미국/글로벌: +1-949-461-9292
EUROPE: +39-011-3052-794
문의하기

카테고리: 실험실 테스트

 

나노 인덴테이션을 사용한 동적 기계 해석

코르크의 품질은 코르크의 기계적 및 물리적 특성에 따라 크게 달라집니다. 와인을 밀봉하는 코르크의 능력은 유연성, 단열성, 복원력, 기체 및 액체 불투과성 등의 중요한 요소로 확인할 수 있습니다. 동적 기계 분석(DMA) 테스트를 수행하면 유연성과 복원력을 정량화할 수 있는 방법으로 측정할 수 있습니다. 이러한 특성은 나노브이 메카니컬 테스터의 나노인덴타온 영탄성률, 저장탄성률, 손실탄성률, 탄델타(탄(δ))의 형태로 제공됩니다. DMA 테스트에서 수집할 수 있는 다른 데이터로는 재료의 위상 변화, 경도, 응력, 변형률 등이 있습니다.

나노 인덴테이션을 사용한 동적 기계 해석

실리콘 카바이드 웨이퍼 코팅의 기계적 특성

실리콘 카바이드 웨이퍼 코팅의 기계적 특성을 이해하는 것은 매우 중요합니다. 마이크로 전자 장치의 제조 공정에는 300개 이상의 다양한 공정 단계가 포함될 수 있으며 6주에서 8주까지 소요될 수 있습니다. 이 과정에서 웨이퍼 기판은 어느 한 단계라도 실패하면 시간과 비용 손실로 이어지기 때문에 극한의 제조 조건을 견딜 수 있어야 합니다. 테스트 대상 경도웨이퍼의 접착력/스크래치 저항성 및 COF/마모율은 제조 및 적용 과정에서 부과되는 조건을 견뎌내고 고장이 발생하지 않도록 특정 요구 사항을 충족해야 합니다.

실리콘 카바이드 웨이퍼 코팅의 기계적 특성

폴리머 코팅의 마이크로 스크래핑 테스트

스크래치 테스트 은 코팅의 응집력 및 접착 강도를 평가하는 가장 널리 사용되는 방법 중 하나로 발전했습니다. 임계 하중은 가해지는 하중이 점차 증가함에 따라 특정 유형의 코팅 실패가 발생하는 것으로, 코팅의 접착 및 응집 특성을 결정하고 비교할 수 있는 신뢰할 수 있는 도구로 널리 알려져 있습니다. 스크래치 테스트에 가장 일반적으로 사용되는 압자는 원뿔형 로크웰 다이아몬드 압자입니다. 그러나 실리콘 웨이퍼와 같이 부서지기 쉬운 기판에 증착된 연질 폴리머 코팅에 스크래치 테스트를 수행할 경우 원뿔형 인덴터는 균열이나 박리를 일으키기보다는 코팅을 뚫고 들어가 홈을 형성하는 경향이 있습니다. 깨지기 쉬운 실리콘 웨이퍼의 균열은 하중이 더 증가하면 발생합니다. 따라서 취성 기판에서 소프트 코팅의 응집력 또는 접착 특성을 평가하는 새로운 기술을 개발하는 것이 중요합니다.

폴리머 코팅의 마이크로 스크래핑 테스트

나노 스크래칭을 이용한 ASTM D7187 온도 효과

ASTM D7187에 따르면 페인트의 긁힘과 마모에 대한 저항성은 최종 사용에서 매우 중요한 역할을 합니다. 긁힘에 취약한 자동차 페인트는 유지 관리와 수리가 어렵고 비용이 많이 듭니다. 프라이머, 베이스코트, 클리어코트의 다양한 코팅 아키텍처는 최상의 스크래치/마모 저항성을 달성하기 위해 개발되었습니다. 나노 스크래치 테스트 는 ASTM D7187에 기술된 페인트 코팅의 스크래치/마모 거동의 기계적인 측면을 측정하기 위한 표준 시험 방법으로 개발되었습니다.. 스크래치 테스트 중 다양한 하중에서 탄성 변형, 소성 변형 및 파단과 같은 다양한 기본 변형 메커니즘이 발생합니다. 이 테스트를 통해 페인트 코팅의 내소성 및 내파괴성을 정량적으로 평가할 수 있습니다.

나노 스크래칭을 이용한 ASTM D7187 온도 효과

트라이보미터를 통한 섬유 마모 마모도 측정

직물의 내마모성을 측정하는 것은 매우 까다로운 작업입니다. 섬유의 기계적 특성, 원사의 구조, 직물의 직조 등 많은 요인이 테스트 중에 영향을 미칩니다. 이로 인해 테스트 결과의 재현성이 떨어지고 다른 실험실에서 보고된 값을 비교하기가 어려울 수 있습니다. 직물의 착용 성능은 섬유 생산 체인에 속한 제조업체, 유통업체, 소매업체에게 매우 중요합니다. 잘 제어되고 정량화 및 재현 가능한 트라이보미터 내마모성 측정은 원단 생산의 안정적인 품질 관리를 보장하는 데 매우 중요합니다.

트라이보미터를 통한 섬유 마모 마모도 측정

셀프 클리닝 유리 코팅 마찰 측정

셀프 클리닝 유리 코팅은 물과 기름을 모두 튕겨내는 낮은 표면 에너지를 가지고 있습니다. 이러한 코팅은 청소하기 쉽고 달라붙지 않는 유리 표면을 만들어 때, 먼지 및 얼룩으로부터 유리를 보호합니다. 이지 클린 코팅은 유리 세척 시 물과 에너지 사용량을 크게 줄여줍니다. 독성이 강한 화학 세제를 사용하지 않아도 되므로 거울, 샤워 유리, 창문, 앞 유리 등 다양한 주거용 및 상업용 유리에 친환경적으로 사용할 수 있습니다.

셀프 클리닝 유리 코팅 마찰 측정

주기적 나노 인덴테이션 응력-변형 측정

주기적 나노 인덴테이션 응력-변형 측정

자세히 알아보기

 

나노인덴테이션의 중요성

다음에 의해 얻은 연속 강성 측정(CSM) 나노 인덴테이션 최소 침습적 방법으로 재료의 응력-변형 관계를 보여줍니다. 기존의 인장 시험 방법과 달리 나노인덴테이션은 대형 장비 없이도 나노 스케일의 응력-변형 데이터를 제공합니다. 응력-변형 곡선은 샘플이 증가하는 하중에 따라 탄성과 소성 거동 사이의 임계값에 대한 중요한 정보를 제공합니다. CSM은 위험한 장비 없이 재료의 항복 응력을 결정할 수 있는 기능을 제공합니다.

 

나노인덴테이션은 응력-변형 데이터를 신속하게 조사할 수 있는 신뢰할 수 있고 사용자 친화적인 방법을 제공합니다. 또한 나노 스케일에서 응력-변형 거동을 측정하면 재료의 작은 코팅과 입자에 대한 중요한 특성을 연구할 수 있어 재료가 더욱 발전함에 따라 중요한 특성을 연구할 수 있습니다. 나노인덴테이션은 경도, 탄성 계수, 크리프, 파괴 인성 등 외에도 탄성 한계 및 항복 강도에 대한 정보를 제공하므로 다목적 계측 장비로 사용할 수 있습니다.

이 연구에서 나노 압입이 제공하는 응력-변형 데이터는 표면으로 1.2마이크론만 이동하면서 재료의 탄성 한계를 식별합니다. CSM을 사용하여 압자가 표면 깊숙이 이동함에 따라 재료의 기계적 특성이 어떻게 발전하는지 확인합니다. 이는 특성이 깊이에 따라 달라질 수 있는 박막 응용 분야에서 특히 유용합니다. 나노인덴테이션은 테스트 샘플에서 재료 특성을 확인하는 최소 침습적 방법입니다.

CSM 테스트는 재료 특성 대 깊이를 측정하는 데 유용합니다. 일정한 하중에서 주기적 테스트를 수행하여 보다 복잡한 재료 특성을 결정할 수 있습니다. 이는 피로를 연구하거나 다공성의 영향을 제거하여 실제 탄성 계수를 얻는 데 유용할 수 있습니다.

측정 목표

이 응용 분야에서 나노베아 기계식 테스터는 CSM을 사용하여 표준 강철 샘플의 경도 및 탄성 계수 대 깊이 및 응력-변형률 데이터를 연구합니다. 나노 스케일 응력-변형률 데이터의 제어 및 정확성을 표시하기 위해 일반적으로 알려진 특성으로 강철이 선택되었습니다. 강철의 탄성 한계를 넘어서는 높은 응력에 도달하기 위해 반경이 5마이크론인 구형 팁을 사용했습니다.

 

테스트 조건 및 절차

다음과 같은 들여쓰기 매개변수가 사용되었습니다:

결과:

 

진동 중 하중이 증가하면 다음과 같은 깊이 대 하중 곡선이 제공됩니다. 압자가 재료를 관통할 때 응력-변형률 데이터를 찾기 위해 하중을 가하는 동안 100회 이상의 진동을 수행했습니다.

 

각 사이클에서 얻은 정보로부터 응력과 변형을 측정했습니다. 각 사이클의 최대 하중과 깊이를 통해 각 사이클에서 재료에 가해지는 최대 응력을 계산할 수 있습니다. 변형은 부분 언로딩에서 각 사이클의 잔류 깊이에서 계산됩니다. 이를 통해 팁의 반경을 변형 계수로 나누어 잔류 임프린트의 반경을 계산할 수 있습니다. 재료의 응력 대 변형률을 플롯하면 해당 탄성 한계 응력이 있는 탄성 및 플라스틱 영역이 표시됩니다. 테스트 결과, 소재의 탄성 영역과 소성 영역 사이의 전이는 약 0.076 변형률, 탄성 한계는 1.45 GPa로 확인되었습니다.

각 사이클은 하나의 압입으로 작용하므로 하중을 증가시키면서 강철의 다양한 제어된 깊이에서 테스트를 실행합니다. 따라서 각 사이클에 대해 얻은 데이터에서 경도 및 탄성 계수 대 깊이를 직접 플롯할 수 있습니다.

압자가 재료로 이동함에 따라 경도가 증가하고 탄성 계수가 감소하는 것을 볼 수 있습니다.

결론

나노베아 기계식 테스터는 신뢰할 수 있는 응력-변형률 데이터를 제공합니다. CSM 압입이 있는 구형 팁을 사용하면 응력이 증가된 상태에서 재료 특성을 측정할 수 있습니다. 하중 및 압입 반경을 변경하여 다양한 재료를 제어된 깊이에서 테스트할 수 있습니다. 나노베아 기계식 테스터는 mN 미만 범위에서 400N까지 이러한 압입 테스트를 제공합니다.

 

나노 스크래치 테스트를 사용한 그루브 스텐트 코팅 실패

약물 용출 스텐트는 스텐트 기술의 새로운 접근 방식입니다. 생분해성 및 생체 적합성 폴리머 코팅으로 국소 동맥에서 약물을 천천히 지속적으로 방출하여 내막 비후를 억제하고 동맥이 다시 막히는 것을 방지합니다. 주요 우려 사항 중 하나는 금속 스텐트 기판에서 약물 용출 층을 운반하는 폴리머 코팅이 박리되는 것입니다. 이 코팅과 기판의 접착력을 향상시키기 위해 스텐트는 다양한 모양으로 설계됩니다. 특히 이 연구에서는 폴리머 코팅이 메쉬 와이어의 홈 하단에 위치하기 때문에 접착력 측정에 큰 어려움이 있습니다. 폴리머 코팅과 금속 기판 사이의 계면 강도를 정량적으로 측정하기 위해서는 신뢰할 수 있는 기술이 필요합니다. 스텐트 메시의 특수한 모양과 작은 직경(머리카락과 비슷)은 테스트 위치를 찾고 테스트 중 하중과 깊이를 적절히 제어 및 측정하기 위해 초미세 X-Y 측면 정확도가 필요합니다.

나노 스크래치 테스트를 사용한 그루브 스텐트 코팅 실패

폴리머 필름의 습도 제어 나노 인덴테이션

폴리머의 기계적 특성은 환경 습도가 높아짐에 따라 변경됩니다. 일시적인 수분 효과, 즉 메카노 흡착 효과는 폴리머가 높은 수분 함량을 흡수하고 가속화된 크리프 거동을 경험할 때 발생합니다. 높은 크리프 준수는 분자 이동성 증가, 흡착에 의한 물리적 노화 및 흡착에 의한 응력 구배와 같은 복합적인 효과의 결과입니다.

따라서 다양한 수분 수준에서 고분자 재료의 기계적 거동에 대한 흡착에 의한 영향에 대한 신뢰성 있고 정량적인 테스트(습도 나노 압입)가 필요합니다. 나노베아 메카니컬 테스터의 나노 모듈은 고정밀 피에조로 하중을 가하고 힘과 변위의 변화를 직접 측정합니다. 절연 인클로저를 통해 압입 팁과 시료 표면 주위에 균일한 습도를 조성하여 측정 정확도를 보장하고 습도 구배로 인한 드리프트의 영향을 최소화합니다.

폴리머 필름의 습도 제어 나노 인덴테이션

트라이보미터를 사용한 브러시 칫솔모 강성 성능

브러시는 세계에서 가장 기본적이고 널리 사용되는 도구 중 하나입니다. 브러시는 재료(칫솔, 고고학 브러시, 벤치 그라인더 브러시)를 제거하거나, 재료를 바르거나(페인트 브러시, 메이크업 브러시, 금박 브러시), 필라멘트를 빗거나 패턴을 추가하는 데 사용할 수 있습니다. 브러시는 기계적인 힘과 연마력으로 인해 적당히 사용한 후에는 지속적으로 교체해야 합니다. 예를 들어 칫솔모는 반복 사용으로 인해 닳아 없어지기 때문에 3~4개월마다 교체해야 합니다. 칫솔 섬유 필라멘트를 너무 뻣뻣하게 만들면 부드러운 플라그 대신 실제 치아가 마모될 위험이 있습니다. 칫솔 섬유를 너무 부드럽게 만들면 칫솔이 더 빨리 형태를 잃게 됩니다. 다양한 하중 조건에서 브러시의 구부러짐 변화와 필라멘트의 마모 및 전반적인 모양 변화를 이해해야 용도에 더 적합한 브러시를 설계할 수 있습니다.

트라이보미터를 사용한 브러시 칫솔모 강성 성능