アメリカ/グローバル: +1-949-461-9292
ヨーロッパ+39-011-3052-794
お問い合わせ

カテゴリープロフィロメトリー|テクスチャーとグレイン

 

ショットピーニング表面分析

ショットピーニングされた表面分析

3D非接触形状測定器の使用

作成者

CRAIG LEISING

はじめに

ショットピーニングは、表面に可塑性を誘発することを目的とした力で、球状の金属、ガラス、またはセラミックのビーズ (一般に「ショット」と呼ばれます) を基材に衝突させるプロセスです。ピーニング前後の特性を分析することで、プロセスの理解と制御を強化するための重要な洞察が得られます。表面粗さとショットによって残されたディンプルの範囲は、特に注目すべき興味深い点です。

ショットピーニング表面分析における 3D 非接触表面形状計の重要性

従来、ショットピーニングされた表面分析に使用されてきた従来の接触式形状計とは異なり、3D 非接触測定では完全な 3D 画像が提供され、対象エリアと表面トポグラフィーをより包括的に理解できます。 3D 機能がなければ、検査は 2D 情報のみに依存することになり、表面を特徴付けるには不十分です。 3D で地形、適用範囲、粗さを理解することは、ピーニング プロセスを制御または改善するための最良のアプローチです。ナノベアの 3D非接触形状計 機械加工およびピーニングされた表面に見られる急角度を測定する独自の機能を備えたクロマティック ライト テクノロジーを利用しています。さらに、プローブの接触、表面の変化、角度、または反射率により、他の技術が信頼できるデータを提供できない場合でも、NANOVEA 表面形状計は成功します。

測定目的

このアプリケーションでは、NANOVEA ST400 非接触表面形状計を使用して、原材料と 2 つの異なるピーニング処理を施した表面を比較レビューのために測定します。 3D 表面スキャン後に自動的に計算できる表面パラメータのリストは無限にあります。ここでは、3D 表面を確認し、粗さ、ディンプル、表面積の定量化と調査など、さらなる分析のために対象領域を選択します。

ナノビア

ST400

標本、見本

結果

スチール表面

ISO25178 3D粗さパラメータ

SA 0.399μm 平均粗さ
スク 0.516μm RMS粗さ
エスエス 5.686μm 最大の山から谷まで
Sp 2.976μm 最大ピーク高
エスブイ 2.711μm 最大ピット深さ
スクー 3.9344 クルトーシス
エスケープ -0.0113 歪度
サル 0.0028mm 自己相関長
Str 0.0613 テクスチャのアスペクト比
スダール 26.539 mm² 表面積
SVK 0.589μm 谷の深さの減少
 

結果

ピーニングされた表面 1

表面被覆率
98.105%

ISO25178 3D粗さパラメータ

4.102μm 平均粗さ
スク 5.153μm RMS粗さ
エスエス 44.975μm 最大の山から谷まで
Sp 24.332μm 最大ピーク高
エスブイ 20.644μm 最大ピット深さ
スクー 3.0187 クルトーシス
エスケープ 0.0625 歪度
サル 0.0976mm 自己相関長
Str 0.9278 テクスチャのアスペクト比
スダール 29.451 mm² 表面積
SVK 5.008μm 谷の深さの減少

結果

ピーニングされた表面 2

表面被覆率 97.366%

ISO25178 3D粗さパラメータ

4.330μm 平均粗さ
スク 5.455μm RMS粗さ
エスエス 54.013μm 最大の山から谷まで
Sp 25.908μm 最大ピーク高
エスブイ 28.105μm 最大ピット深さ
スクー 3.0642 クルトーシス
エスケープ 0.1108 歪度
サル 0.1034mm 自己相関長
Str 0.9733 テクスチャのアスペクト比
スダール 29.623 mm² 表面積
SVK 5.167μm 谷の深さの減少

まとめ

このショットピーニング表面解析アプリケーションでは、NANOVEA ST400 3D 非接触プロファイラーがどのようにピーニング表面のトポグラフィーとナノメートルの詳細の両方を正確に特徴付けるかを実証しました。原材料と比較すると、表面 1 と表面 2 の両方が、ここで報告されているすべてのパラメータに大きな影響を与えていることは明らかです。画像を簡単に視覚的に検査すると、表面間の違いが明らかになります。これは、カバーエリアとリストされたパラメータを観察することによってさらに確認されます。表面 2 と比較すると、表面 1 は平均粗さ (Sa) が低く、凹み (Sv) が浅く、表面積 (Sdar) が減少していますが、被覆面積はわずかに高くなります。

これらの 3D 表面測定から、対象領域を容易に特定し、粗さ、仕上げ、質感、形状、トポグラフィー、平坦度、反り、平面性、体積、段差の高さなどを含む包括的な一連の測定を行うことができます。詳細な分析のために 2D 断面をすばやく選択できます。この情報により、あらゆる種類の表面測定リソースを利用して、ピーニングされた表面の包括的な調査が可能になります。統合された AFM モジュールを使用して、特定の関心領域をさらに調べることができます。 NANOVEA 3D 表面形状計は、最大 200 mm/s の速度を実現します。サイズ、速度、スキャン機能の点でカスタマイズでき、クラス 1 クリーン ルーム規格に準拠することもできます。インデックスコンベヤやインラインまたはオンライン使用のための統合などのオプションも利用できます。

このメモに示されているサンプルを提供してくださった IMF の Hayden 氏に特別な感謝を申し上げます。インダストリアルメタルフィニッシング株式会社 | indmetfin.com

塗装表面の形態

塗装表面の形態

自動化されたリアルタイムの進化モニタリング
ナノベア3D形状計を使用

作成者

DUANJIE LI, PhD

はじめに

塗料の保護および装飾特性は、自動車、海洋、軍事、建築などさまざまな産業で重要な役割を果たしている。耐食性、紫外線保護、耐摩耗性など、望ましい特性を実現するために、塗料の配合や構造は注意深く分析され、改良され、最適化されます。

乾燥塗料表面の形態解析における3D非接触プロフィロメータの重要性

塗料は通常、液状で塗布され、溶剤を蒸発させ、液状の塗料を固体の膜に変化させる乾燥工程を経る。乾燥の過程で、塗料の表面は徐々にその形や質感を変えていく。添加剤を用いて塗料の表面張力や流動特性を変化させることで、さまざまな表面仕上げや質感を作り出すことができる。しかし、塗料の配合が不十分であったり、表面処理が不適切であったりした場合には、塗料の表面に望ましくない不具合が生じることがある。

乾燥期間中の塗料表面の形態をその場で正確にモニタリングすることで、乾燥メカニズムについての直接的な洞察が得られます。さらに、表面形態のリアルタイムの進化は、3D プリンティングなどのさまざまなアプリケーションにおいて非常に役立つ情報です。ナノベア 3D非接触形状計 サンプルに触れることなく材料の塗装表面の形態を測定し、スライドスタイラスなどの接触技術によって引き起こされる可能性のある形状の変化を回避します。

測定目的

このアプリケーションでは、高速ライン光学センサーを搭載したNANOVEA ST500非接触型プロフィロメーターを使用して、1時間の乾燥期間中の塗料表面の形態をモニターしています。連続的に形状が変化する材料の3Dプロファイルをリアルタイムで自動測定できるNANOVEA非接触型プロフィロメータの能力を紹介します。

ナノビア

ST500

結果・考察

金属板の表面に塗料を塗布した後、直ちに高速ラインセンサーを搭載したNANOVEA ST500非接触型プロフィロメーターを用いて、乾燥中の塗料の形態変化をその場で自動測定した。特定の時間間隔(0分、5分、10分、20分、30分、40分、50分、60分)で3D表面形態を自動的に測定・記録するマクロがプログラムされている。この自動化されたスキャン手順により、ユーザーは設定された手順を順番に実行することでスキャン作業を自動的に行うことができ、手作業によるテストや繰り返しスキャンと比較して、労力、時間、起こりうるユーザーエラーを大幅に削減することができる。この自動化は、異なる時間間隔での複数のスキャンを含む長期的な測定に非常に有用であることが証明されている。

光ラインセンサーは、図1に示すように、192点からなる輝線を生成する。この192個の光点が試料表面を同時にスキャンするため、スキャン速度が大幅に向上します。これにより、各3Dスキャンが迅速に完了し、個々のスキャン中に表面が大幅に変化するのを防ぎます。

図1: 乾燥中の塗料の表面をスキャンする光学式ラインセンサー。

図2、図3、および図4に、それぞれ代表的な時間における乾燥塗膜トポグラフィのフォールスカラー図、3D図、および2Dプロファイルを示す。画像の偽色は、容易に識別できない特徴の検出を容易にする。異なる色は、サンプル表面の異なる領域にわたる高さの変化を表しています。3Dビューは、ユーザーがさまざまな角度から塗装表面を観察するための理想的なツールを提供します。最初の30分間は、塗膜表面の偽色が暖色系から寒色系へと徐々に変化し、この間に時間の経過とともに高さが徐々に低くなっていくことを示しています。30分後と60分後の塗料を比較すると、色の変化が穏やかであることがわかる。

乾燥時間0分、30分、60分後の塗膜の全粗度分析を表1に示す。塗膜表面の平均高さは、最初の30分間の乾燥で471μmから329μmへと急速に減少していることが観察される。溶媒が気化すると同時に表面のテクスチャーが発達し、粗さSa値は7.19から22.6µmに増加した。その後、塗膜の乾燥は緩やかになり、60分後の試料高さは317 µm、Sa値は19.6 µmまで徐々に減少した。

この研究では、NANOVEA 3D非接触型プロフィロメーターが、乾燥中の塗料の3D表面変化をリアルタイムでモニタリングできることを明らかにし、塗料の乾燥プロセスに関する貴重な知見を提供します。サンプルに触れることなく表面形状を測定することで、スライディングスタイラスのような接触技術で起こりうる未乾燥塗料の形状変化を避けることができます。この非接触アプローチにより、乾燥中の塗料の表面形状を正確かつ確実に分析することができます。

図2: 乾燥時間の違いによる塗料表面の形態の変化。

図3: 異なる乾燥時間における塗料表面の変化の3Dビュー。

図4: 異なる乾燥時間後の塗料サンプルの2Dプロファイル。

図5: 塗料の乾燥時間による試料の平均高さと粗さSaの変化。

ISO25178

乾燥時間(分) 0 5 10 20 30 40 50 60
正方形(μm) 7.91 9.4 10.8 20.9 22.6 20.6 19.9 19.6
スクー 26.3 19.8 14.6 11.9 10.5 9.87 9.83 9.82
Sp (µm) 97.4 105 108 116 125 118 114 112
Sv (µm) 127 70.2 116 164 168 138 130 128
Sz (µm) 224 175 224 280 294 256 244 241
Sa (µm) 4.4 5.44 6.42 12.2 13.3 12.2 11.9 11.8

平方メートル 二乗平均平方根の高さ | スクー クルトーシス | Sp 最大ピーク高さ | Sv ピットの最大高さ | Sz 最高高さ | Sv 算術平均身長

表1: 乾燥時間の違いによる塗膜の粗さ。

まとめ

このアプリケーションでは、NANOVEA ST500 3D非接触型プロフィロメーターの能力を、乾燥過程における塗料表面の形態変化をモニターすることで紹介しました。サンプル表面を同時にスキャンする192個の光スポットからなるラインを生成する高速光学ラインセンサーにより、比類のない精度を確保しながら、時間効率の高い研究が可能になりました。

取得ソフトウェアのマクロ機能は、その場で3D表面形状の自動測定をプログラミングすることを可能にし、特定の目標時間間隔で複数のスキャンを含む長期測定に特に有用である。これにより、時間、労力、ユーザーエラーの可能性が大幅に削減される。表面形状の漸進的な変化は、塗料が乾燥するにつれてリアルタイムで連続的にモニター・記録されるため、塗料の乾燥メカニズムに関する貴重な知見が得られます。

ここに示したデータは、解析ソフトウェアで利用可能な計算のほんの一部です。NANOVEAプロフィロメーターは、透明、暗色、反射性、不透明を問わず、事実上あらゆる表面を測定することができます。

 

さて、次はアプリケーションについてです。

3Dプロフィロメトリーによる破壊面解析

フラクトグラフィー解析

3Dプロフィロメトリーによる

作成者

CRAIG LEISING

はじめに

フラクトグラフィーは、破壊された表面の特徴を研究するもので、歴史的には顕微鏡または SEM を使用して調査されてきました。フィーチャのサイズに応じて、表面分析には顕微鏡 (マクロ フィーチャ) または SEM (ナノおよびマイクロ フィーチャ) が選択されます。どちらも最終的には破壊メカニズムのタイプを特定できるようになります。顕微鏡には効果的ではありますが、明らかな限界があり、SEM は原子レベルの分析を除いて、ほとんどの場合、破面測定には非実用的であり、広範な使用能力がありません。光学計測技術の進歩により、NANOVEA 3D非接触形状計 ナノスケールからマクロスケールまでの 2D および 3D 表面測定を提供する機能を備え、現在、最適な機器とみなされています

亀裂検査における3D非接触プロフィロメータの重要性

SEMとは異なり、3D非接触プロフィロメータは、SEMよりも優れた垂直・水平方向の寸法を提供しながら、ほぼすべての表面、サンプルサイズ、最小限のサンプル前処理で測定することができます。プロファイラでは、ナノからマクロレンジの形状を一度の測定で捉えることができ、試料の反射率の影響を受けることはありません。透明、不透明、鏡面、拡散、研磨、粗面など、あらゆる材質を簡単に測定することができます。3D非接触プロフィロメータは、SEMの数分の一のコストで、表面破壊研究を最大化するための広範でユーザーフレンドリーな機能を提供します。

測定目的

このアプリケーションでは、ナノビアST400を用いて鋼鉄サンプルの破断面を測定しています。3Dエリア、2Dプロファイル抽出、表面の方向性マップを紹介します。

ナノビア

ST400

結果

表面

3D表面テクスチャーの方向性

等方性51.26%
ファーストディレクション123.2º
セカンドディレクション116.3º
サードディレクション0.1725º

この抽出液から表面積、体積、粗さなどを自動計算することができます。

2Dプロファイル抽出

結果

側面

3D表面テクスチャーの方向性

等方性15.55%
ファーストディレクション0.1617º
セカンドディレクション110.5º
サードディレクション171.5º

この抽出液から表面積、体積、粗さなどを自動計算することができます。

2Dプロファイル抽出

まとめ

このアプリケーションでは、ナノビアST400 3D非接触プロフィロメーターが、破砕表面の完全な地形(ナノ、マイクロ、マクロの特徴)を正確に特徴付けることができることを示しました。3D領域から、表面を明確に識別し、サブ領域またはプロファイル/クロスセクションを迅速に抽出し、表面計算の無限のリストを使用して分析することができます。サブナノメートルの表面形状は、統合されたAFMモジュールでさらに分析することができます。

さらに、ナノベアーのプロフィロメーターにはポータブルタイプもあり、特に亀裂の表面が動かないようなフィールド調査には欠かせないものとなっています。このように幅広い表面測定機能を備えているため、1台の装置で亀裂表面の分析がより簡単に、より便利になりました。

さて、次はアプリケーションについてです。

3Dプロフィロメトリーによるガラスファイバー表面形状測定

ファイバーガラス表面トポグラフィー

3Dプロフィロメトリーによる

作成者

CRAIG LEISING

はじめに

ガラス繊維は、ガラスを極細に加工した素材である。繊維強化ポリマー(FRP)、ガラス繊維強化プラスチック(GRP)などと呼ばれ、多くのポリマー製品の補強材として使用されている。

品質管理における表面形状検査の重要性

ガラス繊維強化材には多くの用途がありますが、ほとんどの用途において可能な限り強度を高めることが極めて重要です。ガラス繊維複合材料は、重量に対する強度が最も高い材料の一つであり、場合によっては鋼鉄よりも高い強度を持つこともあります。高い強度の他に、露出した表面積をできるだけ小さくすることも重要です。グラスファイバーの表面積が大きいとケミカル・アタックや材料の膨張に対して構造体がより脆弱になる可能性があります。そのため、表面検査は品質管理生産において非常に重要です。

測定目的

このアプリケーションでは、ナノビアST400 を使用して、ガラス繊維複合材料の表面の粗さと平坦さを測定しています。これらの表面特性を定量化することで、より強く、より長持ちするガラスファイバー複合材料の製造や最適化が可能になります。

ナノビア

ST400

測定パラメータ

プローブ 1mm
取得率300Hz
アベレージング1
測定面5mm×2mm
ステップサイズ5 µm x 5 µm
スキャンニングモード一定速度

プローブ仕様

測定範囲 RANGE1mm
Z RESOLUTION 25nm
Z軸正確性200nm
水平分解能 2 μm

結果

偽色表示

3次元表面平坦度

3次元表面粗さ

15.716 μm計算上平均高さ
スク19.905 μm平方根高さ
Sp116.74 μm最大ピーク高
エスブイ136.09 μmピットの最大高さ
エスエス252.83 μm最大高さ
エスケープ0.556歪度
3.654クルトーシス

まとめ

結果が示すように、NANOVEA ST400 Optical プロファイラー グラスファイバー複合材表面の粗さと平坦度を正確に測定することができました。データは、ファイバー複合材料の複数のバッチにわたって、または一定期間にわたって測定され、さまざまなファイバーグラス製造プロセスとそれらが時間の経過とともにどのように反応するかについての重要な情報を提供します。したがって、ST400 はグラスファイバー複合材料の品質管理プロセスを強化するための実行可能なオプションです。

さて、次はアプリケーションについてです。

トライボメータによるポリマーベルトの摩耗と摩擦の測定

ポリマーベルト

トライボメータによる摩耗と摩擦

作成者

DUANJIE LI, PhD

はじめに

ベルトドライブは、2つ以上の回転軸の間で動力を伝達し、相対的な動きを追跡します。ベルトドライブはメンテナンスが最小限で済むシンプルで安価なソリューションとして、バックスソー、製材所、脱穀機、サイロブロワー、コンベアなど様々な用途で広く使用されています。ベルトドライブは過負荷から機械を保護するだけでなく、振動を減衰させ、分離することができます。

摩耗評価の重要性 ベルトドライブの摩耗評価の重要性

ベルト駆動の機械ではベルトの摩擦と摩耗が避けられません。十分な摩擦があればスリップすることなく効果的に動力を伝達できますが、過度の摩擦はベルトを急速に摩耗させる可能性があります。ベルトドライブの運転中は、疲労、摩耗、摩擦などさまざまな種類の摩耗が発生します。ベルトの寿命を延ばし、ベルトの修理や交換にかかる費用と時間を削減するためには、ベルトの摩耗性能を確実に評価することがベルトの寿命、生産効率、アプリケーションの性能を向上させるために重要です。ベルトの摩擦係数や摩耗量を正確に測定することで、ベルトの研究開発や品質管理が容易になります。

測定目的

この研究では、異なる表面テクスチャを持つベルトの摩耗挙動をシミュレーションして比較し、その能力を紹介します。 ナノビア T2000トライボメータは、ベルトの摩耗プロセスを制御・監視しながらシミュレートすることができます。

ナノビア

T2000

試験方法

表面粗さとテクスチャーの異なる2種類のベルトについて,摩擦係数COFと耐摩耗性を評価したました。 ナノビア 高負荷 トライボメータ 直線往復摩耗モジュールを使用。カウンター材としてスチール 440 ボール (直径 10 mm) を使用しました。統合された測定器を使用して表面粗さと摩耗痕跡を検査しました。 3D非接触表面形状計。摩耗率、 Kの式で評価した。 K=Vl(Fxs)で、ここで V は摩耗量です。 F は法線荷重であり s は滑走距離である。

 

なお、今回は平滑なスチール440のボールを例としていますが、形状や表面仕上げの異なるあらゆる固体材料をカスタムフィクスチャーを使用して実際のアプリケーション状況をシミュレートして適用することが可能です。

結果・考察

分析した表面プロファイルによるとテクスチャーベルトとスムースベルトの表面粗さRaはそれぞれ33.5と8.7umでした。 ナノビア 3D非接触光学式プロファイラー試験した2つのベルトのCOFと摩耗率をそれぞれ10Nと100Nで測定し、異なる荷重でのベルトの摩耗挙動を比較しました。

図1 図1は摩耗試験中のベルトのCOFの変化を示します。異なるテクスチャを持つベルトは実質的に異なる摩耗挙動を示しています。興味深いことに、COFが徐々に増加する慣らし運転期間の後、テクスチャーベルトは10Nと100Nの荷重で行った試験の両方で、〜0.5という低いCOFに達しました。これに対し、10Nの荷重で試験したスムースベルトは、COFが安定すると〜1.4という著しく高いCOFを示し、試験の残りの間はこの値を維持します。100Nの荷重で試験した平滑ベルトは、鋼球440によって急速に摩耗し、大きな摩耗痕が形成されました。そのため試験は220回転で停止しました。

図1: 異なる負荷におけるベルトのCOFの進化。

図2は100Nの試験後の3次元摩耗痕画像の比較です。ナノビア3次元非接触プロフィロメータは摩耗痕の詳細な形状を解析するツールを提供し、摩耗メカニズムの基礎的な理解に役立つ情報を提供します。

表1: 摩耗痕の解析結果

図2:  2本のベルトの3Dビュー
100Nでの試験後。

3D摩耗痕プロファイルにより、表1に示すように高度な解析ソフトウェアで計算された摩耗痕の体積を直接かつ正確に決定することができます。220回転の摩耗試験では、スムースベルトの摩耗痕は75.7mm3と非常に大きく深くなっているのに対し、600回転の摩耗試験ではテクスチャーベルトの摩耗痕は14.0mm3となっています。スチールボールに対するスムースベルトの摩擦が非常に大きいため、テクスチャーベルトと比較して15倍の摩耗量となりました。

 

このようにテクスチャーベルトとスムースベルトのCOFが大きく異なるのは、ベルトと鋼球の接触面積の大きさが関係していると考えられ、それが両者の摩耗性能の違いにもつながっていると考えられます。図3は2つのベルトの摩耗痕を光学顕微鏡で観察したものです。摩耗痕の検査はCOFの変遷に関する観察と一致しています。100Nで行った摩耗試験では、テクスチャーベルトとスムースベルトの両方にかなり大きな摩耗痕ができ、次の段落で述べるように、3Dプロファイルを用いて摩耗率を計算することになります。

図3:  光学顕微鏡による摩耗痕の観察

まとめ

本研究では、ベルトの摩擦係数と摩耗量を良好に制御し定量的に評価するナノビア T2000トライボメーターの能力を紹介しました。ベルトの摩擦と耐摩耗性には、表面のテクスチャが重要な役割を担っています。テクスチャを施したベルトは摩擦係数が0.5程度と安定しており寿命も長いため、工具の修理や交換にかかる時間やコストを削減することができます。一方、平滑ベルトは鋼球との過度な摩擦によりベルトが急速に摩耗します。更にベルトにかかる負荷は寿命の重要な要素になります。過負荷は非常に高い摩擦を引き起こし、ベルトの摩耗を加速させます。

NANOVEA T2000トライボメータは、ISOおよびASTMに準拠した回転モードとリニアモードによる精密で再現性の高い摩耗・摩擦試験と、オプションで高温摩耗、潤滑、摩擦腐食モジュールを1つのシステムに統合して使用することが可能です。 NANOVEAの 本装置は薄膜や厚膜、軟質や硬質のコーティング、フィルム、基材などのトライボロジー特性をフルレンジで測定できる理想的な装置です。

さて、次はアプリケーションについてです。

3次元形状測定による化石の微細構造の解明

化石微細構造

3Dプロフィロメトリーによる

作成者

DUANJIE LI, PhD

はじめに

化石とは、太古の海や湖、川の中の堆積物に埋もれた植物や動物などの生物の痕跡が保存されたものです。通常体の柔らかい組織は死後腐敗しますが、硬い貝殻や骨、歯などは化石となります。元の貝殻や骨と鉱物の交換が行われる際に微細構造の表面の特徴が保存されることが多く、気象の進化や化石の形成機構を知ることができます。

化石検査における3次元非接触型プロフィロメータの重要性

化石の 3D プロファイルにより、化石サンプルの詳細な表面の特徴をより近い角度から観察することができます。 NANOVEA 表面形状計の高い分解能と精度は、肉眼では認識できない場合があります。プロフィロメーターの分析ソフトウェアは、これらのユニークな表面に適用できる幅広い研究を提供します。タッチプローブなどの他の技術とは異なり、NANOVEA 3D非接触形状計 サンプルに触れずに表面の特徴を測定します。これにより、特定のデリケートな化石サンプルの真の表面特徴を保存することが可能になります。さらに、ポータブルモデルJr25表面形状計は化石現場の3D測定を可能にし、化石分析と発掘後の保護を大幅に容易にします。

測定目的

本研究では、ナノビアJr25プロフィロメーターを用いて2つの代表的な化石試料の表面を測定しました。それぞれの化石の表面全体をスキャンし、粗さ、輪郭、テクスチャの方向などの表面特性を分析しました。

ナノビア

Jr25

腕足類の化石

最初に紹介するのは、硬い「弁」(殻)を上下に持つ海産動物の腕足類の化石である。5億5千万年以上前のカンブリア紀に初めて出現した。

図1にスキャンの3Dビューを、図2にフォルスカラービューを示します。 

図1: 腕足類の化石サンプルの3Dビュー

図2: 腕足類の化石サンプルのカラー異常図

次に図3に示すように、腕足類の化石の局所的な表面形態と輪郭を調べるために、全体の形態を表面から除去しました。このとき、腕足類の化石サンプルには独特の発散溝テクスチャが観察されました。

図3: カラー異常表示と輪郭線表示

図4は、化石表面の断面図を示すために、テクスチャ領域からラインプロファイルを抽出したものです。ステップハイト調査では、表面形状の正確な寸法を測定しています。溝の平均幅は約0.38 mm、深さは約0.25 mmです。

図4: テクスチャー表面のラインプロファイルとステップハイトの研究

ウミユリ科の化石

2つ目の化石サンプルは、ウミユリの茎の化石です。ウミユリは恐竜より約3億年前のカンブリア紀中期の海に初めて現れました。 

 

図5にスキャンの3Dビュー、図6にカラー異常ビューを示します。 

図5: ウミユリの化石サンプルの3Dビュー。

図7は、ウミユリの茎化石の表面テクスチャーの等方性と粗さを分析したものです。 

 この化石は90°に近い角度でテクスチャーの方向が優先され、69%のテクスチャーアイソトロピーにつながります。

図6: ウミユリのカラー異常表示 ウミユリ科の茎 のサンプルです。

 

図7: ウミユリの茎化石の表面テクスチャーの等方性と粗さ

図8は、ウミユリの茎化石の軸方向に沿った2次元プロファイルを示したものです。 

表面テクスチャーのピークの大きさはほぼ均一です。

図8: ウミユリの茎化石の2次元プロファイル解析

まとめ

このアプリケーションでは、ナノビアJr25ポータブル非接触型プロフィロメータを使用して、腕足類とウミユリの茎の化石の3D表面形状を包括的に研究しました。この装置により、化石サンプルの3D形状を正確に評価できることを示しました。さらに、試料の表面の興味深い特徴や質感を分析しました。腕足類のサンプルは発散性の溝を持ち、ウミユリの茎の化石は優先的なテクスチャーの等方性を示しています。詳細かつ正確な3D表面スキャンは、古生物学者や地質学者にとって、生命の進化や化石の形成を研究するための理想的なツールであることが証明されました。

ここに掲載されているデータは解析ソフトウェアで利用可能な計算の一部に過ぎません。半導体、マイクロエレクトロニクス、太陽電池、光ファイバー、自動車、航空宇宙、冶金、機械加工、コーティング、製薬、バイオメディカル、環境など、あらゆる分野の表面を測定することができます。

さて、次はアプリケーションについてです。

3Dプロフィロメトリーによる革の表面仕上げ加工

加工革

3Dプロフィロメトリーによる表面仕上げ

作成者

CRAIG LEISING

はじめに

皮革のなめし工程が完了すると、皮革の表面は様々な外観と手触りのための仕上げ工程を経ることができます。これらの機械的加工には、ストレッチ、バフィング、サンディング、エンボス加工、コーティングなどが含まれます。レザーの最終用途によっては、より精密で、制御された、再現性のある加工が必要とされる場合もあります。

プロフィロメトリー検査の重要性 研究開発・品質管理のために

目視検査方法はばらつきが大きく信頼性に欠けるため、マイクロスケールやナノスケールの特徴を正確に定量化できるツールは、皮革仕上げ工程を改善することができる。革の表面仕上げを定量的に理解することで、最適な仕上げ結果を得るためのデータ駆動型表面処理選択の改善につながります。NANOVEA 3D非接触 プロフィロメーター NANOVEAプロフィロメーターは、クロマティックコンフォーカル技術を利用し、皮革の表面を測定します。NANOVEAプロフィロメーターは、プローブの接触、表面のばらつき、角度、吸収、反射率によって、他の技術では信頼性の高いデータを提供できない場合でも、成功します。

測定目的

このアプリケーションでは、ナノビアST400を使用して異なるが密接に加工された2つの革サンプルの表面仕上げを測定し比較しています。表面プロファイルからいくつかの表面パラメータが自動的に計算されます。

ここでは表面粗さ、ディンプル深さ、ディンプルピッチ、ディンプル径に着目し、比較評価しています。

ナノビア

ST400

結果:サンプル1

ISO25178

高さパラメータ

その他の3Dパラメータ

結果:サンプル2

ISO25178

高さパラメータ

その他の3Dパラメータ

深さ比較

各サンプルの深度分布。
には、深いディンプルが多数観察されました。
サンプル1.

ピッチ比較

ディンプル間のピッチ サンプル1 が若干小さくなる
より
SAMPLE 2が両者は似たような分布をしている

 平均径比較

ディンプルの平均直径の分布が似ている。
をもって
サンプル1 は、平均してやや小さい直径を示す。

まとめ

このアプリケーションでは、ナノビアST400 3Dプロフィロメーターが加工された革の表面仕上げを精密に特性評価できることを示しました。この研究では、表面粗さ、ディンプル深さ、ディンプルピッチ、ディンプル直径を測定できることで、目視ではわからない2つのサンプルの仕上げや品質の違いを定量的に把握することができました。

全体として、SAMPLE 1とSAMPLE 2の間で3Dスキャンの外観に目に見える違いはありませんでした。しかし、統計解析では、2つのサンプルの間に明確な区別があります。SAMPLE 1 は、SAMPLE 2 と比較して、直径が小さく、深さが大きく、ディンプル間のピッチが小さいディンプルをより多く含んでいます。

追加の研究が可能であることに注意してください。特別な関心領域は、統合されたAFMまたはマイクロスコープモジュールでさらに分析された可能性があります。ナノベアーの3Dプロフィロメーターは、20mm/sから1m/sの速度で、高速検査のニーズを満たすために、実験室や研究室で使用されています。カスタムサイズ、速度、スキャン機能、クラス1のクリーンルーム対応、インデックスコンベア、インラインまたはオンライン統合用に構築することができます。

さて、次はアプリケーションについてです。

ポータブル3Dプロフィロメータによる有機物表面形状計測

有機表面形状

ポータブル3Dプロフィロメーターによる

作成者

CRAIG LEISING

はじめに

自然は、表面構造を改善するための重要なインスピレーションの宝庫となっています。自然界に見られる表面構造を理解することで、ヤモリの足を使った接着の研究、ナマコの質感変化を利用した抵抗力の研究、葉を使った撥水性の研究など、さまざまな研究が行われています。これらの表面は、生物医学から衣料品、自動車に至るまで、多くの応用が期待されています。これらの表面のブレークスルーを成功させるためには、表面特性を模倣し再現できるような製造技術を開発する必要があります。このプロセスこそ、識別と制御が必要なのです。

有機表面用ポータブル3D非接触光学式プロファイラの重要性

Chromatic Light テクノロジーを活用した NANOVEA Jr25 ポータブル 光学プロファイラー ほぼあらゆる材料を測定できる優れた能力を備えています。これには、自然界の幅広い表面特性に見られる、独特で急な角度、反射面と吸収面が含まれます。 3D 非接触測定により、完全な 3D 画像が提供され、表面の特徴をより完全に理解できるようになります。 3D 機能がなければ、自然の表面の識別は 2D 情報または顕微鏡画像のみに依存することになり、調査対象の表面を適切に模倣するのに十分な情報が得られません。製造を成功させるには、特にテクスチャー、形状、寸法などの表面特性の全範囲を理解することが重要です。

実験室レベルの結果を現場で簡単に得られることは、新しい研究の可能性を広げます。

測定目的

このアプリケーションでは ナノビア Jr25は、葉の表面を測定するために使用されます。3D表面スキャン後に自動的に計算される表面パラメータは無限にあります。

ここでは、3Dサーフェイスを確認し、選択
を含む、さらに分析が必要な領域があります。
表面粗さ、チャンネル、トポグラフィーの定量化および調査

ナノビア

JR25

試験条件

ファーローデプス

溝の平均密度16.471cm/cm2
平均溝深さ:97.428μm
最大深度:359.769μm

まとめ

このアプリケーションでは、どのように ナノビア Jr25ポータブル3D非接触光学式プロファイラーは、フィールドで葉の表面の形状とナノメートルスケールの詳細の両方を正確に特性評価することができます。これらの3D表面測定から、興味のある領域を素早く特定し、その後、無限の研究リストで分析することができます (寸法、粗さ 仕上がり形状、形状 形状、平坦度 反り 平面度、体積面積、段差 高さ など)。2次元の断面図を簡単に選択し、さらに詳細な分析を行うことができます。この情報により、表面測定リソースの完全なセットを使用して、有機表面を幅広く調査することができます。また、テーブルトップモデルに統合されたAFMモジュールにより、特別な関心領域もさらに分析することができます。

ナノビア また、フィールド調査用のポータブル高速形状測定器やラボ用システムも幅広く提供し、ラボサービスも行っています。

さて、次はアプリケーションについてです。

紙やすりの粗さ測定器

サンドペーパー粗さと粒子径の分析

サンドペーパー粗さと粒子径の分析

詳細はこちら

SANDPAPER

粗さ・粒子径解析

作成者

フランク・リウ(FRANK LIU

はじめに

サンドペーパーは、研磨剤として使用される一般的な市販品である。最も一般的な用途は、サンドペーパーの研磨性を利用して塗膜を除去したり、表面を研磨したりすることである。この研磨特性は砥粒に分類され、砥粒の大きさによって滑らかさや
粗い表面仕上げができる。望ましい研磨特性を実現するために、サンドペーパーのメーカーは、研磨粒子が特定の大きさで、偏差が少ないことを保証しなければなりません。サンドペーパーの品質を定量化するために、NANOVEAの3D非接触 プロフィロメーター を使用して、サンプル領域の算術平均(Sa)高さパラメータと平均粒子径を求めることができる。

非接触光学式3Dプロファイラの重要性 サンドペーパー用プロファイラー

サンドペーパーを使用する場合、一貫した表面仕上げを得るためには、研磨粒子と研磨面の相互作用が均一である必要があります。これを定量化するために、ナノベアの3D非接触光学式プロファイラでサンドペーパー表面を観察し、粒子のサイズ、高さ、間隔の偏差を確認することができます。

測定目的

今回の研究では、5種類のサンドペーパー砥粒(120,
180、320、800、2000)を使ってスキャンしています。
NANOVEA ST400 3D非接触光学式プロファイラ。
スキャンからSaを抽出し、粒子
のMotifs分析を行い、サイズを算出します。
等価直径を求める

ナノビア

ST400

結果・考察

サンドペーパーは、予想通り、グリットが大きくなるにつれて、表面粗さ(Sa)と粒子径が小さくなる。Saは42.37μmから3.639μmの範囲であった。粒子径は127±48.7から21.27±8.35の範囲にあります。大きな粒子と高い高さの変化は、小さな粒子と低い高さの変化とは対照的に、表面に対してより強い研磨作用を生み出す。
高さに関するパラメータの定義は、P.A.1 に記載されています。

表1: サンドペーパー砥粒と高さパラメーターとの比較。

表2: サンドペーパー砥粒と粒子径の比較。

サンドペーパーの2D・3D表示 

以下は、サンドペーパーサンプルのフォルスカラーと3Dビューです。
mmのガウシアンフィルターを使用し、形状やうねりを除去した。

モチーフの分析

表面の粒子を正確に見つけるために、高さスケールの閾値を再定義し、サンドペーパーの上層部のみを表示するようにした。その後、モチーフ解析を行い、ピークを検出した。

まとめ

マイクロやナノの形状を持つ表面を精密にスキャンできることから、様々なサンドペーパー砥粒の表面性状の検査にナノベアの3D非接触光学式プロファイラが使用されました。

3Dスキャンを解析するための高度なソフトウェアを用いて、各サンドペーパーサンプルの表面高さパラメータと等価粒子径を求めた。その結果、粒径が大きくなるにつれて、予想通り表面粗さ(Sa)と粒子径が小さくなることが確認された。

さて、次はアプリケーションについてです。

発泡スチロール表面境界測定プロフィロメトリー

表面境界測定

3Dプロフィロメトリーによる表面境界計測

詳細はこちら

表層境界測定

3Dプロフィロメトリーによる

作成者

クレイグ・ライジング

はじめに

表面の特徴、パターン、形状などの界面が配向性を評価されるような研究では、測定プロファイル全体にわたって関心のある領域をすばやく特定することが有用です。表面を重要な領域に分割することで、ユーザーは境界、ピーク、ピット、面積、体積などを迅速に評価し、研究対象の表面プロファイル全体における機能的な役割を理解することができます。例えば、金属の粒界イメージングでは、多くの構造物の界面や全体的な方向性が解析の重要なポイントになります。それぞれの領域を理解することで、全体の中の欠陥や異常を特定することができます。粒界のイメージングは通常プロフィロメータの能力を超える領域で研究され、2D画像分析に過ぎませんが、3D表面測定の利点とともに、ここで紹介する概念をより大きなスケールで説明するための参考資料となります。

表面分離研究における3次元非接触形状測定機の重要性

タッチプローブや干渉計などの他の技術とは異なり、 3D非接触形状計軸色収差を使用するため、ほぼすべての表面を測定でき、オープンステージングによりサンプルサイズは大きく変化する可能性があり、サンプルの前処理は必要ありません。ナノからマクロの範囲は、サンプルの反射率や吸収の影響を受けずに表面プロファイル測定中に得られ、高い表面角度を測定する高度な機能を備えており、結果をソフトウェアで操作する必要はありません。透明、不透明、鏡面、拡散、研磨、粗いなど、あらゆる材質を簡単に測定できます。非接触粗面計の技術は、表面境界分析が必要な場合に表面調査を最大限に高めるための理想的で広範で使いやすい機能を提供します。 2D と 3D 機能を組み合わせたメリットも得られます。

測定目的

このアプリケーションでは、発泡スチロールの表面積を測定するためにナノベアST400プロフィロメータが使用されています。境界は、NANOVEA ST400を使用して同時に取得される地形とともに、反射強度ファイルを組み合わせることによって確立されました。このデータをもとに、発泡スチロールの「粒」ごとに異なる形状や大きさの情報を算出しました。

ナノビア

ST400

結果と考察:2次元表面境界の測定

トポグラフィー画像(左下)を反射強度画像(右下)でマスクし、結晶粒の境界を明確にした画像。直径565μm以下の粒はフィルターをかけることで無視されている。

粒の総数167
粒が占める投影面積の合計。166.917 mm² (64.5962 %)
バウンダリー占有予想総面積: (35.4038 %)
粒の密度0.646285粒/mm2

面積 = 0.999500 mm² +/- 0.491846 mm².
外周=9114.15μm +/- 4570.38μm
等価直径 = 1098.61 µm +/- 256.235 µm
平均直径 = 945.373 µm +/- 248.344 µm
最小径 = 675.898 µm +/- 246.850 µm
最大径=1312.43 µm +/- 295.258 µm

結果&考察:3次元表面境界計測

得られた3次元トポグラフィーデータを用いて、各粒子の体積、高さ、ピーク、アスペクト比、一般的な形状情報を解析することができる。3次元占有総面積:2.525mm3

まとめ

このアプリケーションでは、NANOVEA 3D非接触形状測定機が発泡スチロールの表面を精密に特性評価できることを示しました。統計的な情報は、表面全体、またはピークやピットなどの個々の粒子について得ることができます。この例では、ユーザーが定義したサイズより大きいすべての粒を使用して、面積、周囲長、直径、高さを表示しました。ここで示された特徴は、バイオメディカルからマイクロマシニングまで、様々な分野の自然表面や加工済み表面の研究および品質管理に重要な役割を果たすことができます。 

さて、次はアプリケーションについてです。