アメリカ/グローバル: +1-949-461-9292
ヨーロッパ+39-011-3052-794
お問い合わせ

トライボメータによる高温スクラッチ硬度測定

トライボメーターによる高温スクラッチ硬度

トライボメータによる

作成者

DUANJIE, PhD

はじめに

硬度は、材料の永久変形や塑性変形に対する抵抗力を測定するものである。1820年にドイツの鉱物学者フリードリヒ・モースによって開発された硬さ試験で、鋭利な物体との摩擦による傷や摩耗に対する材料の硬さを測定する。1.モース硬度はリニアスケールではなく比較指数であるため、より正確で定性的なスクラッチ硬度測定がASTM規格G171-03に記載されているように開発されました。2.ダイヤモンドの触針でできた傷の平均幅を測定し、傷の硬さ(HSP)を算出するものです。

高温下でのスクラッチ硬度測定の重要性

材料は、サービス要件に基づいて選択されます。大きな温度変化や温度勾配を伴う用途では、高温での材料の機械的特性を調査し、機械的限界を十分に認識することが重要です。材料、特にポリマーは通常、高温になると軟化します。多くの機械的故障は、高温でのみ起こるクリープ変形や熱疲労によって引き起こされます。したがって、高温用途の材料を適切に選択するために、高温での硬度を測定する信頼性の高い技術が必要とされています。

測定目的

この研究では、NANOVEA T50 トライボメーターを使用して、室温から 300℃ までのさまざまな温度でテフロン サンプルの引っかき硬度を測定します。 NANOVEA は、高温での引っかき硬度測定を実行できる機能を備えています。 トライボメータ 高温用途の材料の摩擦学的および機械的評価のための多用途システムです。

ナノビア

T50

試験条件

NANOVEA T50 Free Weight Standard Tribometerを使用して、室温(RT)から300℃の温度範囲でテフロンサンプルの引っかき硬度試験を実施しました。テフロンの融点は326.8°Cです。先端角120°、先端半径200μmの円錐型ダイヤモンドスタイラスを使用しました。テフロン試料は、回転式試料ステージにステージ中心から10 mmの距離で固定した。試料をオーブンで加熱し、常温、50℃、100℃、150℃、200℃、250℃、300℃の温度で試験した。

テストパラメーター

テストパラメーター

ノーマルフォース 2 N
滑りスピード 1mm/s
滑り距離 8mm/temp
大気 空気
温度 RT、50°C、100°C、150°C、200°C、250°C、300°C

結果・考察

図1には、異なる高温でのスクラッチ硬度を比較するために、異なる温度でのテフロンサンプルのスクラッチトラックプロファイルが示されています。スタイラスが2Nの一定荷重で移動しながらテフロンサンプルに突入し、スクラッチトラック内の材料を横に押し出し変形させることで、スクラッチトラック端に材料の山が形成されます。

図2に示すように、スクラッチトラックを光学顕微鏡で観察した。顕微鏡で測定したスクラッチ痕の幅と、計算で求めたスクラッチ硬度(HSP)を図3にまとめて比較しました。 顕微鏡で測定したスクラッチ痕の幅は、NANOVEAプロファイラーで測定した幅と一致し、テフロンサンプルは高温でより広いスクラッチ幅を示しています。温度が常温から300℃に上昇すると、スクラッチトラックの幅は281μmから539μmに増加し、HSPは65MPaから18MPaに減少しています。

NANOVEA T50トライボメータは、高温下でのスクラッチ硬度を高精度かつ高再現性で測定することができます。他の硬度測定とは異なるソリューションを提供し、ナノビアトライボメータを高温トライボメカニックの総合評価システムとしてより完成度の高いものにしています。

図1: 異なる温度でのスクラッチ硬度試験後のスクラッチトラックプロファイル。

図2: 異なる温度で測定した後の顕微鏡下でのスクラッチ痕。

図3: スクラッチトラック幅とスクラッチ硬度の温度に対する変化。

まとめ

この研究では、ASTM G171-03に準拠した高温でのナノビアトライボメータによるスクラッチ硬度測定方法を紹介します。一定荷重でのスクラッチ硬度測定は、トライボメータを用いた材料の硬度比較のための代替的な簡易ソリューションとなります。高温でのスクラッチ硬さ測定が可能なナノビアトライボメータは、材料の高温トライボメカニカル特性の評価に理想的なツールです。

ナノビアトライボメータは、ISOおよびASTMに準拠した回転モードとリニアモードによる精密で再現性の高い摩耗・摩擦試験を提供し、オプションで高温摩耗、潤滑、トライボコロージョンを一つの統合済みシステムとして利用することも可能です。オプションの3D非接触プロファイラを使用すると、粗さなどの表面測定に加えて、摩耗痕の高解像度3Dイメージングを行うことができます。

1 Wredenberg, Fredrik; PL Larsson (2009).「金属と高分子のスクラッチ試験。Experiments and numerics".Wear 266 (1-2):76
2 ASTM G171-03 (2009), "Standard Test Method for Scratch Hardness of Materials Using Diamond Stylus" ダイヤモンドスタイラスを用いた材料のスクラッチ硬度に関する標準試験方法。

さて、次はアプリケーションについてです。

ポータブル3Dプロフィロメータによる溶接面検査

溶接表面検査

ポータブル3Dプロフィロメーターによる

作成者

CRAIG LEISING

はじめに

通常目視検査で行われる特定の溶接を、極めて高い精度で調査することが重要になる場合があります。精密分析の対象となる特定の領域には、その後の検査手順に関係なく、表面の亀裂、気孔、未充填のクレーターが含まれます。寸法・形状、体積、粗さ、サイズなどの溶接の特性はすべて、重要な評価のために測定することが可能です。

溶接面検査における3D非接触プロフィロメータの重要性

タッチプローブや干渉計などの他の技術とは異なり、NANOVEA 3D非接触形状計軸色収差を使用するため、ほぼすべての表面を測定でき、オープンステージングによりサンプルサイズは大きく変化する可能性があり、サンプルの前処理は必要ありません。ナノからマクロの範囲は、サンプルの反射率や吸収の影響を受けずに表面プロファイル測定中に得られ、高い表面角度を測定する高度な機能を備えており、結果をソフトウェアで操作する必要はありません。透明、不透明、鏡面、拡散、研磨、粗いなど、あらゆる材質を簡単に測定できます。NANOVEA ポータブル表面形状計の 2D および 2D 機能により、実験室と現場の両方で完全な溶接表面検査を行うための理想的な機器となります。

測定目的

このアプリケーションでは、ナノビアJR25 ポータブルプロファイラを使用して溶接部の表面粗さ、形状、体積、およびその周辺を測定しています。この情報は、溶接と溶接プロセスの品質を適切に調査するための重要な情報を提供することができます。

ナノビア

JR25

測定結果

下の画像は、溶接部とその周辺の完全な3Dビューと、溶接部のみの表面パラメータを表示したものです。2D断面プロファイルは以下の通りです。

試供品

上記の2次元断面形状を3次元から削除し溶接部の寸法情報を以下に計算します。溶接部のみの表面積と材料の体積を計算します。

 ホールピーク
表面1.01mm214.0 mm2
容積8.799e-5 mm323.27 mm3
最大深さ/高さ0.0276 mm0.6195 mm
平均深度・平均高さ 0.004024 mm 0.2298 mm

まとめ

このアプリケーションでは、ナノビア3D非接触プロファイラが溶接部とその周辺表面領域の重要な特性を正確に評価できることを示しました。粗さ、寸法、体積から、品質と再現性の定量的な方法を決定し、またはさらに調査することができます。このアプリケーションノートの例のようなサンプル溶接は、社内またはフィールドテスト用の標準的なナノビア卓上又はポータブルプロファイラで簡単に分析することができます。

さて、次はアプリケーションについてです。