ABD/GLOBAL: +1-949-461-9292
AVRUPA: +39-011-3052-794
BİZE ULAŞIN

Kategori Profilometri Testi

 

Tribometre Kullanarak Zımpara Kağıdı Aşınma Performansı

ZIMPARA KAĞIDI AŞINMA PERFORMANSI

TRIBOMETRE KULLANARAK

Tarafından hazırlanmıştır

DUANJIE LI, PhD

GİRİŞ

Zımpara kağıdı, bir kağıt veya bezin bir yüzüne yapıştırılmış aşındırıcı parçacıklardan oluşur. Parçacıklar için granat, silisyum karbür, alüminyum oksit ve elmas gibi çeşitli aşındırıcı malzemeler kullanılabilir. Zımpara kağıdı, ahşap, metal ve alçıpan üzerinde belirli yüzey kaplamaları oluşturmak için çeşitli endüstriyel sektörlerde yaygın olarak uygulanmaktadır. Genellikle el veya elektrikli aletlerle uygulanan yüksek basınçlı temas altında çalışırlar.

ZIMPARA KAĞIDININ AŞINMA PERFORMANSINI DEĞERLENDIRMENIN ÖNEMI

Zımpara kağıdının etkinliği genellikle farklı koşullar altındaki aşındırma performansına göre belirlenir. Kum boyutu, yani zımpara kağıdına gömülü aşındırıcı partiküllerin boyutu, zımparalanan malzemenin aşınma oranını ve çizik boyutunu belirler. Daha yüksek kum numaralı zımpara kağıtları daha küçük parçacıklara sahiptir, bu da daha düşük zımparalama hızları ve daha ince yüzey kalitesi sağlar. Aynı kum numarasına sahip ancak farklı malzemelerden yapılmış zımpara kağıtları, kuru veya ıslak koşullar altında benzer olmayan davranışlara sahip olabilir. Üretilen zımpara kağıdının istenen aşındırıcı davranışa sahip olduğundan emin olmak için güvenilir tribolojik değerlendirmelere ihtiyaç vardır. Bu değerlendirmeler, kullanıcıların hedef uygulama için en iyi adayı seçmek amacıyla farklı zımpara kağıdı türlerinin aşınma davranışlarını kontrollü ve izlenen bir şekilde niceliksel olarak karşılaştırmasına olanak tanır.

ÖLÇÜM HEDEFI

Bu çalışmada, NANOVEA Tribometre'nin kuru ve ıslak koşullar altında çeşitli zımpara kağıdı örneklerinin aşınma performansını nicel olarak değerlendirme yeteneğini sergiliyoruz.

NANOVEA

T2000

TEST PROSEDÜRLERI

İki tip zımpara kağıdının sürtünme katsayısı (COF) ve aşınma performansı NANOVEA T100 Tribometre ile değerlendirildi. Karşı malzeme olarak 440 paslanmaz çelik bilya kullanıldı. Bilye aşınma izleri, NANOVEA kullanılarak her aşınma testinden sonra incelendi. 3D Temassız Optik Profil Oluşturucu Hassas hacim kaybı ölçümleri sağlamak için.

Karşılaştırmalı bir çalışma oluşturmak için karşı malzeme olarak 440 paslanmaz çelik bilyenin seçildiğini, ancak farklı bir uygulama koşulunu simüle etmek için herhangi bir katı malzemenin ikame edilebileceğini lütfen unutmayın.

TEST SONUÇLARI VE TARTIŞMA

ŞEKİL 1'de kuru ve ıslak ortam koşullarında Zımpara Kağıdı 1 ve 2'nin COF karşılaştırması gösterilmektedir. Zımpara kağıdı 1, kuru koşullar altında, testin başında 0,4'lük bir COF göstermekte ve bu değer giderek azalarak 0,3'te sabitlenmektedir. Islak koşullar altında, bu numune 0,27'lik daha düşük bir ortalama COF sergilemektedir. Buna karşılık, Örnek 2'nin COF sonuçları kuru COF değerinin 0,27 ve ıslak COF değerinin ~ 0,37 olduğunu göstermektedir. 

Lütfen tüm COF grafikleri için verilerdeki salınımın, bilyenin pürüzlü zımpara kağıdı yüzeylerine karşı kayma hareketinden kaynaklanan titreşimlerden kaynaklandığını unutmayın.

ŞEKİL 1: Aşınma testleri sırasında COF'un evrimi.

ŞEKİL 2 aşınma izi analizinin sonuçlarını özetlemektedir. Aşınma izleri bir optik mikroskop ve bir NANOVEA 3D Temassız Optik Profilleyici kullanılarak ölçülmüştür. ŞEKİL 3 ve ŞEKİL 4, Zımpara Kağıdı 1 ve 2 (ıslak ve kuru koşullar) üzerindeki aşınma testleri sonrasında aşınmış SS440 bilyelerin aşınma izlerini karşılaştırmaktadır. ŞEKİL 4'te gösterildiği gibi, NANOVEA Optik Profilleyici dört bilyenin yüzey topografisini ve ilgili aşınma izlerini hassas bir şekilde yakalar ve daha sonra hacim kaybını ve aşınma oranını hesaplamak için NANOVEA Mountains Gelişmiş Analiz yazılımı ile işlenir. Bilyenin mikroskop ve profil görüntüsünde, Zımpara Kağıdı 1 (kuru) testi için kullanılan bilyenin 0,313 hacim kaybı ile diğerlerine kıyasla daha büyük bir düzleştirilmiş aşınma izi sergilediği gözlemlenebilir. mm3. Buna karşılık, Zımpara Kağıdı 1 (ıslak) için hacim kaybı 0,131 mm3. Zımpara Kağıdı 2 (kuru) için hacim kaybı 0,163'tür mm3 ve Zımpara Kağıdı 2 (ıslak) için hacim kaybı 0,237'ye yükselmiştir mm3.

Ayrıca, COF'nin zımpara kağıtlarının aşınma performansında önemli bir rol oynadığını gözlemlemek ilginçtir. Zımpara kağıdı 1 kuru durumda daha yüksek COF sergilemiş ve testte kullanılan SS440 bilye için daha yüksek bir aşınma oranına yol açmıştır. Buna karşılık, Zımpara Kağıdı 2'nin ıslak koşuldaki daha yüksek COF'si daha yüksek bir aşınma oranıyla sonuçlanmıştır. Ölçümlerden sonra zımpara kağıtlarının aşınma izleri ŞEKİL 5'te gösterilmektedir.

Zımpara Kağıtları 1 ve 2'nin her ikisi de kuru ve ıslak ortamlarda çalıştığını iddia ediyor. Ancak kuru ve ıslak koşullarda önemli ölçüde farklı aşınma performansı sergilediler. NANOVEA tribometreler tekrarlanabilir aşınma değerlendirmeleri sağlayan, iyi kontrol edilen, ölçülebilir ve güvenilir aşınma değerlendirme yetenekleri sağlar. Dahası, yerinde COF ölçümü kapasitesi, kullanıcıların bir aşınma sürecinin farklı aşamalarını COF'nin gelişimi ile ilişkilendirmesine olanak tanır; bu, aşınma mekanizmasının ve zımpara kağıdının tribolojik özelliklerinin temel anlayışının geliştirilmesinde kritik öneme sahiptir.

ŞEKİL 2: Bilyaların aşınma izi hacmi ve farklı koşullar altında ortalama COF.

ŞEKİL 3: Testlerden sonra topların yara izleri.

ŞEKİL 4: Bilyelerdeki aşınma izlerinin 3D morfolojisi.

ŞEKİL 5: Farklı koşullar altında zımpara kağıtları üzerindeki aşınma izleri.

SONUÇ

Bu çalışmada, aynı kum numarasına sahip iki tip zımpara kağıdının aşınma performansı kuru ve ıslak koşullar altında değerlendirilmiştir. Zımpara kağıdının servis koşulları, çalışma performansının etkinliğinde kritik bir rol oynamaktadır. Zımpara kağıdı 1 kuru koşullar altında önemli ölçüde daha iyi aşınma davranışına sahipken, Zımpara kağıdı 2 ıslak koşullar altında daha iyi performans göstermiştir. Zımparalama işlemi sırasındaki sürtünme, aşınma performansını değerlendirirken göz önünde bulundurulması gereken önemli bir faktördür. NANOVEA Optik Profilleyici, bilye üzerindeki aşınma izleri gibi herhangi bir yüzeyin 3D morfolojisini hassas bir şekilde ölçerek bu çalışmada zımpara kağıdının aşınma performansı hakkında güvenilir bir değerlendirme yapılmasını sağlar. NANOVEA Tribometre, bir aşınma testi sırasında sürtünme katsayısını yerinde ölçerek bir aşınma sürecinin farklı aşamaları hakkında fikir verir. Ayrıca, ISO ve ASTM uyumlu rotatif ve lineer modları kullanarak tekrarlanabilir aşınma ve sürtünme testleri sunar ve isteğe bağlı yüksek sıcaklık aşınma ve yağlama modülleri önceden entegre edilmiş tek bir sistemde mevcuttur. Bu eşsiz ürün yelpazesi, kullanıcıların yüksek stres, aşınma ve yüksek sıcaklık vb. dahil olmak üzere bilyalı rulmanların farklı zorlu çalışma ortamlarını simüle etmelerine olanak tanır. Ayrıca, yüksek yükler altında üstün aşınma dirençli malzemelerin tribolojik davranışlarını nicel olarak değerlendirmek için ideal bir araç sağlar.

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

3D Profilometri Kullanılarak İşlenmiş Deri Yüzey Finişi

IŞLENMIŞ DERI

3D PROFİLOMETRİ İLE YÜZEY KALİTESİ

Tarafından hazırlanmıştır

CRAIG LEISING

GİRİŞ

Bir deri postunun tabaklama işlemi tamamlandıktan sonra, deri yüzeyi çeşitli görünüm ve dokunuşlar için çeşitli son işlemlerden geçebilir. Bu mekanik işlemler germe, parlatma, zımparalama, kabartma, kaplama vb. içerebilir. Derinin nihai kullanımına bağlı olarak bazıları daha hassas, kontrollü ve tekrarlanabilir bir işlem gerektirebilir.

PROFİLOMETRİ DENETİMİNİN ÖNEMİ AR-GE VE KALİTE KONTROL İÇİN

Görsel denetim yöntemlerinin büyük çeşitliliği ve güvenilmezliği nedeniyle, mikro ve nano ölçekli özellikleri doğru bir şekilde ölçebilen araçlar deri finisaj işlemlerini iyileştirebilir. Derinin yüzey finisajının ölçülebilir bir şekilde anlaşılması, optimum finisaj sonuçları elde etmek için veriye dayalı yüzey işleme seçiminin iyileştirilmesine yol açabilir. NANOVEA 3D Temassız Profilometreler Bitmiş deri yüzeylerini ölçmek için kromatik konfokal teknolojisini kullanır ve piyasadaki en yüksek tekrarlanabilirlik ve doğruluğu sunar. Diğer tekniklerin prob teması, yüzey varyasyonu, açı, emilim veya yansıtma nedeniyle güvenilir veri sağlayamadığı durumlarda NANOVEA Profilometreler başarılı olur.

ÖLÇÜM HEDEFI

Bu uygulamada NANOVEA ST400, iki farklı ancak yakın işlenmiş deri numunesinin yüzey kalitesini ölçmek ve karşılaştırmak için kullanılmaktadır. Yüzey profilinden çeşitli yüzey parametreleri otomatik olarak hesaplanır.

Burada karşılaştırmalı değerlendirme için yüzey pürüzlülüğü, çukur derinliği, çukur aralığı ve çukur çapına odaklanacağız.

NANOVEA

ST400

SONUÇLAR: ÖRNEK 1

ISO 25178

YÜKSEKLIK PARAMETRELERI

DİĞER 3D PARAMETRELER

SONUÇLAR: ÖRNEKLEM 2

ISO 25178

YÜKSEKLIK PARAMETRELERI

DİĞER 3D PARAMETRELER

DERINLIK KARŞILAŞTIRMALI

Her numune için derinlik dağılımı.
'de çok sayıda derin çukur gözlenmiştir.
ÖRNEK 1.

KARŞILAŞTIRMALI PERDE

üzerindeki çukurlar arasındaki aralık ÖRNEK 1 biraz daha küçüktür
daha fazla
ÖRNEK 2ancak her ikisi de benzer bir dağılıma sahiptir

 KARŞILAŞTIRMALI ORTALAMA ÇAP

Ortalama çukur çaplarının benzer dağılımları,
ile
ÖRNEK 1 ortalama olarak biraz daha küçük ortalama çaplar göstermektedir.

SONUÇ

Bu uygulamada, NANOVEA ST400 3D Profilometrenin işlenmiş derinin yüzey kalitesini nasıl hassas bir şekilde karakterize edebileceğini gösterdik. Bu çalışmada, yüzey pürüzlülüğünü, çukur derinliğini, çukur aralığını ve çukur çapını ölçebilme kabiliyetine sahip olmak, iki numunenin finisajı ve kalitesi arasındaki görsel inceleme ile belirgin olmayabilecek farklılıkları ölçmemizi sağladı.

Genel olarak, ÖRNEK 1 ve ÖRNEK 2 arasındaki 3D taramaların görünümünde gözle görülür bir fark yoktu. Bununla birlikte, istatistiksel analizde iki numune arasında net bir ayrım vardır. NUMUNE 1, NUMUNE 2'ye kıyasla daha küçük çaplara, daha büyük derinliklere ve daha küçük çukur-çukur aralığına sahip daha yüksek miktarda çukur içermektedir.

Lütfen ek çalışmaların mevcut olduğunu unutmayın. Özel ilgi alanları, entegre bir AFM veya Mikroskop modülü ile daha fazla analiz edilebilir. NANOVEA 3D Profilometre hızları, yüksek hızlı denetim ihtiyaçlarını karşılamak üzere laboratuvar veya araştırma için 20 mm/s ila 1 m/s arasında değişir; özel boyutlandırma, hızlar, tarama yetenekleri, Sınıf 1 temiz oda uyumluluğu, indeksleme konveyörü veya hat içi veya çevrimiçi entegrasyon için üretilebilir.

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

Piston Aşınma Testi

Piston Aşınma Testi

Tribometre Kullanımı

Tarafından hazırlanmıştır

FRANK LIU

GİRİŞ

Sürtünme kaybı, bir dizel motor için yakıttaki toplam enerjinin yaklaşık 10%'sini oluşturur[1]. Sürtünme kaybının 40-55%'si güç silindiri sisteminden kaynaklanmaktadır. Sürtünmeden kaynaklanan enerji kaybı, güç silindiri sisteminde meydana gelen tribolojik etkileşimlerin daha iyi anlaşılmasıyla azaltılabilir.

Güç silindiri sistemindeki sürtünme kaybının önemli bir kısmı piston eteği ile silindir gömleği arasındaki temastan kaynaklanır. Piston eteği, yağlayıcı ve silindir arayüzleri arasındaki etkileşim, gerçek hayattaki bir motorda kuvvet, sıcaklık ve hızdaki sürekli değişiklikler nedeniyle oldukça karmaşıktır. Her bir faktörü optimize etmek, optimum motor performansı elde etmenin anahtarıdır. Bu çalışma, piston eteği-yağlayıcı-silindir gömleği (P-L-C) arayüzlerinde sürtünme kuvvetlerine ve aşınmaya neden olan mekanizmaların çoğaltılmasına odaklanacaktır.

 Güç silindirleri sisteminin şeması ve piston eteği-yağlayıcı-silindir gömleği arayüzleri.

[1] Bai, Dongfang. İçten yanmalı motorlarda piston eteği yağlamasının modellenmesi. Doktora tezi. MIT, 2012

PISTONLARIN TRIBOMETRE ILE TEST EDILMESININ ÖNEMI

Motor yağı, uygulaması için iyi tasarlanmış bir yağlayıcıdır. Baz yağa ek olarak, performansını artırmak için deterjanlar, dağıtıcılar, viskozite artırıcı (VI), aşınma/sürtünme önleyici maddeler ve korozyon önleyiciler gibi katkı maddeleri eklenir. Bu katkı maddeleri, yağın farklı çalışma koşulları altında nasıl davrandığını etkiler. Yağın davranışı P-L-C arayüzlerini etkiler ve metal-metal temasından kaynaklanan önemli aşınma veya hidrodinamik yağlama (çok az aşınma) olup olmadığını belirler.

Alanı dış değişkenlerden izole etmeden P-L-C arayüzlerini anlamak zordur. Olayı gerçek hayattaki uygulamasını temsil eden koşullarla simüle etmek daha pratiktir. Bu NANOVEA Tribometre bunun için idealdir. Çoklu kuvvet sensörleri, derinlik sensörü, damla damla yağlama modülü ve doğrusal ileri geri hareket kademesi ile donatılmış olan NANOVEA T2000, bir motor bloğunda meydana gelen olayları yakından taklit edebilir ve P-L-C arayüzlerini daha iyi anlamak için değerli veriler elde edebilir.

NANOVEA T2000 Tribometre üzerindeki Sıvı Modülü

Damla damla modülü bu çalışma için çok önemlidir. Pistonlar çok hızlı hareket edebildiğinden (3000 rpm'nin üzerinde), numuneyi daldırarak ince bir yağlayıcı filmi oluşturmak zordur. Bu sorunu çözmek için damla damla modülü, piston etek yüzeyine sabit miktarda yağlayıcıyı tutarlı bir şekilde uygulayabilmektedir.

Taze yağlayıcı uygulaması, yerinden oynamış aşınma kirleticilerinin yağlayıcının özelliklerini etkilemesi endişesini de ortadan kaldırır.

NANOVEA T2000

Yüksek Yük Tribometresi

ÖLÇÜM HEDEFI

Bu raporda piston eteği-yağlayıcı-silindir gömleği arayüzleri incelenecektir. Arayüzler, damla damla yağlayıcı modülü ile doğrusal bir ileri geri aşınma testi gerçekleştirilerek çoğaltılacaktır.

Yağlayıcı, soğuk başlatma ve optimum çalışma koşullarını karşılaştırmak için oda sıcaklığında ve ısıtılmış koşullarda uygulanacaktır. Arayüzlerin gerçek hayattaki uygulamalarda nasıl davrandığını daha iyi anlamak için COF ve aşınma oranı gözlemlenecektir.

TEST PARAMETRELERI

pistonlar üzerinde triboloji testi için

YÜKLE ............................ 100 N

TEST SÜRESİ ............................ 30 dakika

HIZ ............................ 2000 rpm

AMPLİTÜD ............................ 10 mm

TOPLAM MESAFE ............................ 1200 m

ETEK KAPLAMASI ............................ Moly-grafit

PİM MALZEMESİ ............................ Alüminyum Alaşım 5052

PİM ÇAPI ............................ 10 mm

YAĞLAYICI ............................ Motor Yağı (10W-30)

YAKLAŞIK. AKIŞ ORANI ............................ 60 mL/dak

SICAKLIK ............................ Oda sıcaklığı ve 90°C

DOĞRUSAL PISTONLU TEST SONUÇLARI

Bu deneyde karşı malzeme olarak A5052 kullanılmıştır. Motor blokları genellikle A356 gibi dökme alüminyumdan yapılırken, A5052 bu simülatif test için A356'ya benzer mekanik özelliklere sahiptir [2].

Test koşulları altında, önemli ölçüde aşınma
Oda sıcaklığında piston eteğinde gözlemlenen
90°C ile karşılaştırıldığında. Numunelerde görülen derin çizikler, statik malzeme ile piston eteği arasındaki temasın test boyunca sık sık meydana geldiğini göstermektedir. Oda sıcaklığındaki yüksek viskozite, yağın ara yüzeylerdeki boşlukları tamamen doldurmasını ve metal-metal teması oluşturmasını engelliyor olabilir. Daha yüksek sıcaklıklarda yağ incelir ve pim ile piston arasında akabilir. Sonuç olarak, yüksek sıcaklıkta önemli ölçüde daha az aşınma gözlenir. ŞEKİL 5 aşınma izinin bir tarafının diğer tarafa göre önemli ölçüde daha az aşındığını göstermektedir. Bu büyük olasılıkla yağ çıkışının konumundan kaynaklanmaktadır. Yağlayıcı film kalınlığı bir tarafta diğerine göre daha kalındı ve bu da eşit olmayan aşınmaya neden oldu.

 

 

[2] "5052 Alüminyum vs 356.0 Alüminyum." MakeItFrom.com, makeitfrom.com/compare/5052-O-Aluminum/A356.0-SG70B-A13560-Cast-Aluminum

Doğrusal pistonlu triboloji testlerinin COF'si yüksek ve düşük geçiş olarak ikiye ayrılabilir. Yüksek geçiş, numunenin ileri veya pozitif yönde hareket ettiğini, düşük geçiş ise numunenin ters veya negatif yönde hareket ettiğini ifade eder. RT yağı için ortalama COF'nin her iki yönde de 0,1'in altında olduğu gözlemlenmiştir. Geçişler arasındaki ortalama COF 0,072 ve 0,080 idi. 90°C yağın ortalama COF değerinin geçişler arasında farklı olduğu görülmüştür. Ortalama COF değerleri 0,167 ve 0,09 olarak gözlemlenmiştir. COF'deki fark, yağın pimin sadece bir tarafını düzgün bir şekilde ıslatabildiğine dair ek bir kanıt sunmaktadır. Hidrodinamik yağlama nedeniyle pim ve piston eteği arasında kalın bir film oluştuğunda yüksek COF elde edilmiştir. Karışık yağlama meydana geldiğinde diğer yönde daha düşük COF gözlemlenmiştir. Hidrodinamik yağlama ve karışık yağlama hakkında daha fazla bilgi için lütfen aşağıdaki uygulama notumuzu ziyaret edin Stribeck Eğrileri.

Tablo 1: Pistonlar üzerinde yağlanmış aşınma testi sonuçları.

ŞEKİL 1: Oda sıcaklığında yağ aşınma testi için COF grafikleri A ham profil B yüksek geçiş C düşük geçiş.

ŞEKİL 2: 90°C aşınma yağı testi için COF grafikleri A ham profil B yüksek geçiş C düşük geçiş.

ŞEKİL 3: RT motor yağı aşınma testinden aşınma izinin optik görüntüsü.

ŞEKİL 4: RT motor yağı aşınma testinden elde edilen aşınma izinin delik analizi hacmi.

ŞEKİL 5: RT motor yağı aşınma testinden aşınma izinin profilometri taraması.

ŞEKİL 6: 90°C motor yağı aşınma testinden elde edilen aşınma izinin optik görüntüsü

ŞEKİL 7: 90°C motor yağı aşınma testinden elde edilen aşınma izinin delik analizi hacmi.

ŞEKİL 8: 90°C motor yağı aşınma testinden elde edilen aşınma izinin profilometri taraması.

SONUÇ

Yağlanmış doğrusal ileri geri aşınma testi, bir pistonda meydana gelen olayları simüle etmek için bir piston üzerinde gerçekleştirilmiştir.
gerçek hayattaki operasyonel motor. Piston eteği-yağlayıcı-silindir gömleği arayüzleri bir motorun çalışması için çok önemlidir. Arayüzdeki yağlayıcı kalınlığı, piston eteği ve silindir gömleği arasındaki sürtünme veya aşınmadan kaynaklanan enerji kaybından sorumludur. Motoru optimize etmek için film kalınlığı, piston eteği ve silindir gömleğinin temas etmesine izin vermeden mümkün olduğunca ince olmalıdır. Ancak buradaki zorluk, sıcaklık, hız ve kuvvet değişikliklerinin P-L-C arayüzlerini nasıl etkileyeceğidir.

Geniş yükleme aralığı (2000 N'a kadar) ve hızı (15000 rpm'ye kadar) ile NANOVEA T2000 tribometre, bir motorda olası farklı koşulları simüle edebilmektedir. Bu konuda gelecekte yapılacak olası çalışmalar arasında P-L-C arayüzlerinin farklı sabit yük, salınımlı yük, yağlayıcı sıcaklığı, hız ve yağlayıcı uygulama yöntemi altında nasıl davranacağı yer almaktadır. Bu parametreler NANOVEA T2000 tribometre ile kolayca ayarlanarak piston eteği-yağlayıcı-silindir gömleği arayüzlerinin mekanizmaları hakkında tam bir anlayış sağlanabilir.

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

Taşınabilir 3D Profilometre ile Organik Yüzey Topografisi

ORGANIK YÜZEY TOPOGRAFYASI

PORTATİF 3D PROFİLOMETRE KULLANIMI

Tarafından hazırlanmıştır

CRAIG LEISING

GİRİŞ

Doğa, gelişmiş yüzey yapılarının geliştirilmesi için hayati bir ilham kaynağı haline gelmiştir. Doğada bulunan yüzey yapılarının anlaşılması, kertenkelelerin ayaklarına dayanan yapışma çalışmalarına, deniz hıyarlarının dokusal değişimine dayanan direnç çalışmalarına ve yapraklara dayanan iticilik çalışmalarına yol açmıştır. Bu yüzeyler biyomedikalden giysilere ve otomotive kadar çok sayıda potansiyel uygulama alanına sahiptir. Bu yüzey atılımlarından herhangi birinin başarılı olabilmesi için, yüzey özelliklerinin taklit edilebilmesi ve yeniden üretilebilmesi amacıyla üretim tekniklerinin geliştirilmesi gerekmektedir. Tanımlama ve kontrol gerektiren de bu süreçtir.

ORGANİK YÜZEYLER İÇİN TAŞINABİLİR 3 BOYUTLU TEMASSIZ OPTİK PROFİLLEYİCİNİN ÖNEMİ

Kromatik Işık teknolojisini kullanan NANOVEA Jr25 Portable Optik Profil Oluşturucu neredeyse her türlü malzemeyi ölçme konusunda üstün kapasiteye sahiptir. Bu, doğanın geniş yüzey özellikleri yelpazesinde bulunan benzersiz ve dik açıları, yansıtıcı ve emici yüzeyleri içerir. 3D temassız ölçümler, yüzey özelliklerinin daha eksiksiz anlaşılmasını sağlamak için tam bir 3D görüntü sağlar. 3 boyutlu yetenekler olmadan, doğanın yüzeylerinin tanımlanması yalnızca 2 boyutlu bilgilere veya mikroskop görüntülemeye bağlı olacaktır; bu da incelenen yüzeyi uygun şekilde taklit etmek için yeterli bilgi sağlamaz. Diğerlerinin yanı sıra doku, biçim, boyut da dahil olmak üzere yüzey özelliklerinin tamamını anlamak, başarılı imalat için kritik öneme sahip olacaktır.

Laboratuvar kalitesinde sonuçların sahada kolayca elde edilebilmesi, yeni araştırma fırsatlarına kapı açıyor.

ÖLÇÜM HEDEFI

Bu uygulamada NANOVEA Jr25 bir yaprağın yüzeyini ölçmek için kullanılır. 3D yüzey taramasından sonra otomatik olarak hesaplanabilen sonsuz bir yüzey parametresi listesi vardır.

Burada 3D yüzeyi inceleyeceğiz ve
Aşağıdakiler de dahil olmak üzere daha fazla analiz edilecek ilgi alanları
yüzey pürüzlülüğünün, kanalların ve topografyanın ölçülmesi ve incelenmesi

NANOVEA

JR25

TEST KOŞULLARI

FURÇ DERİNLİĞİ

Ortalama oluk yoğunluğu: 16.471 cm/cm2
Ortalama oluk derinliği: 97,428 μm
Maksimum derinlik: 359.769 μm

SONUÇ

Bu uygulamada, aşağıdaki yöntemlerin nasıl kullanıldığını gösterdik NANOVEA Jr25 taşınabilir 3D Temassız Optik Profilleyici, sahadaki bir yaprak yüzeyinin hem topografyasını hem de nanometre ölçeğindeki ayrıntılarını hassas bir şekilde karakterize edebilir. Bu 3D yüzey ölçümlerinden, ilgilenilen alanlar hızlı bir şekilde tanımlanabilir ve ardından sonsuz çalışma listesiyle analiz edilebilir (Boyut, Pürüzlülük Son Doku, Şekil Form Topografya, Düzlük Çarpıklık Düzlemsellik, Hacim Alanı, Basamak Yüksekliği ve diğerleri). Daha fazla detayı analiz etmek için 2D kesit kolayca seçilebilir. Bu bilgilerle organik yüzeyler, eksiksiz bir yüzey ölçüm kaynakları seti ile geniş bir şekilde araştırılabilir. Özel ilgi alanları, masa üstü modellerde entegre AFM modülü ile daha fazla analiz edilebilirdi.

NANOVEA ayrıca saha araştırmaları için taşınabilir yüksek hızlı profilometreler ve çok çeşitli laboratuvar tabanlı sistemler sunmanın yanı sıra laboratuvar hizmetleri de sağlamaktadır.

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

Zımpara Kağıdı Pürüzlülük Profilometresi

Zımpara Kağıdı: Pürüzlülük ve Parçacık Çapı Analizi

Zımpara Kağıdı: Pürüzlülük ve Parçacık Çapı Analizi

Daha fazla bilgi edinin

SANDPAPER

Pürüzlülük ve Parçacık Çapı Analizi

Tarafından hazırlanmıştır

FRANK LIU

GİRİŞ

Zımpara kağıdı, aşındırıcı olarak kullanılan ve piyasada yaygın olarak bulunan bir üründür. Zımpara kağıdının en yaygın kullanımı, kaplamaları çıkarmak veya aşındırıcı özellikleriyle bir yüzeyi parlatmaktır. Bu aşındırıcı özellikler, her biri zımpara kağıdının ne kadar pürüzsüz veya
pürüzlü bir yüzey kalitesi sağlayacaktır. İstenen aşındırıcı özellikleri elde etmek için, zımpara kağıdı üreticileri aşındırıcı partiküllerin belirli bir boyutta olmasını ve çok az sapma göstermesini sağlamalıdır. Zımpara kağıdının kalitesini ölçmek için NANOVEA'nın 3D Temassız Profilometre bir örnek alanın aritmetik ortalama (Sa) yükseklik parametresini ve ortalama partikül çapını elde etmek için kullanılabilir.

3 BOYUTLU TEMASSIZ OPTİĞİN ÖNEMİ ZIMPARA KAĞIDI IÇIN PROFILLEYICI

Zımpara kağıdı kullanırken, tutarlı yüzey finisajları elde etmek için aşındırıcı partiküller ile zımparalanan yüzey arasındaki etkileşim düzgün olmalıdır. Bunu ölçmek için zımpara kağıdının yüzeyi NANOVEA'nın 3D Temassız Optik Profilleyicisi ile gözlemlenerek parçacık boyutları, yükseklikleri ve aralıklarındaki sapmalar görülebilir.

ÖLÇÜM HEDEFI

Bu çalışmada, beş farklı zımpara kumu (120,
180, 320, 800 ve 2000) ile taranır.
NANOVEA ST400 3D Temassız Optik Profilleyici.
Sa taramadan çıkarılır ve parçacık
boyutu Motifs analizi yapılarak hesaplanır.
eşdeğer çaplarını bulun

NANOVEA

ST400

SONUÇLAR & TARTIŞMA

Zımpara kağıdı, beklendiği gibi kum arttıkça yüzey pürüzlülüğü (Sa) ve partikül boyutunda azalmaktadır. Sa 42,37 μm ile 3,639 μm arasında değişmektedir. Partikül boyutu 127 ± 48,7 ile 21,27 ± 8,35 arasında değişmektedir. Daha büyük partiküller ve yüksek yükseklik değişimleri, düşük yükseklik değişimine sahip daha küçük partiküllerin aksine yüzeyler üzerinde daha güçlü aşındırıcı etki yaratır.
Lütfen verilen yükseklik parametrelerinin tüm tanımlarının sayfa.A.1'de listelendiğini unutmayın.

TABLO 1: Zımpara kağıdı kumları ve yükseklik parametreleri arasında karşılaştırma.

TABLO 2: Zımpara kağıdı kumları ve partikül çapı arasındaki karşılaştırma.

ZIMPARA KAĞIDININ 2D VE 3D GÖRÜNÜMÜ 

Aşağıda zımpara kağıdı örnekleri için sahte renk ve 3D görünüm yer almaktadır.
Biçim veya dalgalanmayı gidermek için 0,8 mm'lik bir gauss filtresi kullanılmıştır.

MOTİF ANALİZİ

Yüzeydeki parçacıkları doğru bir şekilde bulmak için, yükseklik ölçeği eşiği yalnızca zımpara kağıdının üst katmanını gösterecek şekilde yeniden tanımlanmıştır. Daha sonra tepe noktalarını tespit etmek için bir motif analizi yapılmıştır.

SONUÇ

NANOVEA'nın 3D Temassız Optik Profilleyicisi, mikro ve nano özelliklere sahip yüzeyleri hassas bir şekilde tarama kabiliyeti sayesinde çeşitli zımpara kağıdı kumlarının yüzey özelliklerini incelemek için kullanıldı.

Yüzey yüksekliği parametreleri ve eşdeğer partikül çapları, 3D taramaları analiz etmek için gelişmiş yazılım kullanılarak her bir zımpara kağıdı numunesinden elde edilmiştir. Kum boyutu arttıkça, yüzey pürüzlülüğü (Sa) ve partikül boyutunun beklendiği gibi azaldığı gözlemlenmiştir.

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

Strafor Yüzey Sınır Ölçümü Profilometri

Yüzey Sınır Ölçümü

3D Profilometri Kullanarak Yüzey Sınır Ölçümü

Daha fazla bilgi edinin

YÜZEY SINIR ÖLÇÜMÜ

3 BOYUTLU PROFILOMETRI KULLANARAK

Tarafından hazırlanmıştır

Craig Leising

GİRİŞ

Yüzey özelliklerinin, desenlerin, şekillerin vb. arayüzünün oryantasyon için değerlendirildiği çalışmalarda, ölçüm profilinin tamamı üzerinde ilgilenilen alanları hızlı bir şekilde belirlemek faydalı olacaktır. Kullanıcı, bir yüzeyi önemli alanlara bölerek, incelenen tüm yüzey profilindeki işlevsel rollerini anlamak için sınırları, tepeleri, çukurları, alanları, hacimleri ve diğerlerini hızlı bir şekilde değerlendirebilir. Örneğin, metallerin tane sınırı görüntülemesinde olduğu gibi, analizin önemi birçok yapının arayüzü ve bunların genel yönelimidir. Her bir ilgi alanının anlaşılmasıyla, genel alan içindeki kusurlar ve / veya anormallikler tanımlanabilir. Tane sınırı görüntüleme tipik olarak Profilometre kapasitesini aşan bir aralıkta çalışılmasına ve yalnızca 2D görüntü analizi olmasına rağmen, burada gösterilecek olan kavramı 3D yüzey ölçüm avantajlarıyla birlikte daha büyük ölçekte göstermek için yararlı bir referanstır.

YÜZEY AYIRMA ÇALIŞMASI İÇİN 3 BOYUTLU TEMASSIZ PROFİLOMETRENİN ÖNEMİ

Temaslı problar veya interferometri gibi diğer tekniklerin aksine, 3D Temassız ProfilometreEksenel kromatizmi kullanarak neredeyse her yüzeyi ölçebilir, açık aşamalandırma nedeniyle numune boyutları büyük ölçüde değişebilir ve numune hazırlamaya gerek yoktur. Nanodan makroya kadar aralık, yüzey profili ölçümü sırasında numune yansıtma veya absorpsiyondan sıfır etkiyle elde edilir, yüksek yüzey açılarını ölçme konusunda gelişmiş bir yeteneğe sahiptir ve sonuçların yazılımla manipülasyonu gerekmez. Herhangi bir malzemeyi kolayca ölçün: şeffaf, opak, aynasal, dağınık, cilalı, pürüzlü vb. Temassız Profilometre tekniği, yüzey sınır analizine ihtiyaç duyulduğunda yüzey çalışmalarını en üst düzeye çıkarmak için ideal, geniş ve kullanıcı dostu bir yetenek sağlar; kombine 2D ve 3D yeteneğinin avantajlarıyla birlikte.

ÖLÇÜM HEDEFI

Bu uygulamada straforun yüzey alanını ölçmek için Nanovea ST400 Profilometre kullanılmıştır. Sınırlar, NANOVEA ST400 kullanılarak eş zamanlı olarak elde edilen topografya ile birlikte yansıyan bir yoğunluk dosyası birleştirilerek oluşturulmuştur. Bu veriler daha sonra her bir strafor "tanesinin" farklı şekil ve boyut bilgilerini hesaplamak için kullanılmıştır.

NANOVEA

ST400

BULGULAR VE TARTIŞMA: 2B Yüzey Sınır Ölçümü

Tane sınırlarını net bir şekilde tanımlamak için yansıyan yoğunluk görüntüsü (sağ altta) ile maskelenmiş topografi görüntüsü (sol altta). 565µm çapın altındaki tüm taneler filtre uygulanarak göz ardı edilmiştir.

Toplam tahıl sayısı: 167
Tahıllar tarafından işgal edilen toplam projeksiyon alanı: 166,917 mm² (64,5962 %)
Sınırlar tarafından işgal edilen toplam öngörülen alan: (35.4038 %)
Tane yoğunluğu: 0,646285 tane / mm2

Alan = 0,999500 mm² +/- 0,491846 mm²
Çevre = 9114,15 µm +/- 4570,38 µm
Eşdeğer çap = 1098,61 µm +/- 256,235 µm
Ortalama çap = 945.373 µm +/- 248.344 µm
Min çap = 675.898 µm +/- 246.850 µm
Maksimum çap = 1312,43 µm +/- 295,258 µm

BULGULAR VE TARTIŞMA: 3D Yüzey Sınır Ölçümü

Elde edilen 3D topografi verileri kullanılarak her bir tanenin hacmi, yüksekliği, tepe noktası, en-boy oranı ve genel şekil bilgileri analiz edilebilmektedir. Kaplanan toplam 3D alan: 2.525mm3

SONUÇ

Bu uygulamada, NANOVEA 3D Temassız Profilometrenin strafor yüzeyini nasıl hassas bir şekilde karakterize edebileceğini gösterdik. İstatistiksel bilgiler, ilgilenilen yüzeyin tamamında veya ister tepe ister çukur olsun, tek tek taneler üzerinde elde edilebilir. Bu örnekte, kullanıcı tarafından tanımlanan boyuttan daha büyük tüm taneler alan, çevre, çap ve yüksekliği göstermek için kullanılmıştır. Burada gösterilen özellikler, biyo medikalden mikro işleme uygulamalarına ve diğer birçok uygulamaya kadar doğal ve önceden imal edilmiş yüzeylerin araştırılması ve kalite kontrolü için kritik öneme sahip olabilir. 

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

NANOVEA ile Profilometre Kullanarak Kontur Ölçümü

Kauçuk Sırt Kontur Ölçümü

Kauçuk Sırt Kontur Ölçümü

Daha Fazla Bilgi

 

 

 

 

 

 

 

 

 

 

 

 

 

KAUÇUK SIRT KONTUR ÖLÇÜMÜ

3D OPTIK PROFILLEYICI KULLANARAK

Kauçuk Sırt Kontur Ölçümü - NANOVEA Profiler

Tarafından hazırlanmıştır

ANDREA HERRMANN

GİRİŞ

Tüm malzemeler gibi, kauçuğun sürtünme katsayısı da aşağıdakilerle ilişkilidir kısmen yüzey pürüzlülüğüne bağlıdır. Araç lastiği uygulamalarında yol ile çekiş çok önemlidir. Bunda hem yüzey pürüzlülüğü hem de lastiğin dişleri rol oynar. Bu çalışmada, lastik yüzeyinin ve sırtının pürüzlülüğü ve boyutları analiz edilmiştir.

* ÖRNEK

ÖNEM

3 BOYUTLU TEMASSIZ PROFILOMETRI

KAUÇUK ÇALIŞMALARI IÇIN

Dokunma probları veya interferometri gibi diğer tekniklerin aksine, NANOVEA'nın 3D Temassız Optik Profil Oluşturucular neredeyse her yüzeyi ölçmek için eksenel kromatizmi kullanın. 

Profiler sisteminin açık evrelemesi çok çeşitli numune boyutlarına izin verir ve sıfır numune hazırlığı gerektirir. Nano ila makro aralıktaki özellikler, numune yansıtıcılığı veya emiliminden sıfır etkilenerek tek bir tarama sırasında tespit edilebilir. Ayrıca bu profilleyiciler, sonuçların yazılımla manipüle edilmesini gerektirmeden yüksek yüzey açılarını ölçmek için gelişmiş bir yeteneğe sahiptir.

Her türlü malzemeyi kolayca ölçün: şeffaf, opak, speküler, difüzif, cilalı, pürüzlü vb. NANOVEA 3D Temassız Profilleyicilerin ölçüm tekniği, birleşik 2D ve 3D özelliğinin avantajlarıyla birlikte yüzey çalışmalarını en üst düzeye çıkarmak için ideal, geniş ve kullanıcı dostu bir yetenek sağlar.

ÖLÇÜM HEDEFI

Bu uygulamada, NANOVEA ST400'ü sergiliyoruz, 3D Temassız Optik Profilleyici ölçümü kauçuk bir lastiğin yüzeyi ve dişleri.

Temsil edecek kadar büyük bir örnek yüzey alanı tüm lastik yüzeyi rastgele seçilmiştir Bu çalışma için. 

Kauçuğun özelliklerini ölçmek için aşağıdakileri kullandık NANOVEA Ultra 3D analiz yazılımı ile kontur boyutlarını, derinliğini ölçün, yüzeyin pürüzlülüğü ve gelişmiş alanı.

NANOVEA

ST400

ANALİZ: LASTİK DİŞİ

Basamakların 3D Görünümü ve Yanlış Renk Görünümü, 3D yüzey tasarımlarını haritalamanın değerini göstermektedir. Kullanıcılara, basamakların boyutunu ve şeklini farklı açılardan doğrudan gözlemlemek için basit bir araç sağlar. Gelişmiş Kontur Analizi ve Basamak Yüksekliği Analizi, örnek şekillerin ve tasarımların hassas boyutlarını ölçmek için son derece güçlü araçlardır

GELİŞMİŞ KONTUR ANALİZİ

BASAMAK YÜKSEKLİĞİ ANALİZİ

ANALİZ: KAUÇUK YÜZEY

Kauçuk yüzey, aşağıdaki şekillerde örnek olarak gösterildiği gibi yerleşik yazılım araçları kullanılarak çeşitli şekillerde ölçülebilir. Yüzey pürüzlülüğünün 2,688 μm olduğu ve geliştirilen alan ile öngörülen alanın 9,410 mm² ile 8,997 mm² olduğu gözlemlenebilir. Bu bilgiler, yüzey kalitesi ile farklı kauçuk formülasyonlarının ve hatta farklı yüzey aşınma derecelerine sahip kauçuğun çekişi arasındaki ilişkiyi incelememize olanak tanır.

SONUÇ

Bu uygulamada, NANOVEA'nın nasıl kullanıldığını gösterdik 3D Temassız Optik Profilleyici, kauçuğun yüzey pürüzlülüğünü ve sırt boyutlarını hassas bir şekilde karakterize edebilir.

Veriler 2,69 µm'lik bir yüzey pürüzlülüğü ve 9 mm²'lik bir projeksiyon alanı ile 9,41 mm²'lik bir gelişmiş alan göstermektedir. Kauçuk sırtların çeşitli boyutları ve yarıçapları ölçülmüştür.

Bu çalışmada sunulan bilgiler, farklı sırt tasarımlarına, formülasyonlara veya farklı aşınma derecelerine sahip kauçuk lastiklerin performansını karşılaştırmak için kullanılabilir. Burada gösterilen veriler, Türkiye'deki verilerin sadece bir kısmını temsil etmektedir. Ultra 3D analiz yazılımında bulunan hesaplamalar.

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

3D Optik Profilleyici Kullanarak Balık Pulu Yüzey Analizi

3D Optik Profilleyici Kullanarak Balık Pulu Yüzey Analizi

Daha fazla bilgi edinin

BALIK PULU YÜZEY ANALIZI

3D OPTİK PROFİLLEYİCİ kullanarak

Balık Pulu profilometresi

Tarafından hazırlanmıştır

Andrea Novitsky

GİRİŞ

Balık pulunun morfolojisi, desenleri ve diğer özellikleri NANOVEA kullanılarak incelenir 3D Temassız Optik Profil Oluşturucu. Bu biyolojik numunenin hassas doğası ve çok küçük ve yüksek açılı oyukları, profil oluşturucunun temassız tekniğinin önemini de vurgulamaktadır. Ölçekteki oluklara circuli denir ve balığın yaşını tahmin etmek için incelenebilir ve hatta bir ağacın halkalarına benzer şekilde farklı büyüme hızlarının olduğu dönemleri ayırt etmek için incelenebilir. Bu, aşırı avlanmayı önlemek amacıyla yabani balık popülasyonlarının yönetimi açısından çok önemli bir bilgidir.

BİYOLOJİK ÇALIŞMALAR İÇİN 3D Temassız Profilometrinin Önemi

Dokunma probları veya interferometri gibi diğer tekniklerin aksine, eksenel kromatizma kullanan 3D Temassız Optik Profilleyici neredeyse her yüzeyi ölçebilir. Açık evreleme sayesinde numune boyutları büyük ölçüde değişebilir ve numune hazırlığı gerekmez. Nano ila makro aralıktaki özellikler, numune yansıtıcılığı veya emiliminden sıfır etkilenen bir yüzey profili ölçümü sırasında elde edilir. Cihaz, sonuçlarda yazılım manipülasyonu olmadan yüksek yüzey açılarını ölçmek için gelişmiş bir yetenek sağlar. Şeffaf, opak, speküler, difüzif, cilalı veya pürüzlü olsun, her türlü malzeme kolayca ölçülebilir. Bu teknik, birleşik 2D ve 3D özelliklerinin avantajlarının yanı sıra yüzey çalışmalarını en üst düzeye çıkarmak için ideal, geniş ve kullanıcı dostu bir yetenek sağlar.

ÖLÇÜM HEDEFI

Bu uygulamada, bir terazinin yüzeyinin kapsamlı analizini sağlayan, yüksek hızlı sensöre sahip 3D Temassız Profilleyici NANOVEA ST400'ü sergiliyoruz.

Cihaz, merkez alanın daha yüksek çözünürlüklü bir taramasıyla birlikte tüm numuneyi taramak için kullanılmıştır. Karşılaştırma için ölçeğin dış ve iç yan yüzey pürüzlülüğü de ölçülmüştür.

NANOVEA

ST400

Dış Ölçeğin 3D ve 2D Yüzey Karakterizasyonu

Dış ölçeğin 3D Görünümü ve Yanlış Renk Görünümü, parmak izine veya bir ağacın halkalarına benzer karmaşık bir yapı gösterir. Bu, kullanıcılara kantarın yüzey karakterizasyonunu farklı açılardan doğrudan gözlemlemek için basit bir araç sağlar. Dış kantarın diğer çeşitli ölçümleri, kantarın dış ve iç tarafının karşılaştırılmasıyla birlikte gösterilmektedir.

Balık Pulu Tarama 3D Görünüm Profilometresi
Balık Pulu Tarama Hacmi 3D Profilometre
Balık Ölçeği Tarama Adım Yüksekliği 3D Optik Profilleyici

YÜZEY PÜRÜZLÜLÜĞÜ KARŞILAŞTIRMASI

Balık Pulu Profilometresi 3D Tarama

SONUÇ

Bu uygulamada, NANOVEA 3D Temassız Optik Profilleyicinin bir balık pulunu çeşitli şekillerde nasıl karakterize edebileceğini gösterdik. 

Pulun dış ve iç yüzeyleri, sırasıyla 15,92μm ve 1,56μm pürüzlülük değerleri ile yalnızca yüzey pürüzlülüğü ile kolayca ayırt edilebilir. Ayrıca, pulun dış yüzeyindeki oluklar veya sirküller analiz edilerek bir balık pulu hakkında kesin ve doğru bilgiler edinilebilir. Sirkül bantlarının merkez odaktan uzaklığı ölçülmüş ve sirküllerin yüksekliğinin de ortalama olarak yaklaşık 58μm yüksekliğinde olduğu bulunmuştur. 

Burada gösterilen veriler, analiz yazılımında mevcut olan hesaplamaların yalnızca bir kısmını temsil etmektedir.

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

Fresnel Lens Topografyası

FRESNEL LENS

3 BOYUTLU PROFILOMETRI KULLANARAK BOYUTLAR

Tarafından hazırlanmıştır

Duanjie Li & Benjamin Mell

GİRİŞ

Mercek, ışığı ileten ve kıran eksenel simetriye sahip optik bir cihazdır. Basit bir mercek, ışığı yakınlaştırmak veya uzaklaştırmak için tek bir optik bileşenden oluşur. Küresel yüzeyler bir mercek yapmak için ideal şekil olmasa da, genellikle camın taşlanıp parlatılabileceği en basit şekil olarak kullanılırlar.

Bir Fresnel mercek, bir inçin birkaç binde biri kadar küçük bir genişliğe sahip basit bir merceğin ince parçaları olan bir dizi eş merkezli halkadan oluşur. Fresnel mercekler, aynı optik özelliklere sahip geleneksel merceklere kıyasla, gerekli malzemenin ağırlığını ve hacmini azaltan kompakt bir tasarıma sahip geniş bir diyafram açıklığı ve kısa odak uzaklığı içerir. Fresnel merceğinin ince geometrisi nedeniyle çok az miktarda ışık emilim yoluyla kaybolur.

FRESNEL LENS DENETİMİ İÇİN 3 BOYUTLU TEMASSIZ PROFİLOMETRİNİN ÖNEMİ

Fresnel lensler otomotiv endüstrisinde, deniz fenerlerinde, güneş enerjisinde ve uçak gemilerinin optik iniş sistemlerinde yaygın olarak kullanılmaktadır. Lenslerin şeffaf plastikten kalıplanması veya damgalanması, üretimlerini uygun maliyetli hale getirebilir. Fresnel lenslerin hizmet kalitesi çoğunlukla eşmerkezli halkasının hassasiyetine ve yüzey kalitesine bağlıdır. NANOVEA, dokunmatik prob tekniğinden farklı olarak Optik Profilciler 3 boyutlu yüzey ölçümlerini yüzeye dokunmadan gerçekleştirerek yeni çizik oluşma riskini ortadan kaldırın. Kromatik Işık tekniği, farklı geometrilerdeki mercekler gibi karmaşık şekillerin hassas şekilde taranması için idealdir.

FRESNEL MERCEK ŞEMASI

Şeffaf plastik Fresnel lensler kalıplama veya damgalama yoluyla üretilebilir. Kusurlu üretim kalıplarını veya damgalarını ortaya çıkarmak için doğru ve etkili kalite kontrolü kritik önem taşır. Eşmerkezli halkaların yüksekliği ve eğimi ölçülerek, ölçülen değerler mercek üreticisi tarafından verilen spesifikasyon değerleriyle karşılaştırılarak üretim farklılıkları tespit edilebilir.

Lens profilinin hassas ölçümü, kalıpların veya damgaların üretici spesifikasyonlarına uyacak şekilde düzgün bir şekilde işlenmesini sağlar. Ayrıca, damga zaman içinde aşınarak ilk şeklini kaybetmesine neden olabilir. Lens üreticisi spesifikasyonundan sürekli sapma, kalıbın değiştirilmesi gerektiğinin olumlu bir göstergesidir.

ÖLÇÜM HEDEFI

Bu uygulamada, karmaşık bir şekle sahip optik bir bileşenin kapsamlı 3D profil analizini sağlayan yüksek hızlı sensörlü bir 3D Temassız Profilleyici olan NANOVEA ST400'ü sergiliyoruz. Kromatik Işık teknolojimizin olağanüstü yeteneklerini göstermek için kontur analizi bir Fresnel lens üzerinde gerçekleştirilmiştir.

NANOVEA

ST400

Bu çalışma için kullanılan 2.3" x 2.3" akrilik Fresnel lens aşağıdakilerden oluşmaktadır 

bir dizi eşmerkezli halka ve karmaşık bir tırtıklı kesit profili. 

1,5" odak uzaklığına, 2,0" efektif boyut çapına sahiptir, 

İnç başına 125 oluk ve 1,49'luk bir kırılma indisi.

Fresnel lensin NANOVEA ST400 taraması, merkezden dışa doğru hareket eden eş merkezli halkaların yüksekliğinde gözle görülür bir artış olduğunu göstermektedir.

2D YANLIŞ RENK

Yükseklik Gösterimi

3D GÖRÜNÜM

ÇIKARILMIŞ PROFIL

TEPE & VADİ

Profilin Boyutsal Analizi

SONUÇ

Bu uygulamada, NANOVEA ST400 temassız Optik Profilleyicinin Fresnel lenslerin yüzey topografisini doğru bir şekilde ölçtüğünü gösterdik. 

Yükseklik ve hatve boyutları, NANOVEA analiz yazılımı kullanılarak karmaşık tırtıklı profilden doğru bir şekilde belirlenebilir. Kullanıcılar, üretilen lenslerin halka yüksekliği ve hatve boyutlarını ideal halka spesifikasyonuyla karşılaştırarak üretim kalıplarının veya damgalarının kalitesini etkin bir şekilde denetleyebilir.

Burada gösterilen veriler, analiz yazılımında mevcut olan hesaplamaların yalnızca bir kısmını temsil etmektedir. 

NANOVEA Optik Profilleyiciler, Yarı İletkenler, Mikroelektronik, Güneş, Fiber Optik, Otomotiv, Havacılık ve Uzay, Metalurji, İşleme, Kaplama, İlaç, Biyomedikal, Çevre ve diğer birçok alanda neredeyse her yüzeyi ölçer.

 

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

İşlenmiş Parçalar Kalite Kontrol

İşlenmiş Parçaların Kontrolü

İŞLENMİŞ PARÇALAR

3D profilometri kullanarak CAD modelinden denetim

Yazar:

Duanjie Li, PhD

Tarafından revize edildi

Jocelyn Esparza

Profilometre ile İşlenmiş Parçaların Kontrolü

GİRİŞ

Karmaşık geometriler oluşturabilen hassas işlemeye olan talep, bir dizi sektörde artış göstermektedir. Havacılık, tıp ve otomobilden teknoloji dişlilerine, makinelere ve müzik aletlerine kadar, sürekli yenilik ve evrim, beklentileri ve doğruluk standartlarını yeni zirvelere taşıyor. Sonuç olarak, ürünlerin en yüksek kalitede olmasını sağlamak için titiz denetim tekniklerine ve araçlarına olan talebin arttığını görüyoruz.

Parça Denetimi için 3D Temassız Profilometrinin Önemi

İşlenmiş parçaların özelliklerini CAD modelleriyle karşılaştırmak, toleransları ve üretim standartlarına uygunluğu doğrulamak için gereklidir. Parçaların aşınması ve yıpranması değiştirilmelerini gerektirebileceğinden, servis süresi boyunca denetim de çok önemlidir. Gerekli spesifikasyonlardan herhangi bir sapmanın zamanında tespit edilmesi, maliyetli onarımların, üretimin durmasının ve itibarın zedelenmesinin önlenmesine yardımcı olacaktır.

NANOVEA, dokunmalı prob tekniğinden farklı olarak Optik Profilciler Sıfır temasla 3 boyutlu yüzey taramaları gerçekleştirerek karmaşık şekillerin en yüksek doğrulukla hızlı, hassas ve tahribatsız ölçümlerine olanak tanır.

ÖLÇÜM HEDEFI

Bu uygulamada, boyut, yarıçap ve pürüzlülük açısından kapsamlı bir yüzey denetimi gerçekleştiren, yüksek hızlı sensöre sahip 3D Temassız Profilleyici NANOVEA HS2000'i sergiliyoruz. 

Hepsi 40 saniyenin altında.

NANOVEA

HS2000

CAD MODELİ

İşlenen parçanın boyutunun ve yüzey pürüzlülüğünün hassas bir şekilde ölçülmesi, istenen özellikleri, toleransları ve yüzey kalitesini karşıladığından emin olmak için kritik öneme sahiptir. İncelenecek parçanın 3D modeli ve mühendislik çizimi aşağıda sunulmuştur. 

YANLIŞ RENK GÖRÜNÜMÜ

CAD modelinin ve taranmış işlenmiş parça yüzeyinin yanlış renk görünümü ŞEKİL 3'te karşılaştırılmıştır. Numune yüzeyindeki yükseklik değişimi renkteki değişimle gözlemlenebilir.

İşlenmiş parçanın boyutsal toleransını daha fazla doğrulamak için ŞEKİL 2'de gösterildiği gibi 3D yüzey taramasından üç 2D profil çıkarılır.

PROFİLLER KARŞILAŞTIRMA & SONUÇLAR

Profil 1 ila 3, ŞEKİL 3 ila 5'te gösterilmektedir. Kantitatif tolerans denetimi, titiz üretim standartlarını korumak için ölçülen profil CAD modeli ile karşılaştırılarak gerçekleştirilir. Profil 1 ve Profil 2, kavisli işlenmiş parça üzerindeki farklı alanların yarıçapını ölçer. Profil 2'nin yükseklik değişimi 156 mm uzunlukta 30 µm'dir ve istenen ±125 µm tolerans gereksinimini karşılamaktadır. 

Analiz yazılımı, bir tolerans sınır değeri belirleyerek işlenen parçanın başarılı veya başarısız olduğunu otomatik olarak belirleyebilir.

Profilometre ile Makine Parçalarının Kontrolü

İşlenmiş parçanın yüzeyinin pürüzlülüğü ve homojenliği, kalite ve işlevselliğinin sağlanmasında önemli bir rol oynar. ŞEKİL 6, yüzey kalitesini ölçmek için kullanılan işlenmiş parçanın ana taramasından çıkarılan bir yüzey alanıdır. Ortalama yüzey pürüzlülüğü (Sa) 2,31 µm olarak hesaplanmıştır.

SONUÇ

Bu çalışmada, yüksek hızlı bir sensörle donatılmış NANOVEA HS2000 Temassız Profilleyicinin boyutlar ve pürüzlülük açısından nasıl kapsamlı bir yüzey denetimi gerçekleştirdiğini gösterdik. 

Yüksek çözünürlüklü taramalar, kullanıcıların işlenmiş parçaların ayrıntılı morfolojisini ve yüzey özelliklerini ölçmelerini ve bunları CAD modelleriyle nicel olarak karşılaştırmalarını sağlar. Cihaz ayrıca çizikler ve çatlaklar da dahil olmak üzere tüm kusurları tespit edebiliyor. 

Gelişmiş kontur analizi, yalnızca işlenmiş parçaların belirlenen spesifikasyonları karşılayıp karşılamadığını belirlemek için değil, aynı zamanda aşınmış bileşenlerin arıza mekanizmalarını değerlendirmek için de benzersiz bir araç olarak hizmet eder.

Burada gösterilen veriler, her NANOVEA Optik Profilleyici ile birlikte gelen gelişmiş analiz yazılımı ile mümkün olan hesaplamaların yalnızca bir kısmını temsil etmektedir.

 

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM