USA/GLOBALNE: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT
Profilometr chropowatości papieru ściernego

Papier ścierny: Analiza chropowatości i średnicy cząstek

Papier ścierny: Analiza chropowatości i średnicy cząstek

Dowiedz się więcej

SANDPAPER

Analiza chropowatości i średnicy cząstek

Przygotowane przez

FRANK LIU

WPROWADZENIE

Papier ścierny jest powszechnie dostępnym w handlu produktem używanym jako materiał ścierny. Najczęstszym zastosowaniem papieru ściernego jest usuwanie powłok lub polerowanie powierzchni za pomocą jego właściwości ściernych. Te właściwości ścierne są podzielone na ziarna, każde związane z tym, jak gładka lub
szorstkie wykończenie powierzchni, które to da. Aby osiągnąć pożądane właściwości ścierne, producenci papieru ściernego muszą zapewnić, że cząstki ścierne mają określony rozmiar i niewielkie odchylenia. Aby określić ilościowo jakość papieru ściernego, NANOVEA 3D Non-Contact Profilometr można użyć do uzyskania średniego arytmetycznego parametru wysokości (Sa) i średniej średnicy cząstek obszaru próbki.

ZNACZENIE BEZKONTAKTOWEGO OPTYCZNEGO PROFILERA 3D PROFILARKA DO PAPIERU ŚCIERNEGO

Przy stosowaniu papieru ściernego, aby uzyskać jednolite wykończenie powierzchni, interakcja pomiędzy cząstkami ściernymi a szlifowaną powierzchnią musi być jednolita. Aby to określić, powierzchnia papieru ściernego może być obserwowana za pomocą bezkontaktowego profilera optycznego 3D NANOVEA, aby zobaczyć odchylenia w rozmiarach cząstek, ich wysokości i odstępach.

CEL POMIARU

W tym badaniu zastosowano pięć różnych ziarnistości papieru ściernego (120,
180, 320, 800 i 2000) są skanowane za pomocą
NANOVEA ST400 3D Non-Contact Optical Profiler.
Sa jest wyodrębniany ze skanu, a cząstka
wielkość obliczana jest poprzez przeprowadzenie analizy motywów w celu
znaleźć ich równoważną średnicę

NANOVEA

ST400

WYNIKI I DYSKUSJA

Zgodnie z oczekiwaniami wraz ze wzrostem ziarna papieru ściernego zmniejsza się chropowatość powierzchni (Sa) i wielkość cząstek. Sa wynosiła od 42,37 μm do 3,639 μm. Wielkość cząstek wynosiła od 127 ± 48,7 do 21,27 ± 8,35. Większe cząstki i duże zmiany wysokości tworzą silniejsze działanie ścierne na powierzchniach w przeciwieństwie do mniejszych cząstek o małej zmianie wysokości.
Należy pamiętać, że wszystkie definicje podanych parametrów wysokościowych znajdują się na stronie.A.1.

TABELA 1: Porównanie ziarnistości papieru ściernego i parametrów wysokościowych.

TABELA 2: Porównanie ziarnistości papieru ściernego i średnicy cząstek.

WIDOK 2D I 3D PAPIERU ŚCIERNEGO 

Poniżej przedstawiono widok false-color i 3D dla próbek papieru ściernego.
Do usunięcia kształtu lub falistości zastosowano filtr gaussowski 0,8 mm.

ANALIZA MOTYWÓW

Aby dokładnie znaleźć cząstki na powierzchni, próg skali wysokości został przedefiniowany tak, aby pokazywał tylko górną warstwę papieru ściernego. Następnie przeprowadzono analizę motywów w celu wykrycia szczytów.

PODSUMOWANIE

Bezkontaktowy profiler optyczny 3D firmy NANOVEA został wykorzystany do kontroli właściwości powierzchniowych różnych ziaren papieru ściernego dzięki możliwości precyzyjnego skanowania powierzchni z mikro i nano elementami.

Parametry wysokości powierzchni oraz równoważne średnice cząstek uzyskano z każdej z próbek papieru ściernego przy użyciu zaawansowanego oprogramowania do analizy skanów 3D. Zaobserwowano, że wraz ze wzrostem wielkości ziarna, zgodnie z oczekiwaniami, zmniejszała się chropowatość powierzchni (Sa) oraz wielkość cząstek.

Styropianowy pomiar granicy powierzchni Profilometria

Pomiar granicy powierzchni

Pomiar granicy powierzchni z wykorzystaniem profilometrii 3D

Dowiedz się więcej

POMIAR GRANICY POWIERZCHNI

STOSOWANIE PROFILOMETRII 3D

Przygotowane przez

Craig Leising

WPROWADZENIE

W badaniach, w których interfejs cech powierzchni, wzory, kształty itp. są oceniane pod kątem orientacji, użyteczna będzie szybka identyfikacja obszarów zainteresowania na całym profilu pomiarowym. Poprzez segmentację powierzchni na istotne obszary użytkownik może szybko ocenić granice, szczyty, wżery, obszary, objętości i wiele innych, aby zrozumieć ich funkcjonalną rolę w całym badanym profilu powierzchni. Na przykład, podobnie jak w przypadku obrazowania granic ziaren metali, znaczenie analizy ma interfejs wielu struktur i ich ogólna orientacja. Poprzez zrozumienie każdego obszaru zainteresowania można zidentyfikować wady i nieprawidłowości w obrębie całego obszaru. Chociaż obrazowanie granic ziaren jest zazwyczaj badane w zakresie przekraczającym możliwości profilometru i jest to tylko analiza obrazu 2D, jest to pomocne odniesienie do zilustrowania koncepcji tego, co zostanie przedstawione tutaj w większej skali wraz z zaletami pomiaru powierzchni 3D.

ZNACZENIE PROFILOMETRU BEZKONTAKTOWEGO 3D W BADANIACH SEPARACJI POWIERZCHNI

W odróżnieniu od innych technik, takich jak sondy dotykowe czy interferometria, Bezkontaktowy profilometr 3D, wykorzystując chromatyzm osiowy, może mierzyć prawie każdą powierzchnię, rozmiary próbek mogą się znacznie różnić ze względu na otwartą inscenizację i nie ma potrzeby przygotowywania próbki. Zakres od nano do makro jest uzyskiwany podczas pomiaru profilu powierzchni przy zerowym wpływie odbicia lub absorpcji próbki, ma zaawansowaną zdolność pomiaru dużych kątów powierzchni i nie wymaga manipulacji wynikami za pomocą oprogramowania. Z łatwością zmierz dowolny materiał: przezroczysty, nieprzezroczysty, lustrzany, dyfuzyjny, polerowany, szorstki itp. Technika bezkontaktowego profilometru zapewnia idealne, szerokie i przyjazne dla użytkownika możliwości maksymalizacji badań powierzchni, gdy konieczna będzie analiza granic powierzchni; wraz z korzyściami płynącymi z połączonych możliwości 2D i 3D.

CEL POMIARU

W tej aplikacji profilometr Nanovea ST400 został użyty do pomiaru powierzchni styropianu. Granice zostały ustalone poprzez połączenie pliku intensywności odbicia wraz z topografią, które zostały jednocześnie pozyskane za pomocą NANOVEA ST400. Dane te zostały następnie wykorzystane do obliczenia różnych informacji o kształcie i wielkości każdego styropianowego "ziarna".

NANOVEA

ST400

WYNIKI I DYSKUSJA: Pomiar granicy powierzchni 2D

Obraz topografii (poniżej lewej) zamaskowany przez obraz intensywności odbicia (poniżej prawej) w celu wyraźnego określenia granic ziaren. Wszystkie ziarna o średnicy poniżej 565 µm zostały pominięte przez zastosowanie filtra.

Łączna liczba ziaren: 167
Całkowita projektowana powierzchnia zajmowana przez ziarna: 166,917 mm² (64,5962 %)
Całkowita projektowana powierzchnia zajęta przez granice: (35.4038 %)
Gęstość ziaren: 0,646285 ziaren / mm2

Powierzchnia = 0,999500 mm² +/- 0,491846 mm²
Obwód = 9114,15 µm +/- 4570,38 µm
Średnica równoważna = 1098,61 µm +/- 256,235 µm
Średnia średnica = 945,373 µm +/- 248,344 µm
Min. średnica = 675,898 µm +/- 246,850 µm
Maksymalna średnica = 1312,43 µm +/- 295,258 µm

WYNIKI I DYSKUSJA: Pomiar granicy powierzchni 3D

Wykorzystując uzyskane dane topografii 3D, na każdym ziarnie można analizować objętość, wysokość, szczyt, współczynnik kształtu i ogólne informacje o kształcie. Całkowita zajęta powierzchnia 3D: 2.525mm3

PODSUMOWANIE

W tej aplikacji pokazaliśmy, jak profilometr bezkontaktowy NANOVEA 3D może precyzyjnie scharakteryzować powierzchnię styropianu. Informacje statystyczne można uzyskać na całej interesującej nas powierzchni lub na pojedynczych ziarnach, niezależnie od tego, czy są to szczyty czy doły. W tym przykładzie wszystkie ziarna większe od zdefiniowanego przez użytkownika rozmiaru zostały wykorzystane do przedstawienia powierzchni, obwodu, średnicy i wysokości. Przedstawione cechy mogą mieć kluczowe znaczenie dla badań i kontroli jakości naturalnych i wstępnie przygotowanych powierzchni, począwszy od zastosowań biomedycznych do mikroobróbki, jak również wielu innych.