미국/글로벌: +1-949-461-9292
EUROPE: +39-011-3052-794
문의하기

세계 최고의 마이크로 기계 테스터

이제 세계 최고의

미세 기계 테스트

작성자

피에르 르루 & 두안지 리, PhD

소개

표준 비커스 마이크로 경도 시험기의 사용 가능한 하중 범위는 10~2000gf(그램포스)입니다. 표준 비커스 매크로 경도 시험기는 1 ~ 50 Kgf의 하중을 견딜 수 있습니다. 이러한 장비는 하중 범위가 매우 제한적일 뿐만 아니라 거친 표면이나 압흔이 너무 작아 육안으로 측정할 수 없는 낮은 하중을 처리할 때 부정확합니다. 이러한 한계는 구형 기술에 내재되어 있으며, 그 결과 더 높은 정확도와 성능을 제공하는 계측식 압입이 표준 선택이 되고 있습니다.

나노베아의 세계 최고의 마이크로 기계 테스트 시스템인 비커스 경도는 단일 모듈에서 가장 넓은 하중 범위(0.3그램~2Kg 또는 6그램~40Kg)로 깊이 대 하중 데이터에서 자동으로 계산됩니다. 나노베아 마이크로 모듈은 깊이 대 하중 곡선으로부터 경도를 측정하기 때문에 매우 탄성이 있는 재료를 포함한 모든 유형의 재료를 측정할 수 있습니다. 또한 비커스 경도뿐만 아니라 스크래치 접착 테스트, 마모, 피로 테스트, 항복 강도 및 파괴 인성과 같은 다른 유형의 테스트 외에도 정확한 탄성 계수 및 크리프 데이터를 제공하여 전체 범위의 품질 관리 데이터를 제공할 수 있습니다.

이제 세계 최고의 마이크로 기계 테스트

이 애플리케이션 노트에서는 마이크로 모듈이 어떻게 세계 최고의 계측식 압흔 및 스크래치 테스트를 제공하도록 설계되었는지 설명합니다. 마이크로 모듈의 광범위한 테스트 기능은 많은 응용 분야에 이상적입니다. 예를 들어, 하중 범위를 통해 얇은 하드 코팅의 정확한 경도 및 탄성 계수를 측정할 수 있으며, 훨씬 더 높은 하중을 가하여 동일한 코팅의 접착력을 측정할 수 있습니다.

측정 목표

마이크로 모듈의 용량은 다음과 같이 표시됩니다. 나노베아 CB500 기계 테스터 ~에 의해
0.03~200N의 넓은 하중 범위를 사용하여 뛰어난 정밀도와 신뢰성으로 압입 및 스크래치 테스트를 모두 수행합니다.

나노베아

CB500

테스트 조건

비커스 압자를 사용하여 표준 강철 샘플에 일련의(3×4, 총 12개의 압자) 마이크로 압입을 수행했습니다. 전체 압입 테스트 주기에 대해 하중과 깊이를 측정하고 기록했습니다. 압입은 다양한 하중에서 정확한 압입 테스트를 수행할 수 있는 마이크로 모듈의 성능을 보여주기 위해 0.03N ~ 200N(0.0031 ~ 20.4kgf) 범위의 다양한 최대 하중으로 수행되었습니다. 0.3gf에서 2kgf까지의 낮은 하중 범위에서 테스트를 위해 10배 더 높은 해상도를 제공하는 20N의 로드셀 옵션도 사용할 수 있다는 점에 주목할 필요가 있습니다.

팁 반경이 500 μm 및 20 μm인 원뿔형 구형 다이아몬드 스타일러스를 사용하여 각각 0.01 N에서 200 N으로, 0.01 N에서 0.5 N으로 선형적으로 하중을 증가시킨 마이크로 모듈을 사용하여 두 번의 스크래치 테스트를 수행했습니다.

스물 마이크로 들여쓰기 강철 표준 시료에 대해 4N에서 테스트를 수행하여 기존 비커스 경도 시험기의 성능과 대조되는 마이크로 모듈의 우수한 반복성을 보여주었습니다.

*강철 샘플의 마이크로 인서트

테스트 매개변수

들여쓰기 매핑의

매핑: 3 바이 4 들여쓰기

결과 및 토론

새로운 마이크로 모듈은 Z-모터, 고출력 로드셀, 고정밀 정전용량식 수심 센서의 독특한 조합을 갖추고 있습니다. 독립적인 수심 및 하중 센서를 고유하게 활용하기 때문에 모든 조건에서 높은 정확도를 보장합니다.

기존의 비커스 경도 테스트는 다이아몬드 사각형 기반의 피라미드 압자 팁을 사용하여 사각형 모양의 압자를 생성합니다. 대각선의 평균 길이인 d를 측정하여 비커스 경도를 계산할 수 있습니다.

이에 비해 다음에서 사용하는 계측식 들여쓰기 기술은 나노베아의 마이크로 모듈은 압입 하중 및 변위 측정을 통해 기계적 특성을 직접 측정합니다. 압흔을 육안으로 관찰할 필요가 없습니다. 따라서 압흔의 d 값을 결정할 때 사용자 또는 컴퓨터 이미지 처리 오류가 발생하지 않습니다. 노이즈 레벨이 0.3nm로 매우 낮은 고정밀 커패시터 깊이 센서는 기존 비커스 경도 테스터로 현미경으로 육안으로 측정하기 어렵거나 불가능한 압흔의 깊이를 정확하게 측정할 수 있습니다.

또한 경쟁사에서 사용하는 캔틸레버 기술은 스프링에 의해 캔틸레버 빔에 일반 하중을 가하고, 이 하중은 다시 압자에 가해지는 방식입니다. 이러한 설계는 높은 하중이 가해질 경우 캔틸레버 빔이 충분한 구조적 강성을 제공하지 못해 캔틸레버 빔이 변형되고 압자의 정렬이 잘못될 수 있는 결함이 있습니다. 이에 비해 마이크로 모듈은 로드셀에 작용하는 Z 모터를 통해 일반 하중을 가한 다음 압자를 통해 직접 하중을 가합니다. 모든 요소는 최대 강성을 위해 수직으로 정렬되어 전체 하중 범위에서 반복 가능하고 정확한 압입 및 스크래치 측정을 보장합니다.

새로운 마이크로 모듈 클로즈업 보기

0.03~200n의 들여쓰기

압입 맵의 이미지는 그림 1에 표시되어 있습니다. 10N 이상의 인접한 두 압흔 사이의 거리는 0.5mm이고, 낮은 하중의 압흔은 0.25mm입니다. 샘플 스테이지의 고정밀 위치 제어를 통해 사용자는 기계적 특성 매핑을 위한 목표 위치를 선택할 수 있습니다. 구성 요소의 수직 정렬로 인한 마이크로 모듈의 뛰어난 강성 덕분에 비커스 압자는 최대 200N(400N 옵션)의 하중 하에서 강철 샘플을 관통할 때 완벽한 수직 방향을 유지합니다. 따라서 다양한 하중에서 시료 표면에 대칭적인 정사각형 모양의 인상이 생성됩니다.

그림 2와 같이 현미경으로 다양한 하중에서 개별 압흔을 두 개의 스크래치와 함께 표시하여 넓은 하중 범위에서 압흔 및 스크래치 테스트를 모두 고정밀로 수행할 수 있는 새로운 마이크로 모듈의 성능을 보여 줍니다. 일반 하중 대 스크래치 길이 플롯에서 볼 수 있듯이, 원뿔형 구형 다이아몬드 스타일러스가 강철 샘플 표면에서 미끄러지면서 일반 하중이 선형적으로 증가합니다. 폭과 깊이가 점진적으로 증가하는 부드러운 직선 스크래치 트랙을 생성합니다.

그림 1: 들여쓰기 맵

팁 반경이 500 μm 및 20 μm인 원뿔형 구형 다이아몬드 스타일러스를 사용하여 각각 0.01 N에서 200 N으로, 0.01 N에서 0.5 N으로 선형적으로 하중을 증가시킨 마이크로 모듈을 사용하여 두 번의 스크래치 테스트를 수행했습니다.

강철 표준 시료에 대해 4N에서 20회의 마이크로 인덴테이션 테스트를 수행하여 기존 비커스 경도 시험기의 성능과 대조되는 마이크로 모듈 결과의 우수한 반복성을 보여주었습니다.

A: 현미경으로 들여다본 움푹 들어간 부분 및 스크래치(360배)

B: 현미경으로 들여다본 움푹 들어간 부분 및 스크래치(3000배)

그림 2: 다양한 최대 하중에서의 하중 대 변위 플롯.

다양한 최대 하중에서 압입 중 하중-변위 곡선은 다음과 같습니다. 그림 3. 경도와 탄성 계수는 그림 4에 요약되어 비교되어 있습니다. 강철 샘플은 0.03~200N(가능한 범위 0.003~400N) 범위의 시험 하중에서 일정한 탄성 계수를 나타내며, 평균값은 ~211 GPa입니다. 경도는 100N 이상의 최대 하중에서 측정된 ~6.5 GPa의 비교적 일정한 값을 나타내며, 하중이 2~10N 범위로 감소함에 따라 평균 경도는 ~9 GPa로 측정됩니다.

그림 3: 다양한 최대 하중에서의 하중 대 변위 플롯.

그림 4: 다양한 최대 하중으로 측정한 강철 샘플의 경도 및 영탄성계수.

0.03~200n의 들여쓰기

최대 하중 4N에서 20회의 마이크로 인덴테이션 테스트를 수행했습니다. 하중-변위 곡선은 다음과 같이 표시됩니다. 그림 5 에 표시되며, 그 결과 비커스 경도 및 영 계수가 그림 6.

그림 5: 4N에서 미세 압입 테스트를 위한 하중-변위 곡선.

그림 6: 4N에서 20개의 미세 압흔에 대한 비커스 경도 및 영탄성계수.

하중-변위 곡선은 새로운 마이크로 모듈의 우수한 반복성을 보여줍니다. 강철 표준은 새로운 마이크로 모듈로 측정한 842±11 HV의 비커스 경도를 가지며, 기존의 비커스 경도 시험기로 측정한 817±18 HV와 비교됩니다. 경도 측정의 표준 편차가 작기 때문에 산업 분야와 학계 연구 모두에서 재료의 R&D 및 품질 관리에서 기계적 특성의 신뢰할 수 있고 재현 가능한 특성화를 보장합니다.

또한 압입 중 깊이 측정이 누락되어 기존 비커스 경도 시험기에서는 사용할 수 없는 하중-변위 곡선으로부터 208±5 GPa의 영스 계수를 계산할 수 있습니다. 하중이 감소하고 압입의 크기가 감소함에 따라 나노베아 마이크로 모듈은 육안 검사를 통한 압입 측정이 더 이상 불가능할 때까지 반복성 측면에서 비커스 경도 시험기와 비교하여 장점이 증가합니다.

경도를 계산하기 위해 깊이를 측정하는 것의 장점은 거칠거나 비커스 경도계에서 제공하는 표준 현미경으로 관찰하기 어려운 시료를 다룰 때도 분명해집니다.

결론

이 연구에서는 세계를 선도하는 새로운 나노베아 마이크로 모듈(200N 범위)이 0.03~200N(3gf~20.4kgf)의 넓은 하중 범위에서 어떻게 재현성이 뛰어나고 정밀한 압입 및 스크래치 측정을 수행하는지 보여주었습니다. 옵션으로 제공되는 더 낮은 범위의 마이크로 모듈은 0.003 ~ 20N(0.3gf ~ 2kgf)의 테스트를 제공할 수 있습니다. Z-모터, 고강도 로드셀 및 깊이 센서의 고유한 수직 정렬은 측정 중 구조적 강성을 최대로 보장합니다. 다양한 하중에서 측정된 압흔은 모두 시료 표면에서 대칭적인 정사각형 모양을 갖습니다. 최대 하중 200N의 스크래치 테스트에서는 폭과 깊이가 점진적으로 증가하는 직선 스크래치 트랙이 생성됩니다.

새로운 마이크로 모듈은 PB1000(150 x 200mm) 또는 CB500(100 x 50mm) 기계식 베이스에 z 모터(50mm 범위)로 구성할 수 있습니다. 이 시스템은 강력한 카메라 시스템(위치 정확도 0.2미크론)과 결합하여 업계 최고의 자동화 및 매핑 기능을 제공합니다. 또한 나노베아는 전체 하중 범위에서 한 번의 인덴트를 수행하여 비커스 인덴터를 검증하고 보정할 수 있는 고유한 특허 기능(EP 번호 30761530)을 제공합니다. 반면 표준 비커스 경도 시험기는 한 가지 하중에서만 교정을 제공할 수 있습니다.

또한, 나노베아 소프트웨어를 사용하면 필요한 경우 압입 대각선을 측정하는 전통적인 방법을 통해 비커스 경도를 측정할 수 있습니다(ASTM E92 및 E384용). 이 문서에서 볼 수 있듯이, 나노베아 마이크로 모듈로 수행한 깊이 대 하중 경도 테스트(ASTM E2546 및 ISO 14577)는 기존 경도 시험기에 비해 정확하고 재현성이 뛰어납니다. 특히 현미경으로 관찰/측정할 수 없는 시료의 경우 더욱 그렇습니다.

결론적으로, 광범위한 하중과 테스트, 높은 자동화 및 매핑 옵션을 갖춘 마이크로 모듈 설계의 높은 정확도와 반복성으로 인해 기존의 비커스 경도 시험기는 더 이상 쓸모가 없게 되었습니다. 그러나 현재 여전히 제공되고 있지만 1980년대에 결함이 있는 스크래치 및 마이크로 스크래치 테스터도 마찬가지입니다.

이 기술의 지속적인 개발과 개선으로 나노베아는 마이크로 기계 테스트 분야의 세계적인 리더가 되었습니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.