月別アーカイブ9月 2020
機械加工品検査
機械加工品
CADモデルからの3次元形状測定による検査
著者
Duanjie Li, PhD
によって改訂されました。
Jocelyn Esparza
はじめに
複雑な形状を作り出す精密機械加工の需要は、様々な産業分野で高まっています。航空宇宙、医療、自動車からハイテクギア、機械、楽器に至るまで、絶え間ない革新と進化は、期待値と精度基準を新たな高みへと押し上げます。その結果、製品の品質を確保するための厳しい検査技術や検査装置の需要が高まっています。
部品検査における3次元非接触プロフィロメトリの重要性
機械加工されたパーツの特性をCADモデルと比較することは、公差や製造規格の遵守を確認するために不可欠です。また、部品の摩耗や損傷により交換が必要になることもあるため、使用期間中の検査も非常に重要です。要求された仕様からの逸脱を適時に特定することで、費用のかかる修理や生産停止、評価の低下を回避することができます。
タッチプローブ技術とは異なり、NANOVEA 光学プロファイラー 非接触で 3D 表面スキャンを実行し、複雑な形状を最高の精度で迅速かつ正確かつ非破壊で測定できます。
CADモデル
機械加工された部品の寸法と表面粗さを正確に測定することは、その部品が要求された仕様、公差、表面仕上げを満たしていることを確認するために重要です。検査するパーツの3Dモデルとエンジニアリングドローイングを以下に紹介します。
偽色表示
図3は、CADモデルとスキャンした加工面のフォールスカラー図を比較したもので、サンプル表面の高さ変化を色の変化で観察することができる。
図2に示すように、3Dサーフェススキャンから3つの2Dプロファイルを抽出し、加工された部品の寸法公差をさらに検証します。
プロファイルの比較と結果
図3~図5にプロファイル1~3を示す。測定したプロファイルをCADモデルと比較することで、定量的な公差検査を行い、厳格な製造基準を維持しています。プロファイル1とプロファイル2は、曲面加工された部品の異なる領域の半径を測定する。プロファイル2の高さの変動は、156mmの長さで30μmであり、要求される公差±125μmを満たしています。
公差の限界値を設定することで、解析ソフトが加工した部品の合否を自動的に判定することができます。
加工された部品の表面の粗さと均一性は、その品質と機能性を確保するために重要な役割を果たします。図6は、表面仕上げを定量化するために使用した加工部品の親スキャンから抽出した表面積です。平均表面粗さ(Sa)は、2.31μmと算出された。
まとめ
今回は、高速センサーを搭載した非接触プロファイラー「NANOVEA HS2000」が、寸法や粗さなど総合的な表面検査を行う様子を紹介しました。
高解像度スキャンにより、加工されたパーツの詳細な形態や表面形状を測定し、CADモデルとの定量的な比較を行うことができます。また、キズやクラックなどの欠陥も検出することが可能です。
高度な輪郭解析は、加工された部品が設定された仕様を満たしているかどうかを判断するだけでなく、摩耗した部品の故障メカニズムを評価する比類のないツールとなっています。
ここに示したデータは、NANOVEA光学式プロファイラに搭載されている高度な解析ソフトウェアで可能な計算の一部に過ぎません。
さて、次はアプリケーションについてです。
フレッティング摩耗評価
フレッティング摩耗評価
著者
Duanjie Li, PhD
によって改訂されました。
Jocelyn Esparza
はじめに
フレッティングとは、"負荷がかかり、振動や何らかの力によって微小な相対運動をする2つの材料の接触部に発生する特殊な摩耗現象 "である。機械が稼働しているとき、ボルトやピンで固定されている接合部、動くことを意図していない部品間、振動するカップリングやベアリングなどでは、必然的に振動が発生する。このような相対的な摺動運動の振幅は、マイクロメートルからミリメートルのオーダーであることが多い。このような低振幅の運動の繰り返しは、表面における深刻な局所的機械摩耗や物質移動を引き起こし、生産効率や機械性能の低下、あるいは機械の破損につながる可能性がある。
定量性の重要性
フレッティング摩耗評価
フレッチング摩耗には、二体摩耗、凝着、フレッチング疲労摩耗など、接触面で発生するいくつかの複雑な摩耗メカニズムが関与することがよくあります。フレッチング摩耗のメカニズムを理解し、フレッチング摩耗保護に最適な材料を選択するには、信頼性の高い定量的なフレッチング摩耗評価が必要です。フレッチング摩耗挙動は、変位振幅、垂直荷重、腐食、温度、湿度、潤滑などの作業環境に大きく影響されます。多用途な トライボメータ さまざまな現実的な作業条件をシミュレートできるこのツールは、フレッチング摩耗の評価に最適です。
Steven R. Lampman, ASMハンドブック:第19巻:疲労と破壊
http://www.machinerylubrication.com/Read/693/fretting-wear
試験条件
ステンレス鋼SS304サンプルの耐フレッティング摩耗性を、以下の方法で評価した。 ナノビア 直線往復運動式摩耗モジュールを使用したトライボメータ。対向材としてWC(直径6mm)ボールを使用しました。を使用して摩耗痕を調べた。 ナノビア 3D非接触プロファイラー。
フレッティングテストは、室温(RT)、200 °Cで行い,SS304試料の耐フレッティング摩耗性に及ぼす高温の影響を検討した。試料ステージに設置した加熱板により、フレッティング試験中の試料を200℃に加熱した。 °C.摩耗率のことです。 Kの式で評価した。 K=V/(F×s)で、ここで V は摩耗量です。 F は法線荷重であり s は滑走距離である。
なお、今回の研究では、カウンター材としてWCボールを例として使用した。形状や表面仕上げの異なるあらゆる固体材料を、カスタムフィクスチャを使用して実際の適用状況をシミュレートすることができます。
テストパラメーター
摩耗計測の
結果・考察
によって算出された摩耗痕の体積損失を、3D摩耗痕プロファイルによって直接かつ正確に把握することができます。 ナノビア 山地解析ソフト。
低速100rpm、室温での往復摩耗試験では、0.014mmという小さな摩耗痕を示した³.一方、1000rpmの高速回転で行ったフレッティング摩耗試験では、0.12mmというかなり大きな摩耗痕が形成されています。³.このような加速摩耗は,フレッティング摩耗試験で発生する高熱と激しい振動が金属片の酸化を促進し,激しい3体摩耗をもたらすことに起因すると考えられる。200℃の高温環境下でのフレッティング摩耗試験で,金属破片の酸化が促進され,3体摩耗が激しくなった。 °Cは0.27mmと大きめの摩耗痕を形成する³.
1000rpmでのフレッティング摩耗試験で、摩耗量は1.5×10-4 ミリメートル³/Nmとなり,100rpmでの往復摩耗試験と比較して約9倍となった。また,高温でのフレッチング摩耗試験では,摩耗速度がさらに加速され,3.4×10-4 ミリメートル³/Nmとなりました。異なる速度と温度で測定された耐摩耗性にこのような大きな差があることは、現実的なアプリケーションのためのフレッティング摩耗の適切なシミュレーションの重要性を示しています。
トライボシステムにわずかな試験条件の変更を加えると、摩耗挙動が大きく変化することがあります。の汎用性 ナノビア トライボメータは、高温、潤滑、腐食など、さまざまな条件下での摩耗を測定することができます。また、モーターによる正確な速度・位置制御により、0.001~5000rpmの範囲で摩耗試験を行うことができ、研究・試験室において、さまざまなトライボロジー条件下でのフレッティング摩耗を調査するための理想的なツールとなっています。
様々な条件下でのフレッティング摩耗痕
光学顕微鏡下
3Dウェアトラックプロファイル
基礎的な理解を深めることができる
フレッティング摩耗機構の
結果まとめ
異なるテストパラメータを使用して測定
まとめ
この研究では、その能力を披露した。 ナノビア ステンレス鋼SS304試料のフレッティング摩耗挙動を良好に制御し、定量的に評価するためのトライボメータ。
試験速度と温度は、材料の耐フレッティング摩耗性に重要な役割を果たします。フレッティング中の高熱と激しい振動により、SS304サンプルの摩耗は9倍近くまで大幅に加速されました。200℃の高温 °Cでさらに磨耗率が3.4×10-4 ミリメートル3/Nmです。
の多用途性 ナノビア トライボメータは、高温、潤滑、腐食など様々な条件下でのフレッティング摩耗の測定に最適なツールです。
ナノビア トライボメータは、ISOやASTMに準拠した回転・直動モードによる精密で再現性の高い摩耗・摩擦試験と、オプションで高温摩耗、潤滑、トライボコロージョンを1つのシステムに統合して提供することが可能です。当社の比類なき製品群は、薄手・厚手、軟質・硬質のコーティング、フィルム、基材など、あらゆる種類のトライボロジー特性を測定するための理想的なソリューションです。
さて、次はアプリケーションについてです。
カテゴリー
- アプリケーションノート
- ブロック・オン・リングトライボロジー
- 腐食トライボロジー
- 摩擦試験|摩擦係数
- 高温機械試験
- 高温トライボロジー
- 湿度・ガス トライボロジー
- 湿度機械試験
- 圧痕|クリープとリラクゼーション
- 圧痕|破壊靭性
- 圧痕|硬度・弾性率
- 圧痕|紛失と保管
- 圧痕|応力と歪み
- 圧痕|降伏強度と疲労の関係
- ラボラトリーテスト
- リニアトライボロジー
- 液体機械試験
- 液状トライボロジー
- 低温トライボロジー
- メカニカルテスト
- プレスリリース
- プロフィロメトリー|平坦度・反り率
- プロフィロメトリー|幾何学と形状
- プロフィロメトリー|粗さと仕上がり
- プロフィロメトリー|段差の高さと厚み
- プロフィロメトリー|テクスチャーとグレーン
- プロフィロメトリー|体積・面積
- プロフィロメトリーテスト
- リング・オン・リング トライボロジー
- 回転トライボロジー
- スクラッチテスト|接着剤の不具合について
- スクラッチテスト|コヒーシブフェール
- スクラッチテスト|マルチパス摩耗
- スクラッチテスト|スクラッチハードネス
- スクラッチテスト トライボロジー
- トレードショー
- トライボロジー試験
- 未分類
月別アーカイブ
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月