나노인덴테이션을 이용한 생체 조직 경도 평가
생체 조직 나노인덴테이션의 중요성
기존의 기계적 테스트(경도, 접착력, 압축, 천공, 항복 강도 등)는 조직에서 부서지기 쉬운 재료에 이르기까지 다양한 첨단 재료가 사용되는 오늘날의 품질 관리 환경에서 더 높은 정밀도와 신뢰성을 요구합니다. 기존의 기계식 계측기는 첨단 소재에 필요한 민감한 부하 제어와 분해능을 제공하지 못합니다. 생체 재료와 관련된 과제는 매우 부드러운 재료에 대한 정확한 부하 제어가 가능한 기계적 테스트를 개발해야 합니다. 이러한 재료는 적절한 특성 측정을 보장하기 위해 깊이 범위가 넓고 매우 낮은 mN 미만의 테스트 하중이 필요합니다. 또한 단일 시스템에서 다양한 기계적 테스트 유형을 수행할 수 있어 기능이 향상됩니다. 이를 통해 긁힘 저항 및 항복 강도 실패 지점 외에도 경도, 탄성 계수, 손실 및 저장 계수, 크리프 등 생체 재료에 대한 다양한 중요한 측정값을 제공합니다.
측정 목표
이 응용 분야에서는 나노 인덴테이션 모드의 나노베아 기계식 테스터를 사용하여 프로슈토의 지방, 연육 및 암육 영역에 대한 생체 재료 대체물의 세 가지 개별 영역의 경도 및 탄성 계수를 연구합니다.
나노인덴테이션은 계측 압입 표준인 ASTM E2546 및 ISO 14577을 기반으로 합니다. 이 방법은 알려진 형상의 압입 팁을 제어된 증가 정상 하중으로 테스트 재료의 특정 부위에 밀어 넣는 확립된 방법을 사용합니다. 사전 설정된 최대 깊이에 도달하면 완전한 이완이 발생할 때까지 정상 하중이 감소합니다. 피에조 액추에이터에 의해 하중이 가해지며 고감도 로드셀로 제어 루프에서 측정됩니다. 실험 중에 시료 표면에 대한 압자 위치는 고정밀 정전 용량 센서로 모니터링됩니다. 결과 하중 및 변위 곡선은 테스트 재료의 기계적 특성과 관련된 데이터를 제공합니다. 확립된 모델은 측정된 데이터로 정량적 경도 및 탄성률 값을 계산합니다. 나노인덴테이션은 나노미터 규모의 저하중 및 침투 깊이 측정에 적합합니다.
결과 및 토론
아래 표에는 경도 및 영 계수의 측정값과 평균 및 표준편차가 나와 있습니다. 표면 거칠기가 높으면 압흔 크기가 작아 결과에 큰 변동이 발생할 수 있습니다.
지방 부위의 경도는 고기 부위의 절반 정도였습니다. 육류 처리로 인해 어두운 고기 부위가 밝은 고기 부위보다 더 단단해졌습니다. 탄성 계수와 경도는 지방과 고기 부위의 씹는 질감과 직접적인 관련이 있습니다. 지방과 연한 고기 부위는 60초 후에도 어두운 고기보다 더 높은 비율로 크리프가 지속됩니다.
상세 결과 - 지방
상세 결과 - 라이트 미트
상세 결과 - 다크 미트
결론
이 애플리케이션에서 Nanovea의 기계식 테스터 나노인덴테이션 모드에서는 높은 샘플 표면 거칠기를 극복하면서 지방과 고기 영역의 기계적 특성을 안정적으로 결정했습니다. 이는 Nanovea 기계 테스터의 광범위하고 비교할 수 없는 기능을 입증했습니다. 이 시스템은 매우 단단한 재료와 부드러운 생물학적 조직에 대한 정밀한 기계적 특성 측정을 동시에 제공합니다.
피에조 테이블을 사용한 폐쇄 루프 제어 방식의 로드셀은 1~5kPa의 경질 또는 연질 젤 재료를 정밀하게 측정할 수 있습니다. 동일한 시스템을 사용하여 최대 400N의 높은 하중에서 생체 재료를 테스트할 수 있습니다. 피로 테스트에는 다중 사이클 하중을 사용할 수 있으며 평평한 원통형 다이아몬드 팁을 사용하여 각 영역의 항복 강도 정보를 얻을 수 있습니다. 또한 동적 기계 분석(DMA)을 통해 폐쇄 루프 하중 제어를 사용하여 점탄성 특성 손실 및 저장 모듈을 높은 정확도로 평가할 수 있습니다. 다양한 온도와 액체 상태에서의 테스트도 동일한 시스템에서 가능합니다.
나노베아의 기계식 테스터는 생물학적 및 연질 폴리머/젤 응용 분야를 위한 우수한 도구로 계속 사용되고 있습니다.
이제 애플리케이션에 대해 이야기해 보겠습니다.
카테고리
- 애플리케이션 노트
- 링 마찰력 차단
- 부식 마찰학
- 마찰 테스트 | 마찰 계수
- 고온 기계 테스트
- 고온 마찰학
- 습도 및 가스 마찰학
- 습도 기계적 테스트
- 들여쓰기 | 크립 및 릴랙스
- 압흔 | 파단 인성
- 들여쓰기 | 경도 및 탄성
- 들여쓰기 | 분실 및 보관
- 들여쓰기 | 스트레스 대 변형
- 압흔 | 수율 강도 및 피로도
- 실험실 테스트
- 선형 마찰학
- 액체 기계 테스트
- 액체 마찰학
- 저온 마찰학
- 기계적 테스트
- 보도 자료
- 프로파일 측정 | 평탄도 및 휨
- 프로파일 측정 | 기하학 및 도형
- 프로파일 측정 | 거칠기 및 마감
- 프로파일 측정 | 스텝 높이 및 두께
- 프로파일 측정 | 텍스처 및 그레인
- 프로파일 측정 | 부피 및 면적
- 프로파일 측정 테스트
- 링 온 링 마찰학
- 회전 마찰학
- 스크래치 테스트 | 접착 실패
- 스크래치 테스트 | 응집력 실패
- 스크래치 테스트 | 멀티 패스 마모
- 스크래치 테스트 | 스크래치 경도
- 스크래치 테스트 마찰학
- 트레이드쇼
- 마찰 테스트
- 분류
보관함
- 2023년 9월
- 2023년 8월
- 2023년 6월
- 2023년 5월
- 2022년 7월
- 2022년 5월
- 2022년 4월
- 2022년 1월
- 2021년 12월
- 2021년 11월
- 2021년 10월
- 2021년 9월
- 2021년 8월
- 2021년 7월
- 2021년 6월
- 2021년 5월
- 2021년 3월
- 2021년 2월
- 2020년 12월
- 2020년 11월
- 2020년 10월
- 2020년 9월
- 2020년 7월
- 2020년 5월
- 2020년 4월
- 2020년 3월
- 2020년 2월
- 2020년 1월
- 2019년 11월
- 2019년 10월
- 2019년 9월
- 2019년 8월
- 2019년 7월
- 2019년 6월
- 2019년 5월
- 2019년 4월
- 2019년 3월
- 2019년 1월
- 2018년 12월
- 2018년 11월
- 2018년 10월
- 2018년 9월
- 2018년 7월
- 2018년 6월
- 2018년 5월
- 2018년 4월
- 2018년 3월
- 2018년 2월
- 2017년 11월
- 2017년 10월
- 2017년 9월
- 2017년 8월
- 2017년 6월
- 2017년 5월
- 2017년 4월
- 2017년 3월
- 2017년 2월
- 2017년 1월
- 2016년 11월
- 2016년 10월
- 2016년 8월
- 2016년 7월
- 2016년 6월
- 2016년 5월
- 2016년 4월
- 2016년 3월
- 2016년 2월
- 2016년 1월
- 2015년 12월
- 2015년 11월
- 2015년 10월
- 2015년 9월
- 2015년 8월
- 2015년 7월
- 2015년 6월
- 2015년 5월
- 2015년 4월
- 2015년 3월
- 2015년 2월
- 2015년 1월
- 2014년 11월
- 2014년 10월
- 2014년 9월
- 2014년 8월
- 2014년 7월
- 2014년 6월
- 2014년 5월
- 2014년 4월
- 2014년 3월
- 2014년 2월
- 2014년 1월
- 2013년 12월
- 2013년 11월
- 2013년 10월
- 2013년 9월
- 2013년 8월
- 2013년 7월
- 2013년 6월
- 2013년 5월
- 2013년 4월
- 2013년 3월
- 2013년 2월
- 2013년 1월
- 2012년 12월
- 2012년 11월
- 2012년 10월
- 2012년 9월
- 2012년 8월
- 2012년 7월
- 2012년 6월
- 2012년 5월
- 2012년 4월
- 2012년 3월
- 2012년 2월
- 2012년 1월
- 2011년 12월
- 2011년 11월
- 2011년 10월
- 2011년 9월
- 2011년 8월
- 2011년 7월
- 2011년 6월
- 2011년 5월
- 2010년 11월
- 2010년 1월
- 2009년 4월
- 2009년 3월
- 2009년 1월
- 2008년 12월
- 2008년 10월
- 2007년 8월
- 2006년 7월
- 2006년 3월
- 2005년 1월
- 2004년 4월