ABD/GLOBAL: +1-949-461-9292
AVRUPA: +39-011-3052-794
BİZE ULAŞIN

Polimerlerin Tribolojisi

Giriş

Polimerler çok çeşitli uygulamalarda yaygın olarak kullanılmış ve günlük yaşamın vazgeçilmez bir parçası haline gelmiştir. Kehribar, ipek ve doğal kauçuk gibi doğal polimerler insanlık tarihinde önemli bir rol oynamıştır. Sentetik polimerlerin üretim süreci, tokluk, viskoelastisite, kendinden yağlama ve diğerleri gibi benzersiz fiziksel özellikler elde etmek için optimize edilebilir.

Polimerlerde Aşınma ve Sürtünmenin Önemi

Polimerler genellikle lastikler, rulmanlar ve konveyör bantlar gibi tribolojik uygulamalar için kullanılır.
Polimerin mekanik özelliklerine, temas koşullarına ve aşınma işlemi sırasında oluşan döküntü veya transfer filminin özelliklerine bağlı olarak farklı aşınma mekanizmaları ortaya çıkar. Polimerlerin hizmet koşulları altında yeterli aşınma direncine sahip olduğundan emin olmak için güvenilir ve ölçülebilir tribolojik değerlendirme gereklidir. Tribolojik değerlendirme, hedef uygulamaya uygun malzeme adayını seçmek için farklı polimerlerin aşınma davranışlarını kontrollü ve izlenen bir şekilde niceliksel olarak karşılaştırmamızı sağlar.

Nanovea Tribometre, ISO ve ASTM uyumlu rotatif ve lineer modları kullanarak tekrarlanabilir aşınma ve sürtünme testleri sunar ve isteğe bağlı yüksek sıcaklık aşınma ve yağlama modülleri önceden entegre edilmiş tek bir sistemde mevcuttur. Bu eşsiz ürün yelpazesi, kullanıcıların yoğun stres, aşınma ve yüksek sıcaklık gibi polimerlerin farklı çalışma ortamlarını simüle etmesine olanak tanır.

ÖLÇÜM HEDEFI

Bu çalışmada Nanovea'nın Tribometre farklı polimerlerin sürtünme ve aşınma direncini iyi kontrollü ve niceliksel bir şekilde karşılaştırmak için ideal bir araçtır.

TEST PROSEDÜRÜ

Farklı yaygın polimerlerin sürtünme katsayısı (COF) ve aşınma direnci Nanovea Tribometre ile değerlendirildi. Sayaç malzemesi olarak (pim, statik numune) bir Al2O3 topu kullanıldı. Polimerler üzerindeki aşınma izleri (dinamik dönen numuneler), bir temassız 3D profilometre ve testler tamamlandıktan sonra optik mikroskop. Bir seçenek olarak, aşınma testi sırasında pimin dinamik numuneye girdiği derinliği ölçmek için temassız bir endoskopik sensörün kullanılabileceği unutulmamalıdır. Test parametreleri Tablo 1'de özetlenmiştir. Aşınma oranı K, K=Vl(Fxs) formülü kullanılarak değerlendirildi; burada V aşınmış hacim, F normal yük ve s kayma mesafesidir.

Bu çalışmada karşı malzeme olarak Al2O3 bilyelerin kullanıldığını lütfen unutmayın. Gerçek uygulama koşulları altında iki numunenin performansını daha yakından simüle etmek için herhangi bir katı malzeme ikame edilebilir.

SONUÇLAR VE TARTIŞMA

Aşınma hızı, malzemelerin kullanım ömrünü belirlemek için hayati bir faktördür, sürtünme ise tribolojik uygulamalar sırasında kritik bir rol oynar. Şekil 2, aşınma testleri sırasında Al2O3 bilyeye karşı farklı polimerler için COF'nin gelişimini karşılaştırmaktadır. COF, arızaların ne zaman meydana geldiğinin ve aşınma sürecinin yeni bir aşamaya girdiğinin bir göstergesi olarak çalışır. Test edilen polimerler arasında YYPE, aşınma testi boyunca ~0,15 ile en düşük sabit COF değerini korumaktadır. Düzgün COF, istikrarlı bir tribo temasın oluştuğu anlamına gelir.

Şekil 3 ve Şekil 4, test optik mikroskop tarafından ölçüldükten sonra polimer numunelerin aşınma izlerini karşılaştırmaktadır. In-situ temassız 3D profilometre, polimer numunelerin aşınma hacmini hassas bir şekilde belirleyerek sırasıyla 0,0029, 0,0020 ve 0,0032m3/N m aşınma oranlarının doğru bir şekilde hesaplanmasını mümkün kılmaktadır. Karşılaştırıldığında, CPVC numunesi 0,1121m3/N m ile en yüksek aşınma oranını göstermektedir. CPVC'nin aşınma izinde derin paralel aşınma izleri mevcuttur.

SONUÇ

Polimerlerin aşınma direnci, hizmet performanslarında hayati bir rol oynamaktadır. Bu çalışmada, Nanovea Tribometre'nin farklı polimerlerin sürtünme katsayısını ve aşınma oranını
iyi kontrollü ve kantitatif bir şekilde. HDPE, test edilen polimerler arasında ~0,15 ile en düşük COF değerini göstermektedir. YYPE, Naylon 66 ve Polipropilen numuneleri sırasıyla 0,0029, 0,0020 ve 0,0032 m3/N m gibi düşük aşınma oranlarına sahiptir. Düşük sürtünme ve yüksek aşınma direnci kombinasyonu, HDPE'yi polimer tribolojik uygulamaları için iyi bir aday haline getirmektedir.

In-situ temassız 3D profilometre, hassas aşınma hacmi ölçümü sağlar ve aşınma izlerinin ayrıntılı morfolojisini analiz etmek için bir araç sunarak aşınma mekanizmalarının temel anlayışına daha fazla bilgi sağlar

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

3D Profilometri ile Petek Panel Yüzey İşlemi

GİRİŞ


Petek panel yüzeyinin pürüzlülüğü, gözenekliliği ve dokusu, nihai panel tasarımı için ölçülmesi kritik öneme sahiptir. Bu yüzey nitelikleri, panel yüzeyinin estetiği ve işlevsel özellikleriyle doğrudan ilişkilendirilebilir. Yüzey dokusunun ve gözenekliliğin daha iyi anlaşılması, panel yüzeyinin işlenmesini ve üretilebilirliğini optimize etmeye yardımcı olabilir. Uygulama ve boyama gereksinimlerine yönelik yüzey parametrelerini kontrol etmek için petek panelin nicel, hassas ve güvenilir bir yüzey ölçümüne ihtiyaç vardır. Nanovea 3D Temassız sensörler, bu panel yüzeylerini hassas bir şekilde ölçebilen benzersiz kromatik konfokal teknolojisini kullanır.



ÖLÇÜM HEDEFI


Bu çalışmada, yüksek hızlı Çizgi Sensörüyle donatılmış Nanovea HS2000 platformu, farklı yüzey kaplamalarına sahip iki petek panelini ölçmek ve karşılaştırmak için kullanıldı. Nanovea'yı sergiliyoruz temassız profilometrehızlı ve hassas 3D profil ölçümleri ve yüzey kaplamasının kapsamlı ve derinlemesine analizini sağlama becerisi.



SONUÇLAR VE TARTIŞMA

Örnek 1 ve Örnek 2 olmak üzere çeşitli yüzey işlemlerine sahip iki petek panel örneğinin yüzeyi ölçülmüştür. Numune 1 ve Numune 2 yüzeylerinin sahte renk ve 3D görünümü sırasıyla Şekil 3 ve Şekil 4'te gösterilmektedir. Pürüzlülük ve düzlük değerleri gelişmiş analiz yazılımı ile hesaplanmış ve Tablo 1'de karşılaştırılmıştır. Örnek 2, Örnek 1'e kıyasla daha gözenekli bir yüzey sergilemektedir. Sonuç olarak, Numune 1 için 4,27 µm'lik Sa değerine kıyasla Numune 2 14,7 µm'lik daha yüksek bir pürüzlülük Sa değerine sahiptir.

Petek panel yüzeylerinin 2D profilleri Şekil 5'te karşılaştırılarak kullanıcıların numune yüzeyinin farklı yerlerindeki yükseklik değişimini görsel olarak karşılaştırabilmeleri sağlanmıştır. Örnek 1'in en yüksek tepe ve en düşük vadi konumu arasında ~25 µm'lik bir yükseklik değişimine sahip olduğunu gözlemleyebiliriz. Öte yandan, Örnek 2, 2D profil boyunca birkaç derin gözenek göstermektedir. Gelişmiş analiz yazılımı, Şekil 4.b Örnek 2 tablosunda gösterildiği gibi altı nispeten derin gözeneğin derinliğini otomatik olarak bulma ve ölçme yeteneğine sahiptir. Altı gözenek arasındaki en derin gözenek yaklaşık 90 µm maksimum derinliğe sahiptir (Adım 4).

Örnek 2'nin gözenek boyutunu ve dağılımını daha fazla araştırmak için gözeneklilik değerlendirmesi yapılmış ve aşağıdaki bölümde tartışılmıştır. Dilimlenmiş görünüm Şekil 5'te gösterilmiş ve sonuçlar Tablo 2'de özetlenmiştir. Şekil 5'te mavi renkle işaretlenen gözeneklerin numune yüzeyinde nispeten homojen bir dağılıma sahip olduğunu gözlemleyebiliriz. Gözeneklerin izdüşüm alanı tüm numune yüzeyinin 18.9%'sini oluşturmaktadır. Toplam gözeneklerin mm² başına hacmi ~0,06 mm³'tür. Gözenekler ortalama 42,2 µm derinliğe sahiptir ve maksimum derinlik 108,1 µm'dir.

SONUÇ



Bu uygulamada, yüksek hızlı bir Çizgi Sensörü ile donatılmış Nanovea HS2000 platformunun, petek panel numunelerinin yüzey kalitesini hızlı ve doğru bir şekilde analiz etmek ve karşılaştırmak için ideal bir araç olduğunu gösterdik. Gelişmiş bir analiz yazılımı ile eşleştirilmiş yüksek çözünürlüklü profilometri taramaları, petek panel numunelerinin yüzey kalitesinin kapsamlı ve nicel bir şekilde değerlendirilmesini sağlar.

Burada gösterilen veriler, analiz yazılımında bulunan hesaplamaların yalnızca küçük bir bölümünü temsil etmektedir. Nanovea Profilometreler Yarı İletken, Mikroelektronik, Güneş, Fiber Optik, Otomotiv, Havacılık, Metalurji, İşleme, Kaplama, İlaç, Biyomedikal, Çevre ve diğer birçok endüstride çok çeşitli uygulamalar için neredeyse her yüzeyi ölçer.

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

Nanoindentasyon ile Gerilme Gevşemesi Ölçümü

GİRİŞ

Viskoelastik malzemeler hem viskoz hem de elastik malzeme özelliklerine sahip olarak karakterize edilir. Bu malzemeler sabit gerilme altında zamana bağlı gerilme azalmasına (gerilme 'gevşemesi') maruz kalır ve bu da ilk temas kuvvetinde önemli bir kayba yol açar. Gerilme gevşemesi malzemenin türüne, dokusuna, sıcaklığına, ilk gerilmeye ve zamana bağlıdır. Gerilme gevşemesinin anlaşılması, belirli uygulamalar için gereken mukavemet ve esnekliğe (gevşeme) sahip optimum malzemelerin seçilmesinde kritik öneme sahiptir.

Stres Gevşeme Ölçümünün Önemi

ASTM E328i, "Malzemeler ve Yapılar için Gerilme Gevşemesi için Standart Test Yöntemleri" uyarınca, bir malzeme veya yapı üzerine önceden belirlenmiş bir maksimum kuvvete ulaşana kadar bir girinti ile harici bir kuvvet uygulanır. Maksimum kuvvete ulaşıldığında, girintinin konumu bu derinlikte sabit tutulur. Daha sonra, girintinin konumunu korumak için gerekli olan dış kuvvetteki değişiklik, zamanın bir fonksiyonu olarak ölçülür. Gerilim gevşeme testindeki zorluk, derinliği sabit tutmaktır. Nanovea Mekanik Test Cihazı'nın nanoindentasyon modülü, piezo-elektrikli bir aktüatör ile derinliğin kapalı (geri besleme) döngü kontrolünü uygulayarak stres gevşemesini doğru bir şekilde ölçer. Aktüatör, derinliği sabit tutmak için gerçek zamanlı olarak tepki verirken, yükteki değişiklik son derece hassas bir yük sensörü tarafından ölçülür ve kaydedilir. Bu test, katı numune boyutu gerekliliklerine ihtiyaç duyulmadan neredeyse her tür malzeme üzerinde gerçekleştirilebilir. Ayrıca, testin tekrarlanabilirliğini sağlamak için tek bir düz numune üzerinde birden fazla test gerçekleştirilebilir

ÖLÇÜM HEDEFI

Bu uygulamada, Nanovea Mekanik Test Cihazının nanoindentasyon modülü, bir akrilik ve bakır numunesinin stres gevşeme davranışını ölçer. Nanovea'yı sergiliyoruz Mekanik Test Cihazı polimer ve metal malzemelerin zamana bağlı viskoelastik davranışlarını değerlendirmek için ideal bir araçtır.

TEST KOŞULLARI

Bir akrilik ve bir bakır numunenin gerilme gevşemesi Nanovea Mekanik Test Cihazının nanoindentasyon modülü ile ölçülmüştür. Farklı indentasyon yükleme hızları 1 ila 10 µm/dak arasında uygulanmıştır. Hedef maksimum yüke ulaşıldığında gevşeme sabit bir derinlikte ölçülmüştür. Sabit bir derinlikte 100 saniyelik bir bekletme süresi uygulanmış ve yükteki değişim bekletme süresi geçtikçe kaydedilmiştir. Tüm testler ortam koşullarında (23 °C oda sıcaklığı) gerçekleştirilmiş ve girinti testi parametreleri Tablo 1'de özetlenmiştir.

SONUÇLAR VE TARTIŞMA

Şekil 2 akrilik bir numunenin gerilme gevşemesi ölçümü sırasında zamanın bir fonksiyonu olarak yer değiştirme ve yükün gelişimini ve örnek olarak 3 µm/dak'lık bir girinti yükleme hızını göstermektedir. Bu testin tamamı üç aşamaya ayrılabilir: Yükleme, Gevşeme ve Boşaltma. Yükleme aşaması sırasında, yük kademeli olarak arttıkça derinlik doğrusal olarak artmıştır. Gevşeme aşaması maksimum yüke ulaşıldığında başlatılmıştır. Bu aşamada, cihazın kapalı geri besleme döngüsü derinlik kontrol özelliği kullanılarak 100 saniye boyunca sabit bir derinlik korunmuş ve yükün zamanla azaldığı gözlemlenmiştir. Tüm test, indenterin akrilik numuneden çıkarılması için bir boşaltma aşaması ile sonlandırılmıştır.

Aynı girinti yükleme oranları kullanılarak ancak gevşeme (sünme) süresi hariç tutularak ilave girinti testleri yapılmıştır. Bu testlerden yük ve yer değiştirme grafikleri elde edilmiş ve akrilik ve bakır numuneler için Şekil 3'teki grafiklerde birleştirilmiştir. Girinti yükleme hızı 10'dan 1 µm/dak'ya düştükçe, yük-yer değiştirme eğrisi hem Akrilik hem de Bakır için giderek daha yüksek penetrasyon derinliklerine doğru kaymıştır. Gerinimde zamana bağlı böyle bir artış, malzemelerin viskoelastik sünme etkisinden kaynaklanmaktadır. Daha düşük bir yükleme hızı, viskoelastik bir malzemenin karşılaştığı dış gerilime tepki vermesi ve buna göre deforme olması için daha fazla zamana sahip olmasını sağlar ...

Farklı girinti yükleme hızları kullanılarak sabit bir gerinimdeki yükün gelişimi, test edilen her iki malzeme için Şekil 4'te çizilmiştir. Yük, testlerin gevşeme aşamasının (100 saniye tutma süresi) ilk aşamalarında daha yüksek bir oranda azalmış ve tutma süresi ~50 saniyeye ulaştığında yavaşlamıştır. Polimerler ve metaller gibi viskoelastik malzemeler, daha yüksek girinti yükleme oranlarına maruz kaldıklarında daha yüksek yük kaybı oranı sergilerler. Girinti yükleme hızı 1'den 10 µm/dak'ya yükseldikçe gevşeme sırasındaki yük kaybı oranı sırasıyla Akrilik için 51,5'ten 103,2 mN'ye ve Bakır için 15,0'dan 27,4 mN'ye yükselmiştir. Şekil 5.

ASTM Standardı E328ii'de belirtildiği gibi, stres gevşeme testlerinde karşılaşılan en büyük sorun, bir cihazın sabit bir gerinim/derinlik sağlayamamasıdır. Nanovea Mekanik Test Cihazı, hızlı hareket eden piezo-elektrik aktüatör ile bağımsız kapasitör derinlik sensörü arasında derinlik için kapalı bir geri besleme döngüsü kontrolü uygulayabilmesi sayesinde mükemmel doğrulukta gerilim gevşeme ölçümleri sağlar. Gevşeme aşaması sırasında piezo-elektrik aktüatör, yükteki değişim bağımsız bir yüksek hassasiyetli yük sensörü tarafından ölçülüp kaydedilirken gerçek zamanlı olarak sabit derinlik kısıtlamasını korumak için girintiyi ayarlar.

SONUÇ

Bir akrilik ve bir bakır numunenin gerilme gevşemesi, Nanovea Mekanik Test Cihazının nanoindentasyon modülü kullanılarak farklı yükleme hızlarında ölçülmüştür. Yükleme sırasında malzemenin sünme etkisi nedeniyle daha düşük yükleme hızlarında girintiler yapıldığında daha büyük bir maksimum derinliğe ulaşılır. Hem akrilik hem de bakır numune, hedeflenen maksimum yükteki girinti konumu sabit tutulduğunda gerilme gevşemesi davranışı sergilemektedir. Daha yüksek girinti yükleme oranlarına sahip testler için gevşeme aşaması sırasında yük kaybında daha büyük değişiklikler gözlenmiştir.

Nanovea Mekanik Test Cihazı tarafından üretilen stres gevşeme testi, cihazların polimer ve metal malzemelerin zamana bağlı viskoelastik davranışını ölçme ve güvenilir bir şekilde ölçme yeteneğini sergilemektedir. Tek bir platform üzerinde eşsiz çok fonksiyonlu Nano ve Mikro modüllere sahiptir. Nem ve sıcaklık kontrol modülleri, çok çeşitli endüstrilere uygulanabilen çevresel test yetenekleri için bu cihazlarla eşleştirilebilir. Hem Nano hem de Mikro modüller çizik testi, sertlik testi ve aşınma testi modlarını içerir ve tek bir sistemde mevcut olan en geniş ve en kullanıcı dostu mekanik test yetenekleri yelpazesini sağlar.

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM