USA/GLOBALNE: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT

Wymiary i wykończenie powierzchni rur polimerowych

Znaczenie analizy wymiarowej i powierzchniowej rur polimerowych

Rury wykonane z materiału polimerowego są powszechnie stosowane w wielu gałęziach przemysłu, od motoryzacyjnej, medycznej, elektrycznej i wielu innych. W tym badaniu przy użyciu Nanovea badano cewniki medyczne wykonane z różnych materiałów polimerowych Bezkontaktowy profilometr 3D do pomiaru chropowatości powierzchni, morfologii i wymiarów. Chropowatość powierzchni ma kluczowe znaczenie dla cewników, ponieważ wiele problemów z cewnikami, w tym infekcje, urazy fizyczne i stany zapalne mogą być związane z powierzchnią cewnika. Właściwości mechaniczne, takie jak współczynnik tarcia, można również badać poprzez obserwację właściwości powierzchni. Te wymierne dane można uzyskać w celu zapewnienia, że cewnik może być używany w zastosowaniach medycznych.

W porównaniu z mikroskopią optyczną i mikroskopią elektronową, profilometria bezkontaktowa 3D wykorzystująca chromatyzm osiowy jest wysoce preferowana do charakteryzowania powierzchni cewników ze względu na możliwość pomiaru kątów/krzywizn, możliwość pomiaru powierzchni materiałów pomimo ich przezroczystości lub refleksyjności, minimalne przygotowanie próbki i nieinwazyjny charakter. W przeciwieństwie do konwencjonalnej mikroskopii optycznej, wysokość powierzchni może być uzyskana i wykorzystana do analizy obliczeniowej; np. znalezienie wymiarów i usunięcie formy w celu znalezienia chropowatości powierzchni. Posiadanie niewielkiego przygotowania próbki, w przeciwieństwie do mikroskopii elektronowej, oraz bezkontaktowy charakter pozwala również na szybkie zbieranie danych bez obawy o zanieczyszczenie i błąd związany z przygotowaniem próbki.

Cel pomiaru

W tej aplikacji Nanovea 3D Non-Contact Profilometer jest używany do skanowania powierzchni dwóch cewników: jednego wykonanego z TPE (Thermoplastic Elastomer) i drugiego z PVC (Polyvinyl Chloride). Uzyskane i porównane zostaną parametry morfologii, wymiaru promieniowego i wysokości obu cewników.

 

 

Wyniki i dyskusja

Powierzchnia 3D

Pomimo krzywizny na rurkach polimerowych, profilometr bezkontaktowy Nanovea 3D może skanować powierzchnię cewników. Z wykonanego skanu można uzyskać obraz 3D do szybkiej, bezpośredniej kontroli wizualnej powierzchni.

 
 

 

Analiza dwuwymiarowa

Zewnętrzny wymiar promieniowy został uzyskany poprzez wyodrębnienie profilu z oryginalnego skanu i dopasowanie łuku do profilu. Pokazuje to zdolność profilometru bezkontaktowego 3D do przeprowadzania szybkiej analizy wymiarowej w zastosowaniach związanych z kontrolą jakości. Można również łatwo uzyskać wiele profili wzdłuż długości cewnika.

 

 

Analiza powierzchni Chropowatość

Zewnętrzny wymiar promieniowy został uzyskany poprzez wyodrębnienie profilu z oryginalnego skanu i dopasowanie łuku do profilu. Pokazuje to zdolność profilometru bezkontaktowego 3D do przeprowadzania szybkiej analizy wymiarowej w zastosowaniach związanych z kontrolą jakości. Można również łatwo uzyskać wiele profili wzdłuż długości cewnika.

Wniosek

W tej aplikacji pokazaliśmy, jak bezkontaktowy profilometr Nanovea 3D może być wykorzystany do charakteryzowania rur polimerowych. Konkretnie, metrologia powierzchni, wymiary promieniowe i chropowatość powierzchni zostały uzyskane dla cewników medycznych. Stwierdzono, że promień zewnętrzny cewnika z TPE wynosi 2,40 mm, natomiast cewnika z PVC 1,27 mm. Stwierdzono, że powierzchnia cewnika z TPE jest bardziej szorstka niż cewnika z PVC. Sa TPE wynosiła 0,9740µm w porównaniu z 0,1791µm PVC. Chociaż do badań użyto cewników medycznych, profilometria bezkontaktowa 3D może być stosowana również do wielu różnych powierzchni. Możliwe do uzyskania dane i obliczenia nie są ograniczone do tego, co jest pokazane.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Ocena twardości zębów za pomocą nanoindentacji

Znaczenie nanoindentacji dla materiałów biologicznych

 
W przypadku wielu tradycyjnych testów mechanicznych (twardość, przyczepność, ściskanie, przebicie, granica plastyczności itp.), dzisiejsze środowiska kontroli jakości z zaawansowanymi materiałami wrażliwymi, od żeli po materiały kruche, wymagają obecnie większej precyzji i kontroli niezawodności. Tradycyjne oprzyrządowanie mechaniczne nie zapewnia wymaganej czułej kontroli obciążenia i rozdzielczości; zaprojektowane do stosowania w materiałach sypkich. Ponieważ wielkość badanego materiału stała się coraz bardziej interesująca, opracowane zostały następujące rozwiązania Nanoindentacja zapewniły niezawodną metodę uzyskiwania istotnych informacji mechanicznych na mniejszych powierzchniach, takich jak badania prowadzone na biomateriałach. Wyzwania związane z biomateriałami wymagały opracowania testów mechanicznych zdolnych do dokładnej kontroli obciążenia na materiałach od bardzo miękkich do kruchych. Ponadto do przeprowadzania różnych testów mechanicznych potrzebnych jest wiele urządzeń, które obecnie mogą być wykonywane w jednym systemie. Nanoindentacja zapewnia szeroki zakres pomiarów z precyzyjną rozdzielczością przy obciążeniach kontrolowanych w skali nano dla wrażliwych zastosowań.

 

 

Cel pomiaru

W tym zastosowaniu Nanovea Tester mechanicznyw trybie Nanoindentation służy do badania twardości i modułu sprężystości zębiny, próchnicy i miazgi zęba. Najbardziej krytycznym aspektem testów nanoindentacyjnych jest zabezpieczenie próbki. W tym przypadku pocięliśmy ząb i zamontowaliśmy go w żywicy epoksydowej, pozostawiając wszystkie trzy interesujące obszary wystawione na próbę.

 

 

Wyniki i dyskusja

Ta część zawiera tabelę podsumowującą, która porównuje główne wyniki liczbowe dla różnych próbek, a następnie pełne zestawienie wyników, w tym każde wykonane wgniecenie, wraz z mikrografami wgniecenia, jeśli są dostępne. Te pełne wyniki przedstawiają zmierzone wartości twardości i modułu Younga jako głębokości penetracji z ich średnimi i odchyleniami standardowymi. Należy wziąć pod uwagę, że duże różnice w wynikach mogą wystąpić w przypadku, gdy chropowatość powierzchni jest w tym samym zakresie wielkości co wgłębienie.

Tabela zbiorcza głównych wyników numerycznych:

 

 

Wniosek

Podsumowując, pokazaliśmy jak Nanovea Mechanical Tester, w trybie Nanoindentacji, zapewnia precyzyjny pomiar właściwości mechanicznych zęba. Dane te mogą być wykorzystane przy opracowywaniu wypełnień, które będą lepiej odpowiadać charakterystyce mechanicznej prawdziwego zęba. Możliwość pozycjonowania Nanovea Mechanical Tester pozwala na pełne odwzorowanie twardości zębów w różnych strefach.

Przy użyciu tego samego systemu możliwe jest badanie odporności na pękanie materiału zęba przy większych obciążeniach do 200N. W przypadku materiałów bardziej porowatych można zastosować wielocyklowy test obciążeniowy w celu oceny pozostałego poziomu elastyczności. Zastosowanie płaskiej, cylindrycznej końcówki diamentowej pozwala uzyskać informację o granicy plastyczności w każdej strefie. Dodatkowo, dzięki dynamicznej analizie mechanicznej DMA, można ocenić właściwości lepkosprężyste, w tym moduł stratności i magazynowania.

Nanomoduł Nanovea jest idealny do tych testów, ponieważ wykorzystuje unikalną reakcję sprzężenia zwrotnego, aby precyzyjnie kontrolować zastosowane obciążenie. Z tego powodu moduł nano może być również stosowany do wykonywania dokładnych testów zarysowania w skali nano. Badanie odporności na zarysowanie i zużycie materiału zęba i materiałów wypełniających zwiększa ogólną przydatność testera Mechanical. Zastosowanie ostrej końcówki o średnicy 2 mikronów do ilościowego porównania marmurkowania na materiałach wypełniających pozwoli na lepsze przewidywanie zachowania w rzeczywistych zastosowaniach. Testy zużycia wieloprzebiegowego lub bezpośredniego zużycia obrotowego są również powszechnie stosowanymi testami dostarczającymi ważnych informacji na temat długoterminowej żywotności.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Ocena tarcia przy ekstremalnie niskich prędkościach

 

Znaczenie oceny tarcia przy małych prędkościach

Tarcie jest siłą, która przeciwstawia się względnemu ruchowi powierzchni stałych ślizgających się względem siebie. Gdy dochodzi do ruchu względnego tych dwóch stykających się powierzchni, tarcie na styku przekształca energię kinetyczną w ciepło. Taki proces może również prowadzić do zużycia materiału, a tym samym pogorszenia wydajności użytkowanych części.
Dzięki dużemu współczynnikowi rozciągliwości, wysokiej sprężystości, a także świetnym właściwościom wodoodpornym i odporności na zużycie, guma jest szeroko stosowana w wielu aplikacjach i produktach, w których tarcie odgrywa ważną rolę, takich jak opony samochodowe, pióra wycieraczek, podeszwy butów i wiele innych. W zależności od charakteru i wymagań tych zastosowań, pożądane jest wysokie lub niskie tarcie o różne materiały. W związku z tym, kontrolowany i wiarygodny pomiar tarcia gumy o różne powierzchnie staje się krytyczny.



Cel pomiaru

Współczynnik tarcia (COF) gumy o różne materiały mierzony jest w sposób kontrolowany i monitorowany za pomocą miernika Nanovea Tribometr. W tym badaniu chcielibyśmy zaprezentować możliwości Tribometru Nanovea do pomiaru współczynnika COF różnych materiałów przy ekstremalnie niskich prędkościach.




Wyniki i dyskusja

Współczynnik tarcia (COF) kulek gumowych (6 mm dia., RubberMill) na trzech materiałach (stal nierdzewna SS 316, Cu 110 i opcjonalnie akryl) został oceniony za pomocą Tribometru Nanovea. Badane próbki metalowe przed pomiarem zostały mechanicznie wypolerowane do lustrzanego wykończenia powierzchni. Niewielkie odkształcenie gumowej kulki pod wpływem przyłożonego obciążenia normalnego tworzyło kontakt powierzchniowy, co również pomaga zredukować wpływ asperytów lub niejednorodności wykończenia powierzchni próbki na pomiary COF. Parametry testu zostały podsumowane w tabeli 1.


 

Współczynnik COF gumowej piłki względem różnych materiałów przy czterech różnych prędkościach pokazano na rysunku. 2, a średnie COF obliczone automatycznie przez oprogramowanie zestawiono i porównano na rysunku 3. Interesujące jest, że próbki metalowe (SS 316 i Cu 110) wykazują znacznie zwiększone COF w miarę wzrostu prędkości obrotowej z bardzo niskiej wartości 0,01 obr/min do 5 obr/min - wartość COF dla pary guma/SS 316 wzrasta z 0,29 do 0,8, a dla pary guma/Cu 110 z 0,65 do 1,1. Stwierdzenie to jest zgodne z wynikami podawanymi w kilku laboratoriach. Zgodnie z propozycją Groscha4 tarcie gumy jest zdeterminowane głównie przez dwa mechanizmy: (1) przyczepność pomiędzy gumą a innym materiałem oraz (2) straty energii spowodowane deformacją gumy wywołaną przez asperity powierzchniowe. Schallamach5 zaobserwowano fale odrywania się gumy od materiału podłoża na styku miękkich kul gumowych i twardej powierzchni. Siła odrywania się gumy od powierzchni podłoża oraz szybkość powstawania fal odrywania może tłumaczyć zróżnicowane tarcie przy różnych prędkościach podczas badania.

Dla porównania, para materiałów gumowo-akrylowych wykazuje wysoki COF przy różnych prędkościach obrotowych. Wartość COF nieznacznie wzrasta z ~ 1,02 do ~ 1,09 wraz ze wzrostem prędkości obrotowej od 0,01 obr/min do 5 obr/min. Tak wysoki współczynnik COF można prawdopodobnie przypisać silniejszemu lokalnemu wiązaniu chemicznemu na powierzchni styku utworzonemu podczas testów.



 
 

 

 




Wniosek



W tej pracy pokazujemy, że przy ekstremalnie małych prędkościach guma wykazuje osobliwe zachowanie tarciowe - jej tarcie o twardą powierzchnię rośnie wraz ze wzrostem prędkości ruchu względnego. Guma wykazuje różne tarcie, gdy ślizga się po różnych materiałach. Tribometr Nanovea może oceniać właściwości tarcia materiałów w sposób kontrolowany i monitorowany przy różnych prędkościach, co pozwala użytkownikom poprawić fundamentalne zrozumienie mechanizmu tarcia materiałów i wybrać najlepszą parę materiałów do docelowych zastosowań w inżynierii trybologicznej.

Tribometr Nanovea oferuje precyzyjne i powtarzalne badania zużycia i tarcia z wykorzystaniem trybów obrotowych i liniowych zgodnych z normami ISO i ASTM, z opcjonalnymi modułami do badań zużycia w wysokiej temperaturze, smarowania i tribo-korozji dostępnymi w jednym wstępnie zintegrowanym systemie. Urządzenie jest w stanie kontrolować etap obrotowy przy ekstremalnie niskich prędkościach do 0,01 rpm i monitorować ewolucję tarcia in situ. Niezrównana oferta Nanovea jest idealnym rozwiązaniem dla określenia pełnego zakresu właściwości trybologicznych cienkich lub grubych, miękkich lub twardych powłok, filmów i podłoży.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI