アメリカ/グローバル: +1-949-461-9292
ヨーロッパ+39-011-3052-794
お問い合わせ

カテゴリープロフィロメトリー|体積・面積

 

トライボメータを用いたフローリングの経時的摩耗マッピング

フローリングの経年劣化マッピング

プロフィロメータを内蔵したトライボメータの使用

作成者

フランク・リウ(FRANK LIU

はじめに

床材は耐久性があるように設計されていますが、移動や家具の使用などの日常活動によって磨耗することがよくあります。耐久性を確保するために、ほとんどの種類のフローリングには損傷を防ぐ保護摩耗層が付いています。ただし、摩耗層の厚さと耐久性は、床材の種類や歩行量によって異なります。さらに、UV コーティング、装飾層、釉薬など、フローリング構造内のさまざまな層の摩耗率は異なります。そこで、プログレッシブ ウェア マッピングが登場します。統合された NANOVEA T2000 トライボメーターを使用する 3D非接触形状測定装置床材の性能と寿命を正確に監視、分析することができます。さまざまな床材の摩耗挙動に関する詳細な洞察を提供することで、科学者や技術専門家は、新しい床材システムを選択および設計する際に、より多くの情報に基づいた意思決定を行うことができます。

フロアパネルにおけるプログレッシブ・ウェア・マッピングの重要性

床材の試験では、従来、摩耗に対する耐久性を判断するために、サンプルの摩耗率を中心にしてきました。しかし、プログレッシブ摩耗マッピングでは、試験中のサンプルの摩耗率を分析し、その摩耗挙動に関する貴重な知見を得ることができます。この詳細な分析により、摩擦データと摩耗率の相関関係が明らかになり、摩耗の根本原因を特定することができます。摩耗試験において、摩耗量は一定ではないことに留意する必要があります。そのため、摩耗の進行を観察することで、試料の摩耗をより正確に評価することができます。従来の試験方法を超えて、プログレッシブ摩耗マッピングの採用は、床材試験の分野で大きな進歩に寄与しています。

統合された 3D 非接触表面形状計を備えた NANOVEA T2000 トライボメーターは、摩耗試験と体積損失測定のための画期的なソリューションです。ピンと表面形状計の間を正確に移動できる機能により、摩耗トラックの半径や位置の偏差が排除され、結果の信頼性が保証されます。しかし、それだけではありません。3D 非接触表面形状計の高度な機能により、高速表面測定が可能になり、スキャン時間がわずか数秒に短縮されます。 NANOVEA T2000 は、最大 2,000 N の荷重を加え、最大 5,000 rpm の回転速度を達成する能力を備えています。 トライボメータ 評価プロセスに多用途性と正確性を提供します。この装置がプログレッシブウェアマッピングにおいて重要な役割を果たしているのは明らかです。

 

図1: 摩耗試験前のサンプルのセットアップ (左)と摩耗試験後の摩耗痕のプロフィル測定(右)。

測定目的

石材と木材の2種類の床材を対象に、漸進的摩耗マッピング試験を実施しました。各サンプルは、2、4、8、20、40、60、120秒と試験時間を延ばしながら、合計7回の試験サイクルを行い、経時的な摩耗を比較することができるようにしました。各試験サイクル終了後、NANOVEA 3D非接触型プロフィロメーターを用いて摩耗痕をプロファイリングしました。プロファイラで収集したデータから、NANOVEA Tribometerソフトウェアまたは当社の表面分析ソフトウェアMountainsの統合機能を使用して、穴の体積と摩耗率を分析することができます。

ナノビア

T2000

摩耗マッピングテスト サンプル 木と石

 THE SAMPLES 

ウェアマッピング試験パラメータ

LOAD40 N
テスト期間さまざま
スピード200rpm
ラジアス10mm
距離(DISTANCEさまざま
ボール材質タングステンカーバイド
ボール径10mm

7サイクルで使用したテスト時間は以下の通りです。 2秒、4秒、8秒、20秒、40秒、60秒、120秒をそれぞれ設定した。 移動した距離は 0.40, 0.81, 1.66, 4.16, 8.36, 12.55, 25.11 メートル。

ウェアマッピングの結果

ウッドフローリング

テストサイクル最大COFMin COFAvg.COF
10.3350.1240.275
20.3370.2070.295
30.3800.2290.329
40.3930.2650.354
50.3520.2050.314
60.3450.1990.312
70.3150.2110.293

 

ラジアル方向

テストサイクル総量損失(μm3トータルディスタンス
走行距離 (m)
摩耗率
(mm/Nm) x10-5
瞬時磨耗量
(mm/Nm) x10-5
12962476870.401833.7461833.746
23552452271.221093.260181.5637
35963713262.88898.242363.1791
48837477677.04530.629172.5496
5120717995115.40360.88996.69074
6147274531827.95293.32952.89311
7185131921053.06184.34337.69599
ウッドプログレッシブ摩耗率 vs トータルディスタンス

図2: 摩耗量と総走行距離の比較(左図)
と、フローリングの試験サイクルに対する瞬時摩耗率(右)。

フローリングフロアのプログレッシブウェアマッピング

図3: #7試験によるフローリングでのCOFグラフと摩耗痕の3D表示。

ウェアマッピング抽出されたプロファイル

図4: #7試験による木材摩耗痕の断面解析

プログレッシブ・ウェア・マッピングのボリュームとエリア分析

図5: 木材サンプル試験#7における摩耗痕の体積・面積解析。

ウェアマッピングの結果

ストーンフローリング

テストサイクル最大COFMin COFAvg.COF
10.2490.0350.186
20.3490.1970.275
30.2940.1540.221
40.5030.1240.273
50.5480.1060.390
60.5100.1290.434
70.5270.1810.472

 

ラジアル方向

テストサイクル総量損失(μm3トータルディスタンス
走行距離 (m)
摩耗率
(mm/Nm) x10-5
瞬時磨耗量
(mm/Nm) x10-5
1962788460.40595.957595.9573
28042897311.222475.1852178.889
313161478552.881982.355770.9501
431365302157.041883.2691093.013
51082173218015.403235.1802297.508
62017496034327.954018.2821862.899
74251206342053.064233.0812224.187
石床摩耗率と距離の比較
ストーンフローリング 瞬間摩耗率チャート

図6: 装着率 vs 総走行距離(左)
と試験サイクルに対する瞬時摩耗率(右)(石材用フローリング

石の床 3dプロファイルの摩耗トラック

図7: #7試験による石床でのCOFグラフと摩耗痕の3Dビュー。

石床プログレッシブウェアマッピング抽出されたプロファイル
ストーンフローリング抽出プロファイルの最大奥行きと高さ穴とピークの領域

図8: 試験#7の石材摩耗痕の断面解析。

ウッドフロアのプログレッシブウェアマッピングのボリューム分析

図9: 石材サンプルテスト#7における摩耗痕の体積・面積解析。

ディスカション

瞬時磨耗率は、以下の式で算出されます:
フローリングのプログレッシブウェアマッピング

Vは穴の体積、Nは荷重、Xは総距離で、この式は試験サイクル間の摩耗率を記述しています。瞬間的な摩耗率を用いることで、試験期間中の摩耗率の変化をより明確にすることができます。

どちらのサンプルも、摩耗の挙動が大きく異なっています。木質フローリングは、最初は高い摩耗率で始まりますが、すぐに小さくなり、安定した値になっていきます。ストーンフローリングでは、摩耗率は低い値から始まり、サイクルの経過とともに高い値へと推移しているように見えます。また、瞬間的な摩耗率も、ほとんど一貫性がありません。この差の具体的な理由は定かではありませんが、サンプルの構造に起因している可能性があります。石材のフローリングは、木目のような緩い粒子で構成されており、木材のコンパクトな構造とは異なる摩耗をすると思われます。このような摩耗現象の原因を明らかにするためには、さらなる試験と研究が必要である。

摩擦係数(COF)のデータは、観察された摩耗挙動と一致しているようです。木質フローリングのCOFグラフは、サイクルを通して一貫しており、安定した摩耗率を補完しているように見えます。石材用フローリングでは、平均COFがサイクルを通して増加し、摩耗速度がサイクルによって増加するのと同様です。また、摩擦グラフの形状に明らかな変化が見られ、ボールと石材サンプルの相互作用の変化を示唆しています。これは、サイクル2とサイクル4で最も顕著に現れています。

まとめ

NANOVEA T2000トライボメーターは、2つの異なる床材サンプル間の摩耗率を分析することで、プログレッシブ摩耗マッピングを行う能力を披露しています。連続摩耗試験を一時停止し、NANOVEA 3D非接触型プロフィロメーターで表面をスキャンすると、材料の経時的な摩耗挙動に関する貴重な知見が得られます。

3D非接触プロフィロメーターを内蔵したNANOVEA T2000トライボメーターは、COF(摩擦係数)データ、表面測定、深さ測定、表面の可視化、体積損失、摩耗率など、様々なデータを提供します。この包括的な情報セットにより、ユーザーはシステムとサンプルの相互作用についてより深く理解することができます。制御された負荷、高精度、使いやすさ、高負荷、広い速度範囲、追加の環境モジュールなど、NANOVEA T2000トライボメータはトライボロジーを次のレベルへ導きます。

さて、次はアプリケーションについてです。

3Dプロフィロメトリーによるラフネスマッピング検査

アバウトマッピングインスペクション

3Dプロフィロメトリーによる

作成者

DUANJIE, PhD

はじめに

表面粗さとテクスチャーは、製品の最終的な品質と性能に影響を与える重要な要素です。表面の粗さ、質感、一貫性を十分に理解することは、最適な加工や管理手段を選択するために不可欠です。不良品を迅速に特定し、生産ラインの条件を最適化するために、製品表面の迅速かつ定量的で信頼性の高いインライン検査が必要とされています。

インライン表面検査における3D非接触プロフィロメータの重要性

製品の表面欠陥は、材料の加工や製品の製造に起因します。インライン表面品質検査により、最終製品の最も厳密な品質管理が保証されます。ナノベア 3D非接触光学式プロファイラー 非接触でサンプルの粗さを測定する独自の機能を備えたクロマティック ライト テクノロジーを利用します。ラインセンサーにより、大面積の3次元形状を高速にスキャンできます。解析ソフトウェアによってリアルタイムで計算される粗さのしきい値は、高速かつ信頼性の高い合否判定ツールとして機能します。

測定目的

本研究では、高速センサーを搭載したNANOVEA ST400を用いて、欠陥のあるテフロン試料の表面を検査し、NANOVEAの機能を紹介する。

生産ラインでの表面検査を迅速かつ確実に行うための非接触型プロファイラーです。

ナノビア

ST400

結果・考察

の3次元表面解析 ラフネス標準試料

図1に示すように、192点の輝線を生成する高速センサーを搭載したNANOVEA ST400を用いて、ラフネススタンダードの表面をスキャンしています。この192点の輝線が試料表面を同時にスキャンするため、スキャン速度が大幅に向上しました。

図2は、粗さ標準サンプルの表面高さマップおよび粗さ分布マップの偽色図を示す。図2aにおいて、粗さ標準試料は、標準粗さブロックの各々において変化した色の勾配によって表されるように、わずかに傾斜した表面を示している。図2bでは、均質な粗さ分布がディファレンシャル粗さブロックに示されており、その色はブロック内の粗さを表している。

図3は、粗さの閾値を変えて解析ソフトウェアが生成した合否判定マップの例である。表面粗さがある設定された閾値以上の場合、粗さブロックが赤くハイライトされる。これは、ユーザーがサンプルの表面仕上げの品質を判断するための粗さ閾値を設定するためのツールを提供するものである。

図1: ラフネススタンダードサンプルの光ラインセンサースキャニング

a. サーフェスハイトマップ:

b. ラフネスマップ:

図2: 粗さ基準サンプルの表面高さマップと粗さ分布マップのフォールスカラー図です。

図3: ラフネス閾値に基づく合否判定マップ。

欠陥のあるテフロン試料の表面検査

図4にTelonサンプル表面の表面高さマップ、粗さ分布マップ、合否判定粗さ閾値マップを示します。Telonサンプルは、表面高さマップに示すように、サンプルの右側中央に隆起が形成されている。

a. サーフェスハイトマップ:

図4bのパレットの異なる色は、局所的な表面の粗さ値を表しています。ラフネスマップは、テフロンサンプルの無傷の領域で均一な粗さを示している。しかし、凹んだリングや摩耗痕のような欠陥は明るい色で強調されています。ユーザーは、図4cに示すように、表面欠陥の位置を特定するための合否判定用粗さ閾値を簡単に設定することができます。このようなツールにより、ユーザーは生産ラインにおける製品の表面品質をその場で監視し、不良品を時間内に発見することができます。製品がインライン光学センサーを通過する際に、リアルタイムの粗さ値が計算され記録されるため、品質管理のための高速かつ信頼性の高いツールとして機能することができます。

b. ラフネスマップ:

c. 合否判定用ラフネス閾値マップ:

図4: サーフェスハイトマップ、ラフネスディストリビューションマップ、そして Telonサンプル表面の合否判定用粗さ閾値マップ。

まとめ

このアプリケーションでは、光ラインセンサーを搭載したNANOVEA ST400 3D非接触光プロファイラーが、信頼性の高い品質管理ツールとして、効果的かつ効率的に機能することを示しました。

光学式ラインセンサーは、192点の輝線を発生させてサンプル表面を同時にスキャンするため、スキャン速度の大幅な向上につながる。生産ラインに設置することで、製品の表面粗さをその場でモニターすることができます。粗さのしきい値は、製品の表面品質を判断する信頼できる基準として機能するため、ユーザーは不良品にいち早く気付くことができます。

ここに示したデータは、解析ソフトウェアで利用可能な計算の一部に過ぎません。ナノベアプロフィロメーターは、半導体、マイクロエレクトロニクス、太陽電池、光ファイバー、自動車、航空宇宙、冶金、機械加工、コーティング、医薬品、バイオメディカル、環境などの分野で、ほぼすべての表面を測定します。

さて、次はアプリケーションについてです。

ポータブル3Dプロフィロメータによる溶接面検査

溶接表面検査

ポータブル3Dプロフィロメーターによる

作成者

CRAIG LEISING

はじめに

通常目視検査で行われる特定の溶接を、極めて高い精度で調査することが重要になる場合があります。精密分析の対象となる特定の領域には、その後の検査手順に関係なく、表面の亀裂、気孔、未充填のクレーターが含まれます。寸法・形状、体積、粗さ、サイズなどの溶接の特性はすべて、重要な評価のために測定することが可能です。

溶接面検査における3D非接触プロフィロメータの重要性

タッチプローブや干渉計などの他の技術とは異なり、NANOVEA 3D非接触形状計軸色収差を使用するため、ほぼすべての表面を測定でき、オープンステージングによりサンプルサイズは大きく変化する可能性があり、サンプルの前処理は必要ありません。ナノからマクロの範囲は、サンプルの反射率や吸収の影響を受けずに表面プロファイル測定中に得られ、高い表面角度を測定する高度な機能を備えており、結果をソフトウェアで操作する必要はありません。透明、不透明、鏡面、拡散、研磨、粗いなど、あらゆる材質を簡単に測定できます。NANOVEA ポータブル表面形状計の 2D および 2D 機能により、実験室と現場の両方で完全な溶接表面検査を行うための理想的な機器となります。

測定目的

このアプリケーションでは、ナノビアJR25 ポータブルプロファイラを使用して溶接部の表面粗さ、形状、体積、およびその周辺を測定しています。この情報は、溶接と溶接プロセスの品質を適切に調査するための重要な情報を提供することができます。

ナノビア

JR25

測定結果

下の画像は、溶接部とその周辺の完全な3Dビューと、溶接部のみの表面パラメータを表示したものです。2D断面プロファイルは以下の通りです。

試供品

上記の2次元断面形状を3次元から削除し溶接部の寸法情報を以下に計算します。溶接部のみの表面積と材料の体積を計算します。

 ホールピーク
表面1.01mm214.0 mm2
容積8.799e-5 mm323.27 mm3
最大深さ/高さ0.0276 mm0.6195 mm
平均深度・平均高さ 0.004024 mm 0.2298 mm

まとめ

このアプリケーションでは、ナノビア3D非接触プロファイラが溶接部とその周辺表面領域の重要な特性を正確に評価できることを示しました。粗さ、寸法、体積から、品質と再現性の定量的な方法を決定し、またはさらに調査することができます。このアプリケーションノートの例のようなサンプル溶接は、社内またはフィールドテスト用の標準的なナノビア卓上又はポータブルプロファイラで簡単に分析することができます。

さて、次はアプリケーションについてです。

3Dプロフィロメトリーによる破壊面解析

フラクトグラフィー解析

3Dプロフィロメトリーによる

作成者

CRAIG LEISING

はじめに

フラクトグラフィーは、破壊された表面の特徴を研究するもので、歴史的には顕微鏡または SEM を使用して調査されてきました。フィーチャのサイズに応じて、表面分析には顕微鏡 (マクロ フィーチャ) または SEM (ナノおよびマイクロ フィーチャ) が選択されます。どちらも最終的には破壊メカニズムのタイプを特定できるようになります。顕微鏡には効果的ではありますが、明らかな限界があり、SEM は原子レベルの分析を除いて、ほとんどの場合、破面測定には非実用的であり、広範な使用能力がありません。光学計測技術の進歩により、NANOVEA 3D非接触形状計 ナノスケールからマクロスケールまでの 2D および 3D 表面測定を提供する機能を備え、現在、最適な機器とみなされています

亀裂検査における3D非接触プロフィロメータの重要性

SEMとは異なり、3D非接触プロフィロメータは、SEMよりも優れた垂直・水平方向の寸法を提供しながら、ほぼすべての表面、サンプルサイズ、最小限のサンプル前処理で測定することができます。プロファイラでは、ナノからマクロレンジの形状を一度の測定で捉えることができ、試料の反射率の影響を受けることはありません。透明、不透明、鏡面、拡散、研磨、粗面など、あらゆる材質を簡単に測定することができます。3D非接触プロフィロメータは、SEMの数分の一のコストで、表面破壊研究を最大化するための広範でユーザーフレンドリーな機能を提供します。

測定目的

このアプリケーションでは、ナノビアST400を用いて鋼鉄サンプルの破断面を測定しています。3Dエリア、2Dプロファイル抽出、表面の方向性マップを紹介します。

ナノビア

ST400

結果

表面

3D表面テクスチャーの方向性

等方性51.26%
ファーストディレクション123.2º
セカンドディレクション116.3º
サードディレクション0.1725º

この抽出液から表面積、体積、粗さなどを自動計算することができます。

2Dプロファイル抽出

結果

側面

3D表面テクスチャーの方向性

等方性15.55%
ファーストディレクション0.1617º
セカンドディレクション110.5º
サードディレクション171.5º

この抽出液から表面積、体積、粗さなどを自動計算することができます。

2Dプロファイル抽出

まとめ

このアプリケーションでは、ナノビアST400 3D非接触プロフィロメーターが、破砕表面の完全な地形(ナノ、マイクロ、マクロの特徴)を正確に特徴付けることができることを示しました。3D領域から、表面を明確に識別し、サブ領域またはプロファイル/クロスセクションを迅速に抽出し、表面計算の無限のリストを使用して分析することができます。サブナノメートルの表面形状は、統合されたAFMモジュールでさらに分析することができます。

さらに、ナノベアーのプロフィロメーターにはポータブルタイプもあり、特に亀裂の表面が動かないようなフィールド調査には欠かせないものとなっています。このように幅広い表面測定機能を備えているため、1台の装置で亀裂表面の分析がより簡単に、より便利になりました。

さて、次はアプリケーションについてです。

トライボメータによる紙やすりの磨耗性能

紙やすりの磨耗性能

トライボメータによる

作成者

DUANJIE LI, PhD

はじめに

紙や布の片面に砥粒を接着したものの粒子にはガーネット、炭化ケイ素、酸化アルミニウム、ダイヤモンドなど、さまざまな研磨材が使用されます。サンドペーパーは、木材、金属、乾式壁などの特定の表面仕上げを行うためにさまざまな産業分野で広く応用されています。手や電動工具によって加えられる高圧の接触下で作業することが多くなります。

サンドペーパー摩耗性能の評価の重要性

サンドペーパーの効果は多くの場合、さまざまな条件下での摩耗性能によって決定されます。粒度、すなわちサンドペーパーに埋め込まれた研磨粒子の大きさが、研磨する材料の摩耗速度と傷の大きさを決定します。粒度の高いサンドペーパーは粒子が小さいため、研磨速度が遅くなり、表面の仕上がりも細かくなります。また、同じ粒度の紙でも材質が異なると、乾式と湿式で挙動が異なることがあります。製造されたサンドペーパーが意図された研磨挙動を持つことを確認するためには、信頼性の高いトライボロジー評価が必要である。このような評価により、異なる種類のサンドペーパーの摩耗挙動を制御・監視された状態で定量的に比較し、用途に応じた最適な候補を選択することができます。

測定目的

本研究では、ナノベーストライボメータが乾式および湿式の様々なサンドペーパーサンプルの摩耗性能を定量的に評価する能力を持つことを紹介します。

ナノビア

T2000

試験方法

2 種類のサンドペーパーの摩擦係数 (COF) と摩耗性能を NANOVEA T100 トライボメーターで評価しました。相手材には 440 ステンレス鋼球を使用しました。 NANOVEA を使用して各摩耗テスト後にボールの摩耗傷跡を検査しました。 3D非接触オプティカルプロファイラー 正確な体積損失測定を保証します。

なお今回は440ステンレスボールを比較対象としていますが、他の固体材料で代用することで異なる適用条件を模擬することができます。

テスト結果および考察

図 1 は、サンドペーパー 1 と 2 の乾燥および湿潤環境下での COF の比較である。サンドペーパー1は、乾燥状態において、試験開始時に0.4のCOFを示し、その後徐々に減少して0.3に安定した。湿潤環境下では、このサンプルの平均COFは0.27と低い値を示している。一方,試料 2 の COF の結果は,ドライ COF が 0.27,ウェット COF が ~0.37 であった。 

なおすべてのCOFプロットのデータで振動が発生しているのは、ボールが粗いサンドペーパー表面を滑ることで発生する振動によるものです。

図1: 摩耗試験中のCOFの進化。

図2は、摩耗痕の解析結果をまとめたものです。摩耗痕は,光学顕微鏡とナノビア3D非接触光学式プロファイラを使用して測定しました。図3および図4は、サンドペーパー1および2(湿式および乾式)での摩耗試験後のSS440ボールの摩耗痕を比較したものです。図 4 に示すようにナノビア・オプティカルプロファイラは、4 つのボールの表面形状とそれぞれの摩耗痕を正確に捉え、それをナノビアマウンテン高度解析ソフトウェアで処理し体積損失と摩耗率を計算しました。ボールの顕微鏡画像とプロファイル画像から、サンドペーパー1(ドライ)テストに使用したボールは、体積損失が0.313で、他のボールに比べて大きな平坦な摩耗痕を示したことが観察されています。 ミリメートル3.一方、サンドペーパー1(ウェット)の体積損失は、0.131でした。 ミリメートル3.サンドペーパー2(乾燥)の体積損失は0.163でした。 ミリメートル3 サンドペーパー2(wet)では、体積損失が0.237に増加しました。 ミリメートル3.

さらに,COFがサンドペーパーの摩耗性能に重要な役割を担っていることも興味深い。サンドペーパー1は、乾燥状態で高いCOFを示し、テストに使用したSS440ボールに対して高い摩耗率をもたらしました。一方、サンドペーパー2は湿潤時のCOFが高く、より高い摩耗量となりました。測定後のサンドペーパーの摩耗痕を図5に示します。

サンドペーパー 1 と 2 は両方とも、乾燥環境でも湿潤環境でも機能すると主張しています。ただし、乾燥状態と湿潤状態では大幅に異なる摩耗性能を示しました。ナノベア トライボメータ 再現性のある摩耗評価を保証する、適切に制御された定量化可能で信頼性の高い摩耗評価機能を提供します。さらに、その場での COF 測定機能により、ユーザーは摩耗プロセスのさまざまな段階を COF の進化と関連付けることができます。これは、サンドペーパーの摩耗メカニズムとトライボロジー特性の基本的な理解を向上させるのに重要です。

図2: 異なる条件下でのボールの摩耗痕体積と平均COF

図3: テスト後のボールの装着痕。

図4: ボールの摩耗痕の3Dモルフォロジー。

図5: 異なる条件下でのサンドペーパーの摩耗痕。

まとめ

本研究では,同じ粒数の2種類のサンドペーパーについて,乾式および湿式条件下での摩耗性能を評価した。サンドペーパーの使用条件は,作業性能の効果に重要な役割を果たす。サンドペーパー1は乾燥状態での摩耗挙動が著しく優れており,サンドペーパー2は湿潤状態での摩耗挙動が優れていた。サンドペーパー作業時の摩擦は、研磨性能を評価する上で重要な要素である。NANOVEA Optical Profilerは、ボールの摩耗痕など、あらゆる表面の3次元形状を正確に測定することができ、本研究で使用したサンドペーパーの摩耗性能を確実に評価することができます。ナノベーストライボメータは、摩耗試験中にその場で摩擦係数を測定し、摩耗プロセスのさまざまな段階に関する知見を提供します。また、ISOとASTMに準拠した回転モードとリニアモードによる再現性の高い摩耗・摩擦試験が可能で、オプションで高温摩耗と潤滑のモジュールを1つの統合されたシステムで利用することもできます。この比類なき製品群により、高応力、摩耗、高温など、ボールベアリングのさまざまな過酷な使用環境をシミュレートすることができます。また、高荷重下での優れた耐摩耗材料のトライボロジー挙動を定量的に評価するための理想的なツールでもあります。

さて、次はアプリケーションについてです。

3Dプロフィロメトリーによる革の表面仕上げ加工

加工革

3Dプロフィロメトリーによる表面仕上げ

作成者

CRAIG LEISING

はじめに

皮革のなめし工程が完了すると、皮革の表面は様々な外観と手触りのための仕上げ工程を経ることができます。これらの機械的加工には、ストレッチ、バフィング、サンディング、エンボス加工、コーティングなどが含まれます。レザーの最終用途によっては、より精密で、制御された、再現性のある加工が必要とされる場合もあります。

プロフィロメトリー検査の重要性 研究開発・品質管理のために

目視検査方法はばらつきが大きく信頼性に欠けるため、マイクロスケールやナノスケールの特徴を正確に定量化できるツールは、皮革仕上げ工程を改善することができる。革の表面仕上げを定量的に理解することで、最適な仕上げ結果を得るためのデータ駆動型表面処理選択の改善につながります。NANOVEA 3D非接触 プロフィロメーター NANOVEAプロフィロメーターは、クロマティックコンフォーカル技術を利用し、皮革の表面を測定します。NANOVEAプロフィロメーターは、プローブの接触、表面のばらつき、角度、吸収、反射率によって、他の技術では信頼性の高いデータを提供できない場合でも、成功します。

測定目的

このアプリケーションでは、ナノビアST400を使用して異なるが密接に加工された2つの革サンプルの表面仕上げを測定し比較しています。表面プロファイルからいくつかの表面パラメータが自動的に計算されます。

ここでは表面粗さ、ディンプル深さ、ディンプルピッチ、ディンプル径に着目し、比較評価しています。

ナノビア

ST400

結果:サンプル1

ISO25178

高さパラメータ

その他の3Dパラメータ

結果:サンプル2

ISO25178

高さパラメータ

その他の3Dパラメータ

深さ比較

各サンプルの深度分布。
には、深いディンプルが多数観察されました。
サンプル1.

ピッチ比較

ディンプル間のピッチ サンプル1 が若干小さくなる
より
SAMPLE 2が両者は似たような分布をしている

 平均径比較

ディンプルの平均直径の分布が似ている。
をもって
サンプル1 は、平均してやや小さい直径を示す。

まとめ

このアプリケーションでは、ナノビアST400 3Dプロフィロメーターが加工された革の表面仕上げを精密に特性評価できることを示しました。この研究では、表面粗さ、ディンプル深さ、ディンプルピッチ、ディンプル直径を測定できることで、目視ではわからない2つのサンプルの仕上げや品質の違いを定量的に把握することができました。

全体として、SAMPLE 1とSAMPLE 2の間で3Dスキャンの外観に目に見える違いはありませんでした。しかし、統計解析では、2つのサンプルの間に明確な区別があります。SAMPLE 1 は、SAMPLE 2 と比較して、直径が小さく、深さが大きく、ディンプル間のピッチが小さいディンプルをより多く含んでいます。

追加の研究が可能であることに注意してください。特別な関心領域は、統合されたAFMまたはマイクロスコープモジュールでさらに分析された可能性があります。ナノベアーの3Dプロフィロメーターは、20mm/sから1m/sの速度で、高速検査のニーズを満たすために、実験室や研究室で使用されています。カスタムサイズ、速度、スキャン機能、クラス1のクリーンルーム対応、インデックスコンベア、インラインまたはオンライン統合用に構築することができます。

さて、次はアプリケーションについてです。

ピストン磨耗試験

ピストン磨耗試験

トライボメーターの使用

作成者

フランク・リウ(FRANK LIU

はじめに

ディーゼルエンジンの燃料に含まれる全エネルギーのうち、摩擦損失は約10%を占める[1].摩擦損失の40-55%はパワーシリンダーシステムから生じている。この摩擦によるエネルギー損失は、パワーシリンダーシステムで発生するトライボロジー的相互作用をより良く理解することで減少させることができる。

パワーシリンダシステムにおける摩擦損失の大部分は、ピストンスカートとシリンダライナの接触に起因している。実際のエンジンでは、力、温度、速度が常に変化しているため、ピストンスカート、潤滑油、シリンダー界面の相互作用は非常に複雑です。最適なエンジン性能を得るためには、各要因を最適化することが重要です。本研究では、ピストンスカート-潤滑油-シリンダーライナー(P-L-C)界面における摩擦力と摩耗を引き起こすメカニズムを再現することに焦点を当てます。

 パワーシリンダーシステムとピストンスカート-潤滑剤-シリンダーライナーの界面の概略図。

[1] Bai, Dongfang.内燃機関のピストンスカート潤滑のモデリング。Diss.MIT, 2012

トライボメータによるピストン試験の重要性

モーターオイルは、その用途に応じて設計された潤滑油である。ベースオイルに加え、洗浄剤、分散剤、粘度向上剤(VI)、耐摩耗剤・耐摩擦剤、腐食防止剤などの添加剤を加えて性能を高めている。これらの添加剤は、さまざまな運転条件下でのオイルの挙動に影響を与える。オイルの挙動はP-L-C界面に影響を与え、金属と金属の接触による著しい摩耗が発生するか、流体力学的潤滑(摩耗が非常に少ない)が発生するかを決定する。

P-L-Cのインターフェースは、その領域を外部変数から切り離さないと理解することが難しい。実際の用途を代表するような条件でシミュレーションを行う方が現実的です。その ナノビア トライボメータ これには最適です。複数の力センサー、深さセンサー、滴下潤滑剤モジュール、および直線往復ステージを備えた、 ナノビア T2000は、エンジンブロック内で発生する事象を忠実に再現し、P-L-C界面をより深く理解するための貴重なデータを得ることができます。

NANOVEA T2000トライボメータに搭載された液状モジュール

この研究には、ドロップバイドロップモジュールが非常に重要です。ピストンは非常に速い速度で動くため(3000rpm以上)、サンプルを浸して潤滑油の薄い膜を作ることは困難です。この問題を解決するために、滴下式モジュールはピストンスカートの表面に一定量の潤滑油を安定して塗布することができます。

また、新しい潤滑油を使用することで、外れた摩耗粉が潤滑油の特性に影響を与える心配もありません。

NANOVEA T2000

高荷重トライボメータ

測定目的

本報告では,ピストンスカート-潤滑油-シリンダライナーの界面について検討する.この界面は、潤滑油の滴下による直線往復摩耗試験で再現される。

潤滑剤を室温と加温状態で塗布し、コールドスタートと最適な運転条件を比較する予定です。COFと摩耗率を観察し、実際の用途における界面の挙動をより深く理解します。

テストパラメーター

ピストンのトライボロジー試験用

LOAD 100 N

テスト期間 ............................30分

スピード ............................2000 rpm

アンプリチュード ............................10mm

トータルディスタンス 1200 m

スカートのコーティング ............................ポリグラファイト

ピン素材 ............................アルミニウム合金 5052

ピン径 ............................10mm

ルーブリック ............................モーターオイル (10W-30)

APPROX.フローレート ............................60 mL/min

温度 室温および90

直線往復運動の試験結果

今回の実験では、対向材としてA5052を使用しました。エンジンブロックは通常A356などの鋳造アルミニウムで作られていますが、A5052は今回の模擬実験ではA356と同様の機械的特性を有しています[2]。

試験条件下では、著しい摩耗が
室温でのピストンスカートの観察
は,90℃のときと比較してサンプルに見られる深い傷は、静止材料とピストンスカートの接触が試験中頻繁に起こっていることを示唆している。室温では粘度が高いため、オイルが界面の隙間を完全に埋めることができず、金属と金属が接触している可能性がある。高温になるとオイルは薄くなり、ピストンとピストンの間を流れるようになる。その結果、高温での摩耗が大幅に減少することが確認された。図5では、摩耗痕の片側がもう片側よりも著しく摩耗していることがわかる。これは、オイルの出口の位置によるものと思われる。潤滑油の膜厚が片方で厚くなり、偏摩耗が発生したのである。

 

 

[2] "5052アルミニウム対356.0アルミニウム".MakeItFrom.com, makeitfrom.com/compare/5052-O-Aluminum/A356.0-SG70B-A13560-Cast-Aluminum

直線往復運動のトライボロジー試験のCOFは、ハイパスとローパスに分けることができます。ハイパスとは、試料が正方向に動くこと、ローパスとは、試料が逆方向に動くことを指す。RTオイルの平均COFは、両方向とも0.1未満であることが確認された。パス間の平均COFは、0.072と0.080であった。90℃オイルの平均COFは、パス間で異なることが確認された。平均 COF 値は 0.167 と 0.09 が観測された。このCOFの差は、オイルがピンの片側しか適切に濡らすことができなかったことをさらに証明するものである。ピンとピストンスカートの間に厚い膜が形成され、流体力学的な潤滑が発生した場合、高いCOFが得られた。一方、混合潤滑が発生している場合は、COFが低くなることが確認された。動圧潤滑と混合潤滑の詳細については、アプリケーションノートをご覧ください。 ストリベックカーブ.

表1: ピストンの潤滑式摩耗試験結果。

図1: 常温油膜摩耗試験におけるCOFグラフ A生プロファイル Bハイパス Cローパス

図2: 90℃摩耗油テストのCOFグラフ A raw profile B high pass C low pass.

図3: RTモーターオイルの摩耗試験による摩耗痕の光学画像。

図4: RTモーターオイルの摩耗試験による摩耗痕の穴埋め解析の巻。

図5: RTモーターオイルの摩耗試験による摩耗痕のプロフィロメトリースキャン。

図6: 90℃モーターオイル摩耗試験による摩耗痕の光学像

図7: 90℃モーターオイル摩耗試験による摩耗痕の穴埋め解析のボリューム。

図8: 90℃のモーターオイル摩耗試験による摩耗痕のプロフィロメトリースキャン。

まとめ

ピストンでの潤滑直線往復運動摩耗試験を実施し,実機で発生する事象を模擬した。
実稼働しているエンジンピストンスカート-潤滑油-シリンダライナーの界面は、エンジンの運転に極めて重要な役割を担っています。ピストンスカートとシリンダーライナー間の摩擦や摩耗によるエネルギー損失は、この界面における潤滑油の厚みに起因している。エンジンを最適化するためには、ピストンスカートとシリンダーライナーを接触させることなく、できるだけ薄い膜厚にする必要がある。しかし、温度、速度、力の変化がP-L-C界面にどのような影響を与えるかが課題である。

NANOVEA T2000トライボメータは、幅広い荷重範囲(最大2000N)と回転数(最大15000rpm)を備えており、エンジン内で起こりうるさまざまな状況をシミュレートすることができます。将来的には、一定負荷、振動負荷、潤滑油温度、回転数、潤滑油の塗布方法などを変えた場合にP-L-Cインターフェースがどのような挙動を示すかを研究することも可能です。これらのパラメータは、NANOVEA T2000トライボメータで簡単に調整でき、ピストンスカート-潤滑油-シリンダライナーの界面のメカニズムについて完全に理解することができます。

さて、次はアプリケーションについてです。

発泡スチロール表面境界測定プロフィロメトリー

表面境界測定

3Dプロフィロメトリーによる表面境界計測

詳細はこちら

表層境界測定

3Dプロフィロメトリーによる

作成者

クレイグ・ライジング

はじめに

表面の特徴、パターン、形状などの界面が配向性を評価されるような研究では、測定プロファイル全体にわたって関心のある領域をすばやく特定することが有用です。表面を重要な領域に分割することで、ユーザーは境界、ピーク、ピット、面積、体積などを迅速に評価し、研究対象の表面プロファイル全体における機能的な役割を理解することができます。例えば、金属の粒界イメージングでは、多くの構造物の界面や全体的な方向性が解析の重要なポイントになります。それぞれの領域を理解することで、全体の中の欠陥や異常を特定することができます。粒界のイメージングは通常プロフィロメータの能力を超える領域で研究され、2D画像分析に過ぎませんが、3D表面測定の利点とともに、ここで紹介する概念をより大きなスケールで説明するための参考資料となります。

表面分離研究における3次元非接触形状測定機の重要性

タッチプローブや干渉計などの他の技術とは異なり、 3D非接触形状計軸色収差を使用するため、ほぼすべての表面を測定でき、オープンステージングによりサンプルサイズは大きく変化する可能性があり、サンプルの前処理は必要ありません。ナノからマクロの範囲は、サンプルの反射率や吸収の影響を受けずに表面プロファイル測定中に得られ、高い表面角度を測定する高度な機能を備えており、結果をソフトウェアで操作する必要はありません。透明、不透明、鏡面、拡散、研磨、粗いなど、あらゆる材質を簡単に測定できます。非接触粗面計の技術は、表面境界分析が必要な場合に表面調査を最大限に高めるための理想的で広範で使いやすい機能を提供します。 2D と 3D 機能を組み合わせたメリットも得られます。

測定目的

このアプリケーションでは、発泡スチロールの表面積を測定するためにナノベアST400プロフィロメータが使用されています。境界は、NANOVEA ST400を使用して同時に取得される地形とともに、反射強度ファイルを組み合わせることによって確立されました。このデータをもとに、発泡スチロールの「粒」ごとに異なる形状や大きさの情報を算出しました。

ナノビア

ST400

結果と考察:2次元表面境界の測定

トポグラフィー画像(左下)を反射強度画像(右下)でマスクし、結晶粒の境界を明確にした画像。直径565μm以下の粒はフィルターをかけることで無視されている。

粒の総数167
粒が占める投影面積の合計。166.917 mm² (64.5962 %)
バウンダリー占有予想総面積: (35.4038 %)
粒の密度0.646285粒/mm2

面積 = 0.999500 mm² +/- 0.491846 mm².
外周=9114.15μm +/- 4570.38μm
等価直径 = 1098.61 µm +/- 256.235 µm
平均直径 = 945.373 µm +/- 248.344 µm
最小径 = 675.898 µm +/- 246.850 µm
最大径=1312.43 µm +/- 295.258 µm

結果&考察:3次元表面境界計測

得られた3次元トポグラフィーデータを用いて、各粒子の体積、高さ、ピーク、アスペクト比、一般的な形状情報を解析することができる。3次元占有総面積:2.525mm3

まとめ

このアプリケーションでは、NANOVEA 3D非接触形状測定機が発泡スチロールの表面を精密に特性評価できることを示しました。統計的な情報は、表面全体、またはピークやピットなどの個々の粒子について得ることができます。この例では、ユーザーが定義したサイズより大きいすべての粒を使用して、面積、周囲長、直径、高さを表示しました。ここで示された特徴は、バイオメディカルからマイクロマシニングまで、様々な分野の自然表面や加工済み表面の研究および品質管理に重要な役割を果たすことができます。 

さて、次はアプリケーションについてです。

NANOVEAによるプロフィロメータを用いた輪郭計測

ラバートレッドコンター測定

ラバートレッドコンター測定

もっと詳しく

 

 

 

 

 

 

 

 

 

 

 

 

 

ラバートレッド輪郭測定

3D光学式プロファイラによる

ゴムトレッドの輪郭測定 - NANOVEA Profiler

作成者

アンドレア・ハーマン

はじめに

ゴムの摩擦係数は、他の素材と同様、次のような関係にある。 は、その表面粗さの一部である。車載用タイヤでは、路面とのトラクションが非常に重要です。これには、表面の粗さとタイヤのトレッドの両方が関わっている。この研究では、ゴムの表面とトレッドの粗さと寸法を解析しています。

* サンプル

インポータンス

3次元非接触形状計測の

ゴム研究用

タッチプローブや干渉計などの他の技術とは異なり、NANOVEA の 3D非接触光学式プロファイラー 軸色収差を使用して、ほぼあらゆる表面を測定します。 

プロファイラのオープンステージは、様々なサイズの試料に対応し、試料調製は不要です。ナノからマクロレンジの形状を、試料の反射や吸収の影響を受けずに、1回のスキャンで検出することができます。さらに、ソフトウェアで結果を操作することなく、高い表面角度を測定できる高度な機能を備えています。

透明、不透明、鏡面、拡散、研磨、粗面など、あらゆる材質を簡単に測定できます。NANOVEA 3D非接触プロファイラの測定技術は、2Dと3Dを組み合わせた利点とともに、表面研究を最大限に活用するための理想的で幅広い、ユーザーフレンドリーな機能を提供します。

測定目的

このアプリケーションでは、NANOVEA ST400を紹介しています。 3D非接触光学式プロファイラによる測定。 ゴムタイヤの表面と溝の部分です。

を表すのに十分な大きさの試料表面積を持つ。 タイヤ表面全体を無作為に選択 この研究のために 

ゴムの特性を定量的に把握するために 3D解析ソフトウェア「NANOVEA Ultra」を使って 輪郭の寸法、深さを測定します。 表面の粗さと現像面積

ナノビア

ST400

ANALYSIS タイヤトレッド

踏面の3Dビューとフォールスカラービューは、3D表面設計のマッピングの価値を示しています。これは、さまざまな角度から踏面のサイズと形状を直接観察するためのわかりやすいツールをユーザーに提供します。高度な輪郭解析とステップハイト解析は、どちらもサンプルの形状やデザインの正確な寸法を測定するための非常に強力なツールです

アドバンストコンターアナリシス

ステップ高さ解析

ANALYSIS ラバーサーフェス

ゴム表面は、例として以下の図に示すように、内蔵のソフトウェアツールを使って多くの方法で定量化することができます。表面粗さは2.688 μm、展開面積対投影面積は9.410 mm² 対 8.997 mm²であることが観察されます。この情報により、異なるゴム配合、あるいは表面摩耗の程度が異なるゴムでも、表面仕上げとトラクションの関係を調べることができます。

まとめ

今回のアプリケーションでは、NANOVEAの 3D非接触光学式プロファイラで、ゴムの表面粗さとトレッド寸法を高精度に評価することができます。

データでは、表面粗さ2.69μm、現像面積9.41mm²、投影面積9mm²となっています。 ゴム製トレッドの様々な寸法と半径は も測定した。

この研究で示された情報は、トレッドの設計や配合、あるいは摩耗の程度が異なるゴムタイヤの性能を比較するために利用することができます。 ここに掲載されているデータは、ほんの一部です。 の計算は、Ultra 3D解析ソフトウェアで利用可能です。

さて、次はアプリケーションについてです。

3D光学プロファイラによる魚鱗表面解析

3D光学プロファイラによる魚鱗表面解析

詳細はこちら

魚鱗面解析

3D OPTICAL PROFILERを使用して

魚鱗形状測定装置

作成者

アンドレア・ノビツキー

はじめに

NANOVEAを用いて魚鱗の形態や模様などを研究 3D非接触オプティカルプロファイラー。この生体サンプルの繊細な性質と、その非常に小さく角度の高い溝も、プロファイラーの非接触技術の重要性を強調しています。鱗の溝は環状と呼ばれ、これを研究することで魚の年齢を推定したり、木の年輪と同様に成長速度の異なる時期を区別したりすることもできます。これは乱獲を防ぐために野生の魚の個体数を管理する上で非常に重要な情報です。

3D非接触プロフィロメトリの生物学的研究への重要性

タッチプローブや干渉計などの他の技術とは異なり、軸色法を用いた3D非接触光学式プロファイラでは、ほぼすべての表面を測定することができます。サンプルサイズは、オープンステージのため大きく変化し、サンプルの前処理は必要ありません。ナノからマクロレンジの表面形状を、試料の反射や吸収の影響を受けずに測定することができます。この装置では、ソフトウェアで結果を操作することなく、高い表面角度を測定できる高度な機能を備えています。透明、不透明、鏡面、拡散、研磨、粗面など、どのような材料でも簡単に測定することができます。この技術は、2Dおよび3D機能を組み合わせた利点とともに、表面研究を最大限に活用するための理想的で幅広い、使いやすい機能を提供します。

測定目的

このアプリケーションでは、高速センサーを搭載し、スケールの表面を総合的に解析する3D非接触プロファイラー、NANOVEA ST400を紹介します。

この装置では、中央部の高解像度スキャンとともに、サンプル全体をスキャンしています。比較のため、スケールの外側と内側の表面粗さも測定されました。

ナノビア

ST400

外枠の3D&2D表面キャラクタリゼーション

外側スケールの3Dビューとフォールスカラービューでは、指紋や木の年輪のような複雑な構造を見ることができます。これにより、ユーザーはスケールの表面特性を様々な角度から直接観察することができる分かりやすいツールを得ることができます。また、外側と内側を比較しながら、外側スケールの様々な測定値を表示します。

魚群探知機 3Dビュープロフィロメーター
魚鱗走査型ボリューム3Dプロフィロメーター
魚群探知機 ステップハイト3D光学式プロファイラ

表面粗さの比較

魚鱗プロフィロメーター 3Dスキャニング

まとめ

このアプリケーションでは、NANOVEA 3D非接触光学式プロファイラが、魚の鱗をさまざまな方法で特性評価できることを示しました。 

鱗の外側と内側は、表面粗さだけで簡単に区別でき、粗さの値はそれぞれ15.92μmと1.56μmである。さらに、鱗の外表面にある溝(サーキュレーション)を分析することで、魚の鱗について正確な情報を得ることができます。中心点から帯状のサークルの距離を測定したところ、サークルの高さは平均で約58μmであることもわかりました。 

ここに掲載したデータは、解析ソフトで利用できる計算の一部に過ぎません。

さて、次はアプリケーションについてです。