USA/GLOBALNE: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT

Pomiar zużycia in situ w wysokiej temperaturze

POMIAR ZUŻYCIA IN SITU W WYSOKIEJ TEMPERATURZE

PRZY UŻYCIU TRYBOMETRU

POMIAR ZUŻYCIA W MIEJSCU Tribometr lotniczy

Przygotowane przez

Duanjie Li, PhD

WPROWADZENIE

Liniowy zmienny transformator różnicowy (LVDT) jest rodzajem wytrzymałego transformatora elektrycznego używanego do pomiaru przemieszczenia liniowego. Znalazł on szerokie zastosowanie w wielu aplikacjach przemysłowych, w tym w turbinach energetycznych, hydraulice, automatyce, samolotach, satelitach, reaktorach jądrowych i wielu innych.

W tym badaniu przedstawiamy dodatki LVDT i moduły wysokotemperaturowe NANOVEA Tribometr które umożliwiają pomiar zmiany głębokości śladu zużycia badanej próbki podczas procesu zużycia w podwyższonych temperaturach. Umożliwia to użytkownikom korelację różnych etapów procesu zużycia ze zmianą współczynnika COF, co ma kluczowe znaczenie dla poprawy podstawowego zrozumienia mechanizmu zużycia i właściwości tribologicznych materiałów do zastosowań wysokotemperaturowych.

CEL POMIARU

W tej pracy. chcielibyśmy zaprezentować możliwości Tribometru NANOVEA T50 do monitorowania in situ ewolucji procesu zużycia materiałów w podwyższonych temperaturach.

Proces zużycia ceramiki glinokrzemianowej w różnych temperaturach jest symulowany w sposób kontrolowany i monitorowany.

NANOVEA

T50

PROCEDURA TESTOWA

Zachowanie tribologiczne, np. współczynnik tarcia (COF) i odporność na zużycie płytek ceramicznych z krzemianu glinu oceniano za pomocą Tribometru NANOVEA. Płytka ceramiczna z krzemianu glinu była podgrzewana w piecu od temperatury pokojowej (RT) do podwyższonej temperatury (400°C i 800°C), a następnie w takich temperaturach przeprowadzano testy zużycia. 

Dla porównania, badania zużycia przeprowadzono po schłodzeniu próbki z 800°C do 400°C, a następnie do temperatury pokojowej. Do badanych próbek przyłożono końcówkę z kulką AI2O3 (śr. 6mm, Grade 100). COF, głębokość zużycia i temperatura były monitorowane in situ.

PARAMETRY BADANIA

pomiaru pin-on-disk

Tribometr LVDT Próbka

Szybkość zużycia, K, oceniano za pomocą wzoru K=V/(Fxs)=A/(Fxn), gdzie V to objętość zużyta, F to obciążenie normalne, s to droga ślizgowa, A to pole przekroju poprzecznego ścieżki zużycia, a n to liczba obrotów. Chropowatość powierzchni i profile ścieżek zużycia oceniano za pomocą NANOVEA Optical Profiler, a morfologię ścieżek zużycia badano za pomocą mikroskopu optycznego.

WYNIKI I DYSKUSJA

Współczynnik COF i głębokość śladu zużycia zarejestrowane in situ są pokazane odpowiednio na RYSUNKU 1 i RYSUNKU 2. Na RYSUNKU 1, "-I" oznacza badanie przeprowadzone, gdy temperatura została zwiększona z RT do podwyższonej temperatury. "-D" reprezentuje temperaturę obniżoną z wyższej temperatury 800°C.

Jak widać na RYSUNKU 1, próbki badane w różnych temperaturach wykazują porównywalny współczynnik COF wynoszący ~0,6 w trakcie pomiarów. Tak wysoki COF prowadzi do przyspieszonego procesu zużycia, w wyniku którego powstaje znaczna ilość odłamków. Głębokość śladu zużycia była monitorowana podczas testów zużycia za pomocą LVDT, jak pokazano na RYS. 2. Testy przeprowadzone w temperaturze pokojowej przed nagrzaniem próbki i po schłodzeniu próbki pokazują, że płyta ceramiczna z krzemianu glinu wykazuje progresywny proces zużycia w RT, głębokość śladu zużycia stopniowo wzrasta podczas testu zużycia do ~170 i ~150 μm, odpowiednio. 

Dla porównania, testy zużycia w podwyższonych temperaturach (400°C i 800°C) wykazują inne zachowanie - głębokość śladu zużycia wzrasta szybko na początku procesu zużycia, a następnie zwalnia w miarę trwania testu. Głębokość ścieżki zużycia dla testów przeprowadzonych w temperaturach 400°C-I, 800°C i 400°C-D wynosi odpowiednio ~140, ~350 i ~210 μm.

COF podczas testów pin-on-desk w różnych temperaturach

RYSUNEK 1. Współczynnik tarcia podczas badań pin-on-disk w różnych temperaturach

Głębokość śladu zużycia płyty ceramicznej z krzemianu glinu w różnych temperaturach

RYSUNEK 2. Ewolucja głębokości śladu zużycia płytki ceramicznej z krzemianu glinu w różnych temperaturach

Średnia szybkość zużycia i głębokość śladu zużycia płytek ceramicznych z krzemianu glinu w różnych temperaturach zostały zmierzone przy użyciu NANOVEA Optical Profiler jak podsumowano w RYSUNEK 3. Głębokość śladu zużycia jest zgodna z zarejestrowaną za pomocą LVDT. Płyta ceramiczna z krzemianu glinu wykazuje znacznie zwiększony wskaźnik zużycia ~0,5 mm3/Nm w temperaturze 800°C, w porównaniu do wskaźników zużycia poniżej 0,2 mm3/N w temperaturze poniżej 400°C. Płytka ceramiczna z krzemianu glinu nie wykazuje znacząco poprawionych właściwości mechanicznych/tribologicznych po krótkim procesie ogrzewania, posiadając porównywalny wskaźnik zużycia przed i po obróbce cieplnej.

Ceramika krzemianowa z tlenku glinu, znana również jako lawa i cudowny kamień, jest miękka i możliwa do obróbki przed obróbką cieplną. Długi proces wypalania w podwyższonej temperaturze do 1093°C może znacznie zwiększyć jej twardość i wytrzymałość, po czym wymagana jest obróbka diamentowa. Taka unikalna cecha sprawia, że ceramika glinowo-krzemianowa jest idealnym materiałem do rzeźby.

W niniejszej pracy wykazaliśmy, że obróbka cieplna w niższej temperaturze niż wymagana do wypalania (800°C vs 1093°C) w krótkim czasie nie poprawia właściwości mechanicznych i tribologicznych ceramiki z krzemianu glinu, co sprawia, że właściwe wypalanie jest niezbędnym procesem dla tego materiału przed jego wykorzystaniem w rzeczywistych zastosowaniach.

 
Szybkość zużycia i głębokość śladu zużycia próbki w różnych temperaturach 1

RYSUNEK 3. Szybkość zużycia i głębokość śladu zużycia próbki w różnych temperaturach

PODSUMOWANIE

Na podstawie kompleksowej analizy tribologicznej w tym badaniu, pokazujemy, że płyta ceramiczna z krzemianu glinu wykazuje porównywalny współczynnik tarcia w różnych temperaturach od temperatury pokojowej do 800°C. Jednakże, wykazuje znacznie zwiększoną szybkość zużycia ~0,5 mm3/Nm w 800°C, co pokazuje znaczenie właściwej obróbki cieplnej tej ceramiki.

Tribometry NANOVEA są w stanie ocenić właściwości tribologiczne materiałów przeznaczonych do zastosowań w wysokich temperaturach do 1000°C. Funkcja pomiaru in situ COF i głębokości śladu zużycia pozwala użytkownikom na korelację różnych etapów procesu zużycia z ewolucją COF, co jest kluczowe w poprawie fundamentalnego zrozumienia mechanizmu zużycia i właściwości tribologicznych materiałów stosowanych w podwyższonych temperaturach.

Tribometry NANOVEA oferują precyzyjne i powtarzalne badania zużycia i tarcia w trybach obrotowym i liniowym zgodnych z normami ISO i ASTM, z opcjonalnymi modułami do badań zużycia w wysokich temperaturach, smarowania i tribo-korozji dostępnymi w jednym, wstępnie zintegrowanym systemie. Niezrównana oferta NANOVEA jest idealnym rozwiązaniem do określenia pełnego zakresu właściwości trybologicznych cienkich lub grubych, miękkich lub twardych powłok, filmów i podłoży.

Opcjonalne bezdotykowe profilery 3D są dostępne dla wysokiej rozdzielczości obrazowania 3D śladów zużycia, jako dodatek do innych pomiarów powierzchni, takich jak chropowatość.

POMIAR ZUŻYCIA IN-SITU

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Komentarz