Archives mensuelles : septembre 2019
Rugosité de la surface et caractéristiques d'une cellule solaire
Importance de l'essai des panneaux solaires
La maximisation de l'absorption d'énergie d'une cellule solaire est essentielle à la survie de la technologie en tant que ressource renouvelable. Les multiples couches de revêtement et de verre de protection permettent l'absorption, la transmission et la réflexion de la lumière nécessaires au fonctionnement des cellules photovoltaïques. Étant donné que la plupart des cellules solaires grand public ont un rendement de 15-18%, l'optimisation de leur rendement énergétique est une bataille permanente.
Des études ont montré que la rugosité de la surface joue un rôle essentiel dans la réflexion de la lumière. La première couche de verre doit être aussi lisse que possible pour atténuer la réflexion de la lumière, mais les couches suivantes ne suivent pas cette ligne directrice. Un certain degré de rugosité est nécessaire à l'interface de chaque revêtement pour augmenter la possibilité de diffusion de la lumière dans leurs zones d'appauvrissement respectives et augmenter l'absorption de la lumière dans la cellule1. L'optimisation de la rugosité de la surface dans ces régions permet à la cellule solaire de fonctionner au mieux de ses capacités. Avec le capteur Nanovea HS2000 High Speed Sensor, la mesure de la rugosité de la surface peut être effectuée rapidement et avec précision.
Objectif de la mesure
Dans cette étude, nous montrerons les capacités du système Nanovea Profilomètre HS2000 avec High Speed Sensor en mesurant la rugosité de la surface et les caractéristiques géométriques d'une cellule photovoltaïque. Pour cette démonstration, une cellule solaire monocristalline sans protection en verre sera mesurée, mais la méthodologie peut être utilisée pour diverses autres applications.
Procédure d'essai et procédures
Les paramètres de test suivants ont été utilisés pour mesurer la surface de la cellule solaire.
Résultats et discussion
La vue 2D en fausses couleurs de la cellule solaire et une extraction de la surface avec ses paramètres de hauteur respectifs sont représentées ci-dessous. Un filtre gaussien a été appliqué aux deux surfaces et un indice plus agressif a été utilisé pour aplanir la zone extraite. Cela exclut les formes (ou ondulations) supérieures à l'indice de coupure, laissant derrière elles des caractéristiques qui représentent la rugosité de la cellule solaire.
Conclusion
Dans cette étude, nous avons pu montrer la capacité du capteur linéaire Nanovea HS2000 à mesurer la rugosité et les caractéristiques de surface d'une cellule photovoltaïque monocristalline. Avec la possibilité d'automatiser des mesures précises de plusieurs échantillons et de fixer des limites de réussite et d'échec, le capteur linéaire Nanovea HS2000 est un choix parfait pour les inspections de contrôle de la qualité.
Référence
1 Scholtz, Lubomir. Ladanyi, Libor. Mullerova, Jarmila. " Influence de la rugosité de surface sur les caractéristiques optiques des cellules solaires multicouches " Advances in Electrical and Electronic Engineering, vol. 12, no. 6, 2014, pp. 631-638.
MAINTENANT, PARLONS DE VOTRE CANDIDATURE
Résistance aux rayures des protections d'écran de téléphone portable
Importance de tester les protections d'écran
Bien que les écrans de téléphone soient conçus pour résister aux chocs et aux rayures, ils sont toujours susceptibles d'être endommagés. L'utilisation quotidienne du téléphone provoque leur usure, c'est-à-dire l'accumulation de rayures et de fissures. Comme la réparation de ces écrans peut être coûteuse, les protections d'écran sont un élément de prévention des dommages abordable, couramment acheté et utilisé pour augmenter la durabilité d'un écran.
En utilisant le module macro du testeur mécanique Nanovea PB1000 en conjonction avec le capteur d'émissions acoustiques (AE), nous pouvons clairement identifier les charges critiques auxquelles les protections d'écran présentent une défaillance en raison de l'essai de rayure1 afin de créer une étude comparative entre deux types de protections d'écran.
Deux types courants de matériaux de protection d'écran sont le TPU (polyuréthane thermoplastique) et le verre trempé. Le verre trempé est considéré comme le meilleur des deux car il offre une meilleure protection contre les chocs et les rayures. Cependant, il est aussi le plus cher. Les protections d'écran en TPU, quant à elles, sont moins chères et constituent un choix populaire pour les consommateurs qui préfèrent les protections d'écran en plastique. Étant donné que les protections d'écran sont conçues pour absorber les rayures et les impacts et qu'elles sont généralement composées de matériaux aux propriétés fragiles, les essais de rayures contrôlés associés à la détection in situ de l'EA constituent une configuration d'essai optimale pour déterminer les charges auxquelles les défaillances cohésives (par exemple, fissuration, écaillage et fracture) et/ou les défaillances adhésives (par exemple, délamination et écaillage) se produisent.
Objectif de la mesure
Dans cette étude, trois tests de rayures ont été effectués sur deux protections d'écran commerciales différentes en utilisant le module macro du testeur mécanique PB1000 de Nanovea. En utilisant un capteur d'émissions acoustiques et un microscope optique, les charges critiques auxquelles chaque protection d'écran a présenté une ou plusieurs défaillances ont été identifiées.
Procédure d'essai et procédures
Le testeur mécanique Nanovea PB1000 a été utilisé pour tester deux protections d'écran appliquées sur l'écran d'un téléphone et serrées sur une table à capteur de friction. Les paramètres de test pour toutes les rayures sont présentés dans le tableau 1 ci-dessous.
Résultats et discussion
Les protections d'écran étant fabriquées dans des matériaux différents, elles présentaient toutes des types de défaillances différents. Une seule défaillance critique a été observée pour la protection d'écran en TPU, tandis que la protection d'écran en verre trempé en présentait deux. Les résultats pour chaque échantillon sont présentés dans le tableau 2 ci-dessous. La charge critique #1 est définie comme la charge à laquelle les protections d'écran ont commencé à montrer des signes de rupture cohésive au microscope. La charge critique #2 est définie par le premier changement de pic observé dans les données du graphique des émissions acoustiques.
Pour le protecteur d'écran TPU, la charge critique #2 correspond à l'emplacement de la rayure où le protecteur a commencé à se détacher visiblement de l'écran du téléphone. Une rayure est apparue à la surface de l'écran du téléphone lorsque la charge critique #2 a été dépassée pour le reste des tests de rayures. Pour la protection d'écran en verre trempé, la charge critique #1 correspond à l'endroit où les fractures radiales ont commencé à apparaître. La charge critique #2 se produit vers la fin de la rayure à des charges plus élevées. L'émission acoustique est d'une magnitude plus importante que celle du protecteur d'écran TPU, mais l'écran du téléphone n'a subi aucun dommage. Dans les deux cas, la charge critique #2 correspond à un changement important de la profondeur, indiquant que le pénétrateur a percé le protecteur d'écran.
Conclusion
Dans cette étude, nous présentons la capacité du testeur mécanique Nanovea PB1000 à effectuer des tests de rayures contrôlés et répétables et à utiliser simultanément la détection d'émissions acoustiques pour identifier avec précision les charges auxquelles la rupture adhésive et cohésive se produit dans les protections d'écran en TPU et en verre trempé. Les données expérimentales présentées dans ce document confirment l'hypothèse initiale selon laquelle le verre trempé est le plus performant pour la prévention des rayures sur les écrans de téléphone.
Le testeur mécanique Nanovea offre des capacités de mesure précises et reproductibles de l'indentation, des rayures et de l'usure à l'aide de modules Nano et Micro conformes aux normes ISO et ASTM. Le Testeur Méchanique est un système complet, ce qui en fait la solution idéale pour déterminer la gamme complète des propriétés mécaniques des revêtements, films et substrats fins ou épais, souples ou durs.
MAINTENANT, PARLONS DE VOTRE CANDIDATURE
Comparaison de gouttes ophtalmiques lubrifiantes à l'aide du tribomètre Nanovea T50
Importance de tester les solutions de gouttes oculaires
Objectif de la mesure
Dans cette étude, le coefficient de friction (COF) de trois solutions lubrifiantes différentes de gouttes ophtalmiques a été mesuré en utilisant la configuration "pin-on-disk" sur le tribomètre Nanovea T50.
Procédure d'essai et procédures
Une tige sphérique de 6 mm de diamètre en alumine a été appliquée sur une lame de verre, chaque solution de collyre servant de lubrifiant entre les deux surfaces. Les paramètres d'essai utilisés pour toutes les expériences sont résumés dans le tableau 1 ci-dessous.
Résultats et discussion
Les valeurs maximales, minimales et moyennes du coefficient de friction pour les trois solutions de collyre testées sont présentées dans le tableau 2 ci-dessous. Les graphiques du COF en fonction du nombre de tours pour chaque solution de gouttes ophtalmiques sont illustrés aux figures 2 à 4. Le COF de chaque test est resté relativement constant pendant la majeure partie de la durée totale du test. L'échantillon A avait le COF moyen le plus bas, ce qui indique qu'il avait les meilleures propriétés de lubrification.
Conclusion
Dans cette étude, nous démontrons la capacité du tribomètre Nanovea T50 à mesurer le coefficient de friction de trois solutions de gouttes ophtalmiques. Sur la base de ces valeurs, nous montrons que l'échantillon A a un coefficient de friction plus faible et présente donc une meilleure lubrification par rapport aux deux autres échantillons.
Nanovea Tribomètres propose des tests d'usure et de friction précis et reproductibles à l'aide de modules rotatifs et linéaires conformes aux normes ISO et ASTM. Il fournit également des modules optionnels d’usure à haute température, de lubrification et de tribocorrosion disponibles dans un système pré-intégré. Une telle polyvalence permet aux utilisateurs de mieux simuler l’environnement d’application réel et d’améliorer la compréhension fondamentale du mécanisme d’usure et des caractéristiques tribologiques de divers matériaux.
MAINTENANT, PARLONS DE VOTRE CANDIDATURE
Catégories
- Notes d'application
- Bloc sur la tribologie des anneaux
- Corrosion Tribologie
- Essai de friction - Coefficient de friction
- Essais mécaniques à haute température
- Tribologie à haute température
- Humidité et gaz Tribologie
- Humidité Essais mécaniques
- Indentation | Fluage et relaxation
- Indentation | Ténacité à la rupture
- Indentation | Dureté et élasticité
- Indentation | Perte et stockage
- Indentation | Contrainte et déformation
- Indentation | Limite d'élasticité et fatigue
- Tests de laboratoire
- Tribologie linéaire
- Essais mécaniques des liquides
- Tribologie des liquides
- Tribologie à basse température
- Essais mécaniques
- Communiqué de presse
- Profilométrie - Planéité et gauchissement
- Profilométrie | Géométrie et forme
- Profilométrie | Rugosité et finition
- Profilométrie | Hauteur et épaisseur des marches
- Profilométrie | Texture et grain
- Profilométrie | Volume et surface
- Essais de profilométrie
- Tribologie "anneau sur anneau
- Tribologie rotationnelle
- Test de rayures | Défaillance de l'adhésif
- Essai de grattage | Défaillance de la cohésion
- Test de rayures | Usure multi-passages
- Test de rayures | Dureté à la rayure
- Test de rayure Tribologie
- Tradeshow
- Essais de tribologie
- Non classé
Archives
- septembre 2023
- août 2023
- juin 2023
- mai 2023
- juillet 2022
- mai 2022
- avril 2022
- janvier 2022
- décembre 2021
- novembre 2021
- octobre 2021
- septembre 2021
- août 2021
- juillet 2021
- juin 2021
- mai 2021
- mars 2021
- février 2021
- décembre 2020
- novembre 2020
- octobre 2020
- septembre 2020
- juillet 2020
- mai 2020
- avril 2020
- mars 2020
- février 2020
- janvier 2020
- novembre 2019
- octobre 2019
- septembre 2019
- août 2019
- juillet 2019
- juin 2019
- mai 2019
- avril 2019
- mars 2019
- janvier 2019
- décembre 2018
- novembre 2018
- octobre 2018
- septembre 2018
- juillet 2018
- juin 2018
- mai 2018
- avril 2018
- mars 2018
- février 2018
- novembre 2017
- octobre 2017
- septembre 2017
- août 2017
- juin 2017
- mai 2017
- avril 2017
- mars 2017
- février 2017
- janvier 2017
- novembre 2016
- octobre 2016
- août 2016
- juillet 2016
- juin 2016
- mai 2016
- avril 2016
- mars 2016
- février 2016
- janvier 2016
- décembre 2015
- novembre 2015
- octobre 2015
- septembre 2015
- août 2015
- juillet 2015
- juin 2015
- mai 2015
- avril 2015
- mars 2015
- février 2015
- janvier 2015
- novembre 2014
- octobre 2014
- septembre 2014
- août 2014
- juillet 2014
- juin 2014
- mai 2014
- avril 2014
- mars 2014
- février 2014
- janvier 2014
- décembre 2013
- novembre 2013
- octobre 2013
- septembre 2013
- août 2013
- juillet 2013
- juin 2013
- mai 2013
- avril 2013
- mars 2013
- février 2013
- janvier 2013
- décembre 2012
- novembre 2012
- octobre 2012
- septembre 2012
- août 2012
- juillet 2012
- juin 2012
- mai 2012
- avril 2012
- mars 2012
- février 2012
- janvier 2012
- décembre 2011
- novembre 2011
- octobre 2011
- septembre 2011
- août 2011
- juillet 2011
- juin 2011
- mai 2011
- novembre 2010
- janvier 2010
- avril 2009
- mars 2009
- janvier 2009
- décembre 2008
- octobre 2008
- août 2007
- juillet 2006
- mars 2006
- janvier 2005
- avril 2004