USA/GLOBALNE: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT

Twardość na zarysowania w wysokiej temperaturze przy użyciu tribometru

WYSOKA TEMPERATURA ODPORNOŚĆ NA ZARYSOWANIA

PRZY UŻYCIU TRYBOMETRU

Przygotowane przez

DUANJIE, PhD

WPROWADZENIE

Twardość mierzy odporność materiałów na odkształcenia trwałe lub plastyczne. Opracowany przez niemieckiego mineraloga Friedricha Mohsa w 1820 roku, test twardości zarysowania określa twardość materiału na zarysowania i ścieranie spowodowane tarciem o ostry przedmiot.1. Skala Mohsa jest indeksem porównawczym, a nie skalą liniową, dlatego opracowano bardziej dokładny i jakościowy pomiar twardości zarysowania, opisany w normie ASTM G171-032. Mierzy średnią szerokość rysy utworzonej przez diamentowy rysik i oblicza liczbę twardości rysy (HSP).

ZNACZENIE POMIARU TWARDOŚCI ZARYSOWANIA W WYSOKICH TEMPERATURACH

Materiały są wybierane na podstawie wymagań użytkowych. W przypadku zastosowań związanych ze znacznymi zmianami temperatury i gradientami termicznymi, kluczowe jest zbadanie właściwości mechanicznych materiałów w wysokich temperaturach, aby mieć pełną świadomość ograniczeń mechanicznych. Materiały, zwłaszcza polimery, zwykle miękną w wysokich temperaturach. Wiele uszkodzeń mechanicznych jest spowodowanych odkształceniem pełzającym i zmęczeniem termicznym zachodzącym tylko w podwyższonych temperaturach. Dlatego też, aby zapewnić właściwy dobór materiałów do zastosowań w wysokich temperaturach, konieczne jest opracowanie wiarygodnej techniki pomiaru twardości w wysokich temperaturach.

CEL POMIARU

W tym badaniu trybometr NANOVEA T50 mierzy twardość zarysowania próbki teflonu w różnych temperaturach od temperatury pokojowej do 300°C. Możliwość wykonywania pomiarów twardości zarysowania w wysokiej temperaturze sprawia, że NANOVEA Tribometr wszechstronny system do tribologicznej i mechanicznej oceny materiałów do zastosowań wysokotemperaturowych.

NANOVEA

T50

WARUNKI BADANIA

Tribometr NANOVEA T50 Free Weight Standard został użyty do wykonania testów twardości zarysowania próbki teflonu w temperaturach od pokojowej (RT) do 300°C. Temperatura topnienia teflonu wynosi 326,8°C. Zastosowano stożkowy trzpień diamentowy o kącie wierzchołkowym 120° i promieniu końcówki 200 µm. Próbka teflonowa została zamocowana na obrotowym stoliku z próbkami w odległości 10 mm od środka stolika. Próbkę wygrzewano w piecu i badano w temperaturach RT, 50°C, 100°C, 150°C, 200°C, 250°C i 300°C.

PARAMETRY BADANIA

pomiaru twardości zarysowania w wysokiej temperaturze

NORMALNA SIŁA 2 N
PRĘDKOŚĆ PRZESUWANIA 1 mm/s
ODLEGŁOŚĆ PRZESUWU 8mm na temp.
ATMOSFERY Air
TEMPERATURA RT, 50°C, 100°C, 150°C, 200°C, 250°C, 300°C.

WYNIKI I DYSKUSJA

Profile śladu zarysowania próbki teflonowej w różnych temperaturach pokazano na RYSUNKU 1 w celu porównania twardości zarysowania w różnych podwyższonych temperaturach. Spiętrzenie materiału na krawędziach ścieżki zarysowania tworzy się, gdy trzpień porusza się ze stałym obciążeniem 2 N i zagłębia się w próbkę teflonową, wypychając i deformując materiał w ścieżce zarysowania na boki.

Ślady zarysowań były badane pod mikroskopem optycznym, jak pokazano na RYSUNKU 2. Zmierzone szerokości śladów zarysowania i obliczone liczby twardości zarysowania (HSP) są podsumowane i porównane na RYSUNKU 3. Szerokość śladu zarysowania zmierzona przez mikroskop jest zgodna z tą zmierzoną przy użyciu NANOVEA Profiler - próbka teflonowa wykazuje większą szerokość zarysowania w wyższych temperaturach. Szerokość śladu zarysowania wzrasta z 281 do 539 µm w miarę wzrostu temperatury z RT do 300oC, co skutkuje zmniejszeniem HSP z 65 do 18 MPa.

Twardość zarysowania w podwyższonej temperaturze może być mierzona z wysoką precyzją i powtarzalnością przy użyciu Tribometru NANOVEA T50. Stanowi to alternatywne rozwiązanie w stosunku do innych pomiarów twardości i czyni Tribometry NANOVEA bardziej kompletnym systemem do kompleksowej oceny tribo-mechanicznej w wysokich temperaturach.

RYSUNEK 1: Profile śladów zarysowania po badaniach twardości zarysowania w różnych temperaturach.

RYSUNEK 2: Ślady zarysowań pod mikroskopem po pomiarach w różnych temperaturach.

RYSUNEK 3: Ewolucja szerokości śladu zarysowania i twardości zarysowania w zależności od temperatury.

PODSUMOWANIE

W niniejszej pracy zaprezentowano sposób pomiaru twardości zarysowania przez trybometr NANOVEA w podwyższonej temperaturze zgodnie z normą ASTM G171-03. Badanie twardości zarysowania przy stałym obciążeniu stanowi alternatywne, proste rozwiązanie umożliwiające porównanie twardości materiałów przy użyciu tribometru. Możliwość wykonania pomiarów twardości zarysowania w podwyższonej temperaturze czyni Tribometr NANOVEA idealnym narzędziem do oceny właściwości tribo-mechanicznych materiałów w wysokiej temperaturze.

Tribometr NANOVEA oferuje również precyzyjne i powtarzalne badania zużycia i tarcia z wykorzystaniem trybów obrotowych i liniowych zgodnych z normami ISO i ASTM, z opcjonalnymi modułami do badań zużycia w wysokich temperaturach, smarowania i tribo-korozji dostępnymi w jednym, wstępnie zintegrowanym systemie. Opcjonalny profiler bezdotykowy 3D jest dostępny do wysokorozdzielczego obrazowania 3D śladów zużycia, jako dodatek do innych pomiarów powierzchni, takich jak chropowatość.

1 Wredenberg, Fredrik; PL Larsson (2009). "Badanie zarysowania metali i polimerów: Experiments and numerics". Wear 266 (1-2): 76
2 ASTM G171-03 (2009), "Standardowa metoda badania twardości materiałów na zarysowania przy użyciu diamentowego rysika".

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Kontrola powierzchni spoin przy użyciu przenośnego profilometru 3D

Kontrola powierzchni WELd

przy użyciu przenośnego profilometru 3d

Przygotowane przez

CRAIG LEISING

WPROWADZENIE

Może się zdarzyć, że konkretny spaw, zwykle wykonywany przez kontrolę wzrokową, będzie badany z najwyższą precyzją. Szczególne obszary zainteresowania precyzyjnej analizy obejmują pęknięcia powierzchniowe, porowatość i niewypełnione kratery, niezależnie od dalszych procedur kontroli. Właściwości spoiny takie jak wymiar/kształt, objętość, chropowatość, rozmiar itp. mogą być mierzone w celu krytycznej oceny.

ZNACZENIE PROFILOMETRU BEZKONTAKTOWEGO 3D W KONTROLI POWIERZCHNI SPOIN

W przeciwieństwie do innych technik, takich jak sondy dotykowe czy interferometria, NANOVEA Bezkontaktowy profilometr 3D, wykorzystując chromatyzm osiowy, może mierzyć prawie każdą powierzchnię, rozmiary próbek mogą się znacznie różnić ze względu na otwartą inscenizację i nie ma potrzeby przygotowywania próbki. Zakres od nano do makro jest uzyskiwany podczas pomiaru profilu powierzchni przy zerowym wpływie odbicia lub absorpcji próbki, ma zaawansowaną zdolność pomiaru dużych kątów powierzchni i nie wymaga manipulacji wynikami za pomocą oprogramowania. Z łatwością mierz dowolny materiał: przezroczysty, nieprzezroczysty, lustrzany, dyfuzyjny, polerowany, szorstki itp. Możliwości 2D i 2D przenośnych profilometrów NANOVEA czynią je idealnymi przyrządami do pełnej kontroli powierzchni spoin zarówno w laboratorium, jak i w terenie.

CEL POMIARU

W tej aplikacji, przenośny profiler NANOVEA JR25 jest używany do pomiaru chropowatości powierzchni, kształtu i objętości spoiny, jak również otaczającego ją obszaru. Informacje te mogą dostarczyć krytycznych danych do prawidłowego zbadania jakości spoiny i procesu spawania.

NANOVEA

JR25

WYNIKI BADAŃ

Poniższy obraz przedstawia pełny widok 3D spoiny i otoczenia wraz z parametrami powierzchniowymi tylko spoiny. Profil przekroju 2D jest pokazany poniżej.

próbka

Po usunięciu powyższego profilu przekroju 2D z 3D, informacje wymiarowe spoiny są obliczane poniżej. Pole powierzchni i objętość materiału obliczone tylko dla spoiny poniżej.

 HOLEPEAK
SURFACE1,01 mm214,0 mm2
VOLUME8.799e-5 mm323,27 mm3
MAKSYMALNA GŁĘBOKOŚĆ/WYSOKOŚĆ0,0276 mm0,6195 mm
ŚREDNIA GŁĘBOKOŚĆ/WYSOKOŚĆ 0,004024 mm 0,2298 mm

PODSUMOWANIE

W tej aplikacji pokazaliśmy, jak bezkontaktowy profiler NANOVEA 3D może precyzyjnie scharakteryzować krytyczne cechy spoiny i otaczającej ją powierzchni. Na podstawie chropowatości, wymiarów i objętości, można określić i dalej badać ilościową metodę jakości i powtarzalności. Próbki spoin, takie jak przykład w tej aplikacji, mogą być łatwo analizowane za pomocą standardowego lub przenośnego Profiler'a NANOVEA, w celu przeprowadzenia badań w zakładzie lub w terenie.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI