الولايات المتحدة الأمريكية / العالمية: 9292-461-949-1+
أوروبا: 794-3052-011-39+
تراسل معنا

التصنيف: اختبار الخدش | صلابة الخدش

 

درجة حرارة عالية للصلابة للخدش باستخدام مقياس الضغط

درجة حرارة عالية تصلب الخدش

استخدام ثلاثي الأبعاد

أُعدت بواسطة

دوانجي ، دكتوراه

مقدمة

تقيس الصلابة مقاومة المواد للتشوه الدائم أو البلاستيكي. تم تطويره في الأصل من قبل عالم المعادن الألماني فريدريش موس في عام 1820 ، اختبار صلابة الخدش يحدد صلابة المادة للخدوش والتآكل بسبب الاحتكاك من جسم حاد1. مقياس موس هو مؤشر مقارن وليس مقياسًا خطيًا ، لذلك تم تطوير قياس صلابة الخدش بدقة ونوعية كما هو موضح في معيار ASTM G171-032. يقيس متوسط عرض الخدش الناتج عن قلم ماسي ويحسب رقم صلابة الخدش (HSP).

أهمية قياس صلابة الخدوش في درجات الحرارة العالية

يتم اختيار المواد بناءً على متطلبات الخدمة. بالنسبة للتطبيقات التي تنطوي على تغيرات كبيرة في درجات الحرارة وتدرجات حرارية ، فمن الأهمية بمكان فحص الخواص الميكانيكية للمواد عند درجات حرارة عالية لتكون على دراية كاملة بالحدود الميكانيكية. المواد ، وخاصة البوليمرات ، عادة ما تنعم في درجات حرارة عالية. تحدث الكثير من الأعطال الميكانيكية بسبب التشوه الزاحف والتعب الحراري الذي يحدث فقط في درجات حرارة مرتفعة. لذلك ، هناك حاجة إلى تقنية موثوقة لقياس الصلابة في درجات حرارة عالية لضمان الاختيار المناسب للمواد لتطبيقات درجات الحرارة العالية.

هدف القياس

في هذه الدراسة، يقيس مقياس Tribometer NANOVEA T50 صلابة الخدش لعينة تفلون في درجات حرارة مختلفة من درجة حرارة الغرفة إلى 300 درجة مئوية. القدرة على إجراء قياس صلابة الصفر في درجات الحرارة العالية تجعل NANOVEA ثلاثي الأبعاد نظام متعدد الاستخدامات للتقييمات الاحتكاكية والميكانيكية للمواد لتطبيقات درجات الحرارة العالية.

نانوفيا

T50

شروط الاختبار

تم استخدام مقياس التثبيومتر القياسي NANOVEA T50 للوزن الحر لإجراء اختبارات صلابة الخدش على عينة من التفلون في درجات حرارة تتراوح من درجة حرارة الغرفة (RT) إلى 300 درجة مئوية. تبلغ درجة انصهار التفلون 326.8 درجة مئوية. تم استخدام قلم ماسي مخروطي بزاوية قمة 120 درجة ونصف قطر طرف يبلغ 200 ميكرومتر. تم تثبيت عينة التفلون على مرحلة العينة الدورانية بمسافة 10 ملم إلى مركز المرحلة. تم تسخين العينة بواسطة فرن واختبارها عند درجات حرارة RT و 50 درجة مئوية و 100 درجة مئوية و 150 درجة مئوية و 200 درجة مئوية و 250 درجة مئوية و 300 درجة مئوية.

معلمات الاختبار

من قياس صلابة خدش ارتفاع درجة الحرارة

قوى طبيعية 2 ن
سرعة انزلاق 1 مم / ثانية
مسافة انزلاق 8 مم لكل درجة حرارة
أَجواء هواء
درجة حرارة RT ، 50 درجة مئوية ، 100 درجة مئوية ، 150 درجة مئوية ، 200 درجة مئوية ، 250 درجة مئوية ، 300 درجة مئوية.

النتائج والمناقشة

يتم عرض ملفات تعريف مسار الخدش لعينة Teflon عند درجات حرارة مختلفة في الشكل 1 لمقارنة صلابة الخدش عند درجات حرارة مرتفعة مختلفة. تتشكل المواد المتراكمة على حواف مسار الخدش عندما ينتقل القلم بحمل ثابت يبلغ 2 نيوتن ويتدفق في عينة التفلون ، مما يدفع ويشوه المادة في مسار الخدش إلى الجانب.

تم فحص مسارات الخدش تحت المجهر البصري كما هو موضح في الشكل 2. تم تلخيص عرض مسار الخدش المقاس وأرقام صلابة الخدش المحسوبة (HSP) ومقارنتها في الشكل 3. عرض مسار الخدش الذي تم قياسه بواسطة المجهر يتوافق مع ذلك المقاس باستخدام NANOVEA Profiler - تعرض عينة Teflon عرضًا أوسع للخدش في درجات حرارة أعلى. يزيد عرض مسار الخدش من 281 إلى 539 ميكرومتر حيث ترتفع درجة الحرارة من RT إلى 300 درجة مئوية ، مما يؤدي إلى انخفاض HSP من 65 إلى 18 ميجا باسكال.

يمكن قياس صلابة الخدش في درجات الحرارة المرتفعة بدقة عالية وقابلية التكرار باستخدام NANOVEA T50 Tribometer. إنه يوفر حلاً بديلاً من قياسات الصلابة الأخرى ويجعل NANOVEA Tribometer نظامًا أكثر اكتمالاً لإجراء تقييمات شبه ميكانيكية شاملة لدرجات الحرارة العالية.

شكل ١: ملامح مسار الخدش بعد اختبارات صلابة الخدش في درجات حرارة مختلفة.

الشكل 2: مسارات سكراتش تحت المجهر بعد القياسات في درجات حرارة مختلفة.

الشكل 3: تطور عرض مسار الخدش وصلابة الخدش مقابل درجة الحرارة.

خاتمة

في هذه الدراسة ، نعرض كيف يقيس NANOVEA Tribometer صلابة الخدش في درجات حرارة مرتفعة بما يتوافق مع ASTM G171-03. يوفر اختبار صلابة الخدش عند حمل ثابت حلاً بديلاً بسيطًا لمقارنة صلابة المواد باستخدام مقياس الاحتكاك. إن القدرة على إجراء قياسات صلابة الخدش في درجات حرارة مرتفعة تجعل NANOVEA Tribometer أداة مثالية لتقييم الخواص الميكانيكية للمركبات ذات درجة الحرارة العالية للمواد.

يوفر NANOVEA Tribometer أيضًا اختبار تآكل واحتكاك دقيق وقابل للتكرار باستخدام أوضاع دوارة وخطية متوافقة مع ISO و ASTM ، مع تآكل اختياري بدرجة حرارة عالية ، ووحدات تزييت وتآكل تريبو متوفرة في نظام واحد متكامل مسبقًا. يتوفر ملف التعريف الاختياري ثلاثي الأبعاد غير المتصل للتصوير ثلاثي الأبعاد عالي الدقة لمسارات التآكل بالإضافة إلى قياسات السطح الأخرى مثل الخشونة.

1 Wredenberg ، فريدريك ؛ بل لارسون (2009). "اختبار خدش المعادن والبوليمرات: التجارب والأعداد". ارتداء 266 (1-2): 76
2 ASTM G171-03 (2009) ، "طريقة الاختبار القياسية لصلابة خدش المواد باستخدام قلم ماسي"

الآن ، لنتحدث عن طلبك

قياس صلابة الخدوش باستخدام الفاحص الميكانيكي

قياس صلابة الخدوش

باستخدام جهاز اختبار ميكانيكي

أُعدت بواسطة

دوانجي لي ، دكتوراه

مقدمة

بشكل عام ، تقيس اختبارات الصلابة مقاومة المواد للتشوه الدائم أو البلاستيكي. هناك ثلاثة أنواع من قياسات الصلابة: صلابة الخدش ، صلابة المسافة البادئة والصلابة المرتدة. يقيس اختبار صلابة الخدش مقاومة المادة للخدش والتآكل بسبب الاحتكاك من جسم حاد 1. تم تطويره في الأصل من قبل عالم المعادن الألماني فريدريش موس في عام 1820 وما زال يستخدم على نطاق واسع لتصنيف الخصائص الفيزيائية للمعادن 2. طريقة الاختبار هذه قابلة للتطبيق أيضًا على المعادن والسيراميك والبوليمرات والأسطح المطلية.

أثناء قياس صلابة الخدش ، يقوم قلم ماسي لهندسة محددة بخدش سطح مادة ما على طول مسار خطي تحت قوة عادية ثابتة وبسرعة ثابتة. يتم قياس متوسط عرض الخدش واستخدامه لحساب رقم صلابة الخدش (HSP). توفر هذه التقنية حلاً بسيطًا لقياس صلابة المواد المختلفة.

هدف القياس

في هذه الدراسة ، يتم استخدام جهاز الاختبار الميكانيكي NANOVEA PB1000 لقياس صلابة الخدش للمعادن المختلفة وفقًا لـ ASTM G171-03.

وفي الوقت نفسه، تعرض هذه الدراسة قدرة NANOVEA اختبار ميكانيكي في إجراء قياس صلابة الخدش بدقة عالية وإمكانية تكرار نتائج.

نانوفيا

PB1000

شروط الاختبار

أجرى الفاحص الميكانيكي NANOVEA PB1000 اختبارات صلابة الخدش على ثلاثة معادن مصقولة (Cu110 و Al6061 و SS304). تم استخدام قلم ماسي مخروطي بزاوية قمة 120 درجة ونصف قطر طرف يبلغ 200 ميكرومتر. تم خدش كل عينة ثلاث مرات بنفس معايير الاختبار لضمان استنساخ النتائج. يتم تلخيص معلمات الاختبار أدناه. تم إجراء مسح الملف الشخصي بحمل طبيعي منخفض يبلغ 10 مللي نيوتن قبل وبعد اختبار الصفر لقياس التغير في المظهر الجانبي للخدش.

معلمات الاختبار

قوى طبيعية

10 شمال

درجة حرارة

24 درجة مئوية (RT)

سرعة انزلاق

20 مم / دقيقة

مسافة انزلاق

10 ملم

أَجواء

هواء

النتائج والمناقشة

تظهر صور مسارات الخدش لثلاثة معادن (Cu110 و Al6061 و SS304) بعد الاختبارات في الشكل 1 لمقارنة صلابة الخدش للمواد المختلفة. تم استخدام وظيفة رسم الخرائط في برنامج NANOVEA الميكانيكي لإنشاء ثلاث خدوش متوازية تم اختبارها تحت نفس الحالة في بروتوكول آلي. تم تلخيص ومقارنة عرض مسار الخدش المُقاس ورقم صلابة الخدش المحسوب (HSP) في الجدول 1. تُظهر المعادن عروض مسار تآكل مختلفة تبلغ 174 و 220 و 89 ميكرومتر بالنسبة لـ Al6061 و Cu110 و SS304 ، على التوالي ، مما ينتج عنه معدل HSP محسوب قدره 0.84 و 0.52 و 3.2 جيجا.

بالإضافة إلى صلابة الخدش المحسوبة من عرض مسار الخدش ، تم تسجيل تطور معامل الاحتكاك (COF) والعمق الحقيقي والانبعاثات الصوتية في الموقع أثناء اختبار صلابة الخدش. هنا ، العمق الحقيقي هو اختلاف العمق بين عمق اختراق القلم أثناء اختبار الخدش وملف السطح المقاس في المسح المسبق. يتم عرض COF والعمق الحقيقي والانبعاث الصوتي لـ Cu110 في الشكل 2 كمثال. توفر هذه المعلومات نظرة ثاقبة على الأعطال الميكانيكية التي تحدث أثناء الخدش ، مما يتيح للمستخدمين اكتشاف العيوب الميكانيكية ومواصلة التحقيق في سلوك الخدش للمواد المختبرة.

يمكن إنهاء اختبارات صلابة الخدش في غضون دقيقتين بدقة عالية وقابلية التكرار. مقارنة بإجراءات المسافة البادئة التقليدية ، يوفر اختبار صلابة الخدش في هذه الدراسة حلاً بديلاً لقياسات الصلابة ، وهو مفيد لمراقبة الجودة وتطوير مواد جديدة.

Al6061

النحاس 110

SS304

شكل ١: صورة مجهرية لمسار الخدش بعد الاختبار (تكبير 100 مرة).

 عرض مسار الخدش (ميكرومتر)HSص (المعدل التراكمي)
Al6061174 ± 110.84
النحاس 110220 ± 10.52
SS30489 ± 53.20

الجدول 1: ملخص لعرض مسار الخدش ورقم صلابة الخدش.

الشكل 2: تطور معامل الاحتكاك والعمق الحقيقي والانبعاثات الصوتية أثناء اختبار صلابة الخدش على Cu110.

خاتمة

في هذه الدراسة ، عرضنا قدرة جهاز NANOVEA الميكانيكي Tester في إجراء اختبارات صلابة الخدش وفقًا للمواصفة ASTM G171-03. بالإضافة إلى التصاق الطلاء ومقاومة الخدش ، يوفر اختبار الخدش عند الحمل المستمر حلاً بديلاً بسيطًا لمقارنة صلابة المواد. على عكس أجهزة اختبار صلابة الخدش التقليدية ، توفر أجهزة اختبار NANOVEA الميكانيكية وحدات اختيارية لمراقبة تطور معامل الاحتكاك والانبعاثات الصوتية والعمق الحقيقي في الموقع.

تشتمل وحدات Nano و Micro لجهاز اختبار NANOVEA الميكانيكي على وضع مسافة بادئة متوافقة مع ISO و ASTM واختبار الخدش والتآكل ، مما يوفر أوسع مجموعة من الاختبارات وأكثرها سهولة في الاستخدام المتاحة في نظام واحد. تعد مجموعة NANOVEA التي لا مثيل لها حلاً مثاليًا لتحديد النطاق الكامل من الخواص الميكانيكية للطلاء الرقيق أو السميك ، واللين أو الصلب ، والأغشية والركائز ، بما في ذلك الصلابة ، ومعامل يونغ ، ومتانة الكسر ، والالتصاق ، ومقاومة التآكل وغيرها الكثير.

الآن ، لنتحدث عن طلبك

نظرة أفضل على عدسة البولي كربونات

نظرة أفضل على عدسة البولي كربونات تعلم المزيد
 
تستخدم عدسات البولي كربونات بشكل شائع في العديد من التطبيقات البصرية. مقاومتها العالية للتأثير ، ووزنها الخفيف ، والتكلفة الرخيصة للإنتاج بكميات كبيرة تجعلها أكثر عملية من الزجاج التقليدي في مختلف التطبيقات [1]. تتطلب بعض هذه التطبيقات معايير الأمان (مثل نظارات الأمان) أو التعقيد (مثل عدسة فرينل) أو المتانة (مثل عدسة إشارات المرور) التي يصعب تلبيتها دون استخدام البلاستيك. إن قدرتها على تلبية العديد من المتطلبات بتكلفة زهيدة مع الحفاظ على الصفات البصرية الكافية تجعل العدسات البلاستيكية تبرز في مجالها. عدسات البولي كربونات لها أيضًا قيود. الشاغل الرئيسي للمستهلكين هو سهولة خدشهم. للتعويض عن ذلك ، يمكن إجراء عمليات إضافية لتطبيق طلاء مضاد للخدش. يلقي Nanovea نظرة على بعض الخصائص المهمة للعدسة البلاستيكية من خلال استخدام أدوات القياس الثلاثة لدينا: مقياس الملامح, ثلاثي الأبعاد، و اختبار ميكانيكي.   اضغط لتقرأ المزيد
ارتفاع درجة الحرارة ترايبولوجي

درجة حرارة عالية للخدش صلابة باستخدام مقياس الضغط

يتم اختيار المواد بناءً على متطلبات الخدمة. بالنسبة للتطبيقات التي تنطوي على تغيرات كبيرة في درجات الحرارة وتدرجات حرارية ، فمن الأهمية بمكان فحص الخواص الميكانيكية للمواد في درجات حرارة عالية لتكون على دراية كاملة بالحدود الميكانيكية. المواد ، وخاصة البوليمرات ، عادة ما تنعم في درجات حرارة عالية. تحدث الكثير من الأعطال الميكانيكية بسبب التشوه الزاحف والتعب الحراري الذي يحدث فقط في درجات حرارة مرتفعة. لذلك ، هناك حاجة إلى تقنية موثوقة لقياس صلابة الخدش في درجات الحرارة العالية لضمان الاختيار المناسب للمواد لتطبيقات درجات الحرارة العالية.

درجة حرارة عالية للخدش صلابة باستخدام مقياس الضغط

 

قياس صلابة الخدوش باستخدام جهاز قياس التثبيط

في هذه الدراسة ، فإن Nanovea ثلاثي الأبعاد يستخدم لقياس صلابة خدش المعادن المختلفة. ال
القدرة على أداء قياس صلابة الخدش بدقة عالية ويجعل التكاثر
Nanovea Tribometer هو نظام أكثر اكتمالا للتقييمات الترايبولوجية والميكانيكية.

قياس صلابة الخدوش باستخدام جهاز قياس التثبيط

الخواص الميكانيكية والتربولوجية لألياف الكربون

جنبا إلى جنب مع اختبار ارتداء من قبل ثلاثي الأبعاد وتحليل السطح بواسطة مقياس الملامح البصري ثلاثي الأبعاد ، نحن
عرض براعة ودقة أدوات Nanovea في اختبار المواد المركبة
مع الخصائص الميكانيكية الاتجاهية.

الخواص الميكانيكية والتربولوجية لألياف الكربون

قياس عمق الخدش الدقيق باستخدام مقياس الملامح ثلاثي الأبعاد

في هذا التطبيق نانوفيا ST400 ملف التعريفr يستخدم ل قياس العمق صف من الخدوش الصغيرة التي تم إنشاؤها باستخدام Nanovea اختبار ميكانيكي في وضع الصفر. في ثوانٍ، يوفر مقياس الملف التعريفي، مع تمرير سطر واحد في الوضع ثنائي الأبعاد، قياسًا للمساحة والعمق.

قياس عمق الخدوش الدقيقة باستخدام مقياس الملامح ثلاثي الأبعاد