アメリカ/グローバル: +1-949-461-9292
ヨーロッパ+39-011-3052-794
お問い合わせ

トライボメータによるポリマーベルトの摩耗と摩擦の測定

ポリマーベルト

トライボメータによる摩耗と摩擦

作成者

DUANJIE LI, PhD

はじめに

ベルトドライブは、2つ以上の回転軸の間で動力を伝達し、相対的な動きを追跡します。ベルトドライブはメンテナンスが最小限で済むシンプルで安価なソリューションとして、バックスソー、製材所、脱穀機、サイロブロワー、コンベアなど様々な用途で広く使用されています。ベルトドライブは過負荷から機械を保護するだけでなく、振動を減衰させ、分離することができます。

摩耗評価の重要性 ベルトドライブの摩耗評価の重要性

ベルト駆動の機械ではベルトの摩擦と摩耗が避けられません。十分な摩擦があればスリップすることなく効果的に動力を伝達できますが、過度の摩擦はベルトを急速に摩耗させる可能性があります。ベルトドライブの運転中は、疲労、摩耗、摩擦などさまざまな種類の摩耗が発生します。ベルトの寿命を延ばし、ベルトの修理や交換にかかる費用と時間を削減するためには、ベルトの摩耗性能を確実に評価することがベルトの寿命、生産効率、アプリケーションの性能を向上させるために重要です。ベルトの摩擦係数や摩耗量を正確に測定することで、ベルトの研究開発や品質管理が容易になります。

測定目的

この研究では、異なる表面テクスチャを持つベルトの摩耗挙動をシミュレーションして比較し、その能力を紹介します。 ナノビア T2000トライボメータは、ベルトの摩耗プロセスを制御・監視しながらシミュレートすることができます。

ナノビア

T2000

試験方法

表面粗さとテクスチャーの異なる2種類のベルトについて,摩擦係数COFと耐摩耗性を評価したました。 ナノビア 高負荷 トライボメータ 直線往復摩耗モジュールを使用。カウンター材としてスチール 440 ボール (直径 10 mm) を使用しました。統合された測定器を使用して表面粗さと摩耗痕跡を検査しました。 3D非接触表面形状計。摩耗率、 Kの式で評価した。 K=Vl(Fxs)で、ここで V は摩耗量です。 F は法線荷重であり s は滑走距離である。

 

なお、今回は平滑なスチール440のボールを例としていますが、形状や表面仕上げの異なるあらゆる固体材料をカスタムフィクスチャーを使用して実際のアプリケーション状況をシミュレートして適用することが可能です。

結果・考察

分析した表面プロファイルによるとテクスチャーベルトとスムースベルトの表面粗さRaはそれぞれ33.5と8.7umでした。 ナノビア 3D非接触光学式プロファイラー試験した2つのベルトのCOFと摩耗率をそれぞれ10Nと100Nで測定し、異なる荷重でのベルトの摩耗挙動を比較しました。

図1 図1は摩耗試験中のベルトのCOFの変化を示します。異なるテクスチャを持つベルトは実質的に異なる摩耗挙動を示しています。興味深いことに、COFが徐々に増加する慣らし運転期間の後、テクスチャーベルトは10Nと100Nの荷重で行った試験の両方で、〜0.5という低いCOFに達しました。これに対し、10Nの荷重で試験したスムースベルトは、COFが安定すると〜1.4という著しく高いCOFを示し、試験の残りの間はこの値を維持します。100Nの荷重で試験した平滑ベルトは、鋼球440によって急速に摩耗し、大きな摩耗痕が形成されました。そのため試験は220回転で停止しました。

図1: 異なる負荷におけるベルトのCOFの進化。

図2は100Nの試験後の3次元摩耗痕画像の比較です。ナノビア3次元非接触プロフィロメータは摩耗痕の詳細な形状を解析するツールを提供し、摩耗メカニズムの基礎的な理解に役立つ情報を提供します。

表1: 摩耗痕の解析結果

図2:  2本のベルトの3Dビュー
100Nでの試験後。

3D摩耗痕プロファイルにより、表1に示すように高度な解析ソフトウェアで計算された摩耗痕の体積を直接かつ正確に決定することができます。220回転の摩耗試験では、スムースベルトの摩耗痕は75.7mm3と非常に大きく深くなっているのに対し、600回転の摩耗試験ではテクスチャーベルトの摩耗痕は14.0mm3となっています。スチールボールに対するスムースベルトの摩擦が非常に大きいため、テクスチャーベルトと比較して15倍の摩耗量となりました。

 

このようにテクスチャーベルトとスムースベルトのCOFが大きく異なるのは、ベルトと鋼球の接触面積の大きさが関係していると考えられ、それが両者の摩耗性能の違いにもつながっていると考えられます。図3は2つのベルトの摩耗痕を光学顕微鏡で観察したものです。摩耗痕の検査はCOFの変遷に関する観察と一致しています。100Nで行った摩耗試験では、テクスチャーベルトとスムースベルトの両方にかなり大きな摩耗痕ができ、次の段落で述べるように、3Dプロファイルを用いて摩耗率を計算することになります。

図3:  光学顕微鏡による摩耗痕の観察

まとめ

本研究では、ベルトの摩擦係数と摩耗量を良好に制御し定量的に評価するナノビア T2000トライボメーターの能力を紹介しました。ベルトの摩擦と耐摩耗性には、表面のテクスチャが重要な役割を担っています。テクスチャを施したベルトは摩擦係数が0.5程度と安定しており寿命も長いため、工具の修理や交換にかかる時間やコストを削減することができます。一方、平滑ベルトは鋼球との過度な摩擦によりベルトが急速に摩耗します。更にベルトにかかる負荷は寿命の重要な要素になります。過負荷は非常に高い摩擦を引き起こし、ベルトの摩耗を加速させます。

NANOVEA T2000トライボメータは、ISOおよびASTMに準拠した回転モードとリニアモードによる精密で再現性の高い摩耗・摩擦試験と、オプションで高温摩耗、潤滑、摩擦腐食モジュールを1つのシステムに統合して使用することが可能です。 NANOVEAの 本装置は薄膜や厚膜、軟質や硬質のコーティング、フィルム、基材などのトライボロジー特性をフルレンジで測定できる理想的な装置です。

さて、次はアプリケーションについてです。

コメント