アメリカ/グローバル: +1-949-461-9292
ヨーロッパ+39-011-3052-794
お問い合わせ

トライボメータによる紙やすりの磨耗性能

紙やすりの磨耗性能

トライボメータによる

作成者

DUANJIE LI, PhD

はじめに

紙や布の片面に砥粒を接着したものの粒子にはガーネット、炭化ケイ素、酸化アルミニウム、ダイヤモンドなど、さまざまな研磨材が使用されます。サンドペーパーは、木材、金属、乾式壁などの特定の表面仕上げを行うためにさまざまな産業分野で広く応用されています。手や電動工具によって加えられる高圧の接触下で作業することが多くなります。

サンドペーパー摩耗性能の評価の重要性

サンドペーパーの効果は多くの場合、さまざまな条件下での摩耗性能によって決定されます。粒度、すなわちサンドペーパーに埋め込まれた研磨粒子の大きさが、研磨する材料の摩耗速度と傷の大きさを決定します。粒度の高いサンドペーパーは粒子が小さいため、研磨速度が遅くなり、表面の仕上がりも細かくなります。また、同じ粒度の紙でも材質が異なると、乾式と湿式で挙動が異なることがあります。製造されたサンドペーパーが意図された研磨挙動を持つことを確認するためには、信頼性の高いトライボロジー評価が必要である。このような評価により、異なる種類のサンドペーパーの摩耗挙動を制御・監視された状態で定量的に比較し、用途に応じた最適な候補を選択することができます。

測定目的

本研究では、ナノベーストライボメータが乾式および湿式の様々なサンドペーパーサンプルの摩耗性能を定量的に評価する能力を持つことを紹介します。

ナノビア

T2000

試験方法

2 種類のサンドペーパーの摩擦係数 (COF) と摩耗性能を NANOVEA T100 トライボメーターで評価しました。相手材には 440 ステンレス鋼球を使用しました。 NANOVEA を使用して各摩耗テスト後にボールの摩耗傷跡を検査しました。 3D非接触オプティカルプロファイラー 正確な体積損失測定を保証します。

なお今回は440ステンレスボールを比較対象としていますが、他の固体材料で代用することで異なる適用条件を模擬することができます。

テスト結果および考察

図 1 は、サンドペーパー 1 と 2 の乾燥および湿潤環境下での COF の比較である。サンドペーパー1は、乾燥状態において、試験開始時に0.4のCOFを示し、その後徐々に減少して0.3に安定した。湿潤環境下では、このサンプルの平均COFは0.27と低い値を示している。一方,試料 2 の COF の結果は,ドライ COF が 0.27,ウェット COF が ~0.37 であった。 

なおすべてのCOFプロットのデータで振動が発生しているのは、ボールが粗いサンドペーパー表面を滑ることで発生する振動によるものです。

図1: 摩耗試験中のCOFの進化。

図2は、摩耗痕の解析結果をまとめたものです。摩耗痕は,光学顕微鏡とナノビア3D非接触光学式プロファイラを使用して測定しました。図3および図4は、サンドペーパー1および2(湿式および乾式)での摩耗試験後のSS440ボールの摩耗痕を比較したものです。図 4 に示すようにナノビア・オプティカルプロファイラは、4 つのボールの表面形状とそれぞれの摩耗痕を正確に捉え、それをナノビアマウンテン高度解析ソフトウェアで処理し体積損失と摩耗率を計算しました。ボールの顕微鏡画像とプロファイル画像から、サンドペーパー1(ドライ)テストに使用したボールは、体積損失が0.313で、他のボールに比べて大きな平坦な摩耗痕を示したことが観察されています。 ミリメートル3.一方、サンドペーパー1(ウェット)の体積損失は、0.131でした。 ミリメートル3.サンドペーパー2(乾燥)の体積損失は0.163でした。 ミリメートル3 サンドペーパー2(wet)では、体積損失が0.237に増加しました。 ミリメートル3.

さらに,COFがサンドペーパーの摩耗性能に重要な役割を担っていることも興味深い。サンドペーパー1は、乾燥状態で高いCOFを示し、テストに使用したSS440ボールに対して高い摩耗率をもたらしました。一方、サンドペーパー2は湿潤時のCOFが高く、より高い摩耗量となりました。測定後のサンドペーパーの摩耗痕を図5に示します。

サンドペーパー 1 と 2 は両方とも、乾燥環境でも湿潤環境でも機能すると主張しています。ただし、乾燥状態と湿潤状態では大幅に異なる摩耗性能を示しました。ナノベア トライボメータ 再現性のある摩耗評価を保証する、適切に制御された定量化可能で信頼性の高い摩耗評価機能を提供します。さらに、その場での COF 測定機能により、ユーザーは摩耗プロセスのさまざまな段階を COF の進化と関連付けることができます。これは、サンドペーパーの摩耗メカニズムとトライボロジー特性の基本的な理解を向上させるのに重要です。

図2: 異なる条件下でのボールの摩耗痕体積と平均COF

図3: テスト後のボールの装着痕。

図4: ボールの摩耗痕の3Dモルフォロジー。

図5: 異なる条件下でのサンドペーパーの摩耗痕。

まとめ

本研究では,同じ粒数の2種類のサンドペーパーについて,乾式および湿式条件下での摩耗性能を評価した。サンドペーパーの使用条件は,作業性能の効果に重要な役割を果たす。サンドペーパー1は乾燥状態での摩耗挙動が著しく優れており,サンドペーパー2は湿潤状態での摩耗挙動が優れていた。サンドペーパー作業時の摩擦は、研磨性能を評価する上で重要な要素である。NANOVEA Optical Profilerは、ボールの摩耗痕など、あらゆる表面の3次元形状を正確に測定することができ、本研究で使用したサンドペーパーの摩耗性能を確実に評価することができます。ナノベーストライボメータは、摩耗試験中にその場で摩擦係数を測定し、摩耗プロセスのさまざまな段階に関する知見を提供します。また、ISOとASTMに準拠した回転モードとリニアモードによる再現性の高い摩耗・摩擦試験が可能で、オプションで高温摩耗と潤滑のモジュールを1つの統合されたシステムで利用することもできます。この比類なき製品群により、高応力、摩耗、高温など、ボールベアリングのさまざまな過酷な使用環境をシミュレートすることができます。また、高荷重下での優れた耐摩耗材料のトライボロジー挙動を定量的に評価するための理想的なツールでもあります。

さて、次はアプリケーションについてです。