neste estudo, correspondem a velocidades de cerca de 7, 33, 67 e 134 km por hora. Como a freqüência de teste aumenta de 0,1 a 20 Hz, pode-se observar que tanto o módulo de armazenamento quanto o módulo de perda aumentam progressivamente. Tan (δ) diminui de ~0,27 para 0,18 à medida que a freqüência aumenta de 0,1 para 1 Hz, e depois aumenta gradualmente para ~0,55 quando a freqüência de 20 Hz é atingida. A varredura de freqüência DMA permite medir as tendências do Módulo de Armazenamento, Módulo de Perda e Tan (δ), que fornecem informações sobre o movimento dos monômeros e reticulação, assim como a transição vítrea dos polímeros. Ao elevar a temperatura usando uma placa de aquecimento durante a varredura de freqüência, pode-se obter uma imagem mais completa da natureza do movimento molecular sob diferentes condições de teste.

EVOLUÇÃO DA CARGA E PROFUNDIDADE

DA VARREDURA TOTAL DE FREQÜÊNCIA DMA

Carga e Profundidade vs Tempo em DIFERENTES FREQUÊNCIAS

MÓDULO DE ARMAZENAMENTO

EM DIFERENTES FREQÜÊNCIAS

MÓDULO PERDIDO

EM DIFERENTES FREQÜÊNCIAS

TAN (δ)

EM DIFERENTES FREQÜÊNCIAS

CONCLUSÃO

Neste estudo, mostramos a capacidade do NANOVEA Mechanical Tester em realizar o teste de varredura de freqüência da Análise Mecânica Dinâmica em uma amostra de pneu. Este teste mede as propriedades viscoelásticas do pneu em diferentes freqüências de tensão. O pneu mostra maior módulo de armazenamento e perda à medida que a freqüência de carga aumenta de 0,1 para 20 Hz. Ele fornece informações úteis sobre os comportamentos viscoelásticos do pneu rodando em diferentes velocidades, o que é essencial para melhorar o desempenho dos pneus para passeios mais suaves e seguros. O teste de varredura de freqüência DMA pode ser realizado em várias temperaturas para imitar o ambiente de trabalho realista do pneu sob diferentes condições climáticas.

No Módulo Nano do Testador Mecânico NANOVEA, a aplicação de carga com o piezo rápido é independente da medição de carga feita por um strain gage separado de alta sensibilidade. Isto dá uma vantagem distinta durante a Análise Mecânica Dinâmica, pois a fase entre profundidade e carga é medida diretamente a partir dos dados coletados do sensor. O cálculo da fase é direto e não necessita de modelagem matemática que acrescenta imprecisão ao módulo de perda e armazenamento resultante. Este não é o caso de um sistema baseado em bobina.

Em conclusão, a DMA mede o módulo de perda e armazenamento, módulo complexo e Tan (δ) em função da profundidade, tempo e freqüência do contato. O estágio opcional de aquecimento permite determinar a temperatura de transição de fase dos materiais durante o DMA. Os testadores mecânicos NANOVEA fornecem módulos Nano e Micro multifuncionais inigualáveis em uma única plataforma. Ambos os módulos Nano e Micro incluem os modos de teste de arranhões, teste de dureza e teste de desgaste, proporcionando a mais ampla e amigável gama de testes disponíveis em um único módulo.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Transição Precisa de Vidro Localizado com Nanoindentação DMA

Transição Precisa de Vidro Localizado com Nanoindentação DMA

Saiba mais
 
Imagine um cenário em que uma amostra a granel é aquecida uniformemente a uma taxa constante. Quando um material a granel aquece e se aproxima de seu ponto de fusão, ele começará a perder sua rigidez. Se as indentações periódicas (testes de dureza) forem realizadas com a mesma força alvo, a profundidade de cada indentação deve aumentar constantemente, uma vez que a amostra está se tornando mais macia (ver figura 1). Isto continua até que a amostra comece a derreter. Neste ponto, será observado um grande aumento na profundidade por travessão. Usando este conceito, a mudança de fase em um material pode ser observada utilizando oscilações dinâmicas com uma amplitude de força fixa e medindo seu deslocamento, ou seja, Análise Mecânica Dinâmica (DMA).   Leia sobre a Transição Precisa de Vidro Localizado!

Medição de Relaxamento de Tensão usando Nanoindentação

Saiba mais

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Análise Viscoelástica de Borracha

Análise Viscoelástica de Borracha

Saiba mais

 

Os pneus são submetidos a deformações altas cíclicas quando os veículos estão circulando na estrada. Quando expostos às duras condições da estrada, a vida útil dos pneus é prejudicada por muitos fatores, tais como o desgaste da rosca, o calor gerado pelo atrito, o envelhecimento da borracha, e outros.

Como resultado, os pneus geralmente têm estruturas de camadas compostas feitas de borracha com carbono, cordas de nylon, fios de aço, etc. Em particular, a composição da borracha em diferentes áreas dos sistemas de pneus é otimizada para fornecer diferentes propriedades funcionais, incluindo, mas não se limitando a rosca resistente ao desgaste, camada de borracha amortecedora e camada base de borracha dura.

Um teste confiável e repetível do comportamento viscoelástico da borracha é fundamental no controle de qualidade e na pesquisa e desenvolvimento de pneus novos, bem como na avaliação da vida útil de pneus antigos. Análise Mecânica Dinâmica (DMA) durante Nanoindentação é uma técnica de caracterização da viscoelasticidade. Quando a tensão oscilatória controlada é aplicada, a deformação resultante é medida, permitindo aos usuários determinar o módulo complexo dos materiais testados.

Análise Mecânica Dinâmica com Nanoindentação

A qualidade das rolhas depende muito de sua propriedade mecânica e física. Sua capacidade de vedação do vinho pode ser identificada como estes importantes fatores: flexibilidade, isolamento, resiliência e impermeabilidade a gases e líquidos. Ao realizar testes de análise mecânica dinâmica (DMA), suas propriedades de flexibilidade e resiliência podem ser aferidas com um método quantificável. Estas propriedades são caracterizadas com o Nanovea Mechanical Tester's Nanoindentaion na forma de módulo Young, módulo de armazenamento, módulo de perda e delta tan (tan (δ)). Outros dados que podem ser coletados dos testes DMA são deslocamento de fase, dureza, tensão e tensão do material.

Análise Mecânica Dinâmica com Nanoindentação