美国/全球:+1-949-461-9292
欧洲。+39-011-3052-794
联系我们

用纳米压痕法研究腐蚀对硬度的影响

在腐蚀过程中,材料的机械性能会恶化。例如,在碳钢的大气腐蚀中会形成鳞钴矿(γ-FeOOH)和戈铁矿(α-FeOOH)。它们的松散和多孔性导致吸收水分,反过来进一步加速了腐蚀过程。赤铁矿(β-FeOOH),是铁的另一种形式。
在含有氯化物的环境中,钢表面会产生氧氢氧化物。 纳米压痕 可以在纳米和微米的范围内控制压痕深度,使得定量测量金属表面上形成的腐蚀产物的硬度和杨氏模量成为可能。它提供了有关腐蚀机制的物理化学洞察力,以便为目标应用选择最佳候选材料。

用纳米压痕法研究腐蚀对硬度的影响

使用三维轮廓仪测量干墙的纹理和麻点

干墙的纹理和粗糙度对最终产品的质量和外观至关重要。更好地了解表面纹理和一致性对涂覆干墙的防潮性的影响,可以选择最好的产品并优化涂覆技术,以获得最佳效果。为了定量评估表面质量,需要对涂层表面进行可量化的、快速的、可靠的表面检测。Nanovea 3D非接触式轮廓仪利用色度共聚焦技术,具有精确测量样品表面的独特能力。线性传感器技术可以在几分钟内完成对一个大型干墙表面的扫描。

使用三维轮廓仪测量干墙的纹理和麻点

循环纳米压痕应力-应变测量

循环纳米压痕应力-应变测量

了解更多

 

纳米压痕的重要性

通过以下方式获得的连续刚度测量(CSM) 纳米压痕 用微创的方法揭示材料的应力-应变关系。与传统的拉伸测试方法不同,纳米压痕提供纳米级的应力-应变数据,而不需要大型仪器。应力-应变曲线提供了关于样品在承受越来越大的载荷时弹性和塑性行为之间的阈值的关键信息。CSM提供了在没有危险设备的情况下确定材料的屈服应力的能力。

 

纳米压痕提供了一种可靠的和用户友好的方法来快速调查应力-应变数据。此外,在纳米尺度上测量应力-应变行为使研究材料中的小涂层和颗粒的重要特性成为可能,因为它们变得更加先进。除了硬度、弹性模量、蠕变、断裂韧性等,纳米压痕还能提供弹性极限和屈服强度的信息,使其成为一种多功能的计量仪器。

在这项研究中,纳米压痕提供的应力-应变数据确定了材料的弹性极限,同时只进入了1.2微米的表面。我们使用CSM来确定材料的机械性能是如何随着压头进入表面的深度而发展的。这在薄膜应用中特别有用,因为其特性可能取决于深度。纳米压痕是一种确认测试样品中材料特性的微创方法。

CSM试验在测量材料特性与深度的关系方面很有用。循环试验可以在恒定载荷下进行,以确定更复杂的材料特性。这对于研究疲劳或消除孔隙率的影响以获得真正的弹性模量是很有用的。

测量目标

在这个应用中,Nanovea机械测试仪使用CSM来研究硬度和弹性模量与深度的关系以及标准钢样品的应力-应变数据。钢被选择为其普遍认可的特性,以显示纳米级应力-应变数据的控制和准确性。一个半径为5微米的球形尖端被用来达到足够高的应力,超过钢的弹性极限。

 

测试条件和程序

使用了以下压痕参数。

结果。

 

振荡过程中负载的增加提供了以下深度与负载的曲线。在加载过程中进行了100多次振荡,以找到压头穿透材料时的应力-应变数据。

 

我们从每个周期获得的信息中确定应力和应变。每个周期的最大载荷和深度使我们能够计算出每个周期施加在材料上的最大应力。应变是由每个周期的部分卸载后的残留深度计算出来的。这使我们可以通过除以尖端的半径来计算残留印记的半径,从而得到应变系数。绘制材料的应力与应变的关系图显示了弹性区和塑性区以及相应的弹性极限应力。我们的测试确定材料的弹性区和塑性区之间的过渡是在0.076左右的应变,弹性极限为1.45GPa。

每个周期作为一个单一的压痕,所以当我们增加负载时,我们在钢中的不同控制深度进行测试。因此,硬度和弹性模量与深度的关系可以直接从每个周期获得的数据中绘制出来。

随着压头进入材料,我们看到硬度增加,弹性模量减少。

总结

我们已经证明Nanovea机械测试仪提供可靠的应力-应变数据。使用带有CSM压痕的球形尖端,可以在增加的应力下进行材料性能测量。负载和压头半径可以改变,以便在受控深度测试各种材料。Nanovea机械测试仪提供这些压痕测试,从亚mN范围到400N。