الولايات المتحدة الأمريكية / العالمية: 9292-461-949-1+
أوروبا: 794-3052-011-39+
تراسل معنا

التحليل الميكانيكي الديناميكي للفلين باستخدام Nanoindentation

التحليل الميكانيكي الديناميكي

من الفلين باستخدام NANOINDENTATION

أُعدت بواسطة

فرانك ليو

مقدمة

التحليل الميكانيكي الديناميكي (DMA) هو تقنية قوية تستخدم لفحص الخواص الميكانيكية للمواد. في هذا التطبيق ، نركز على تحليل الفلين ، وهو مادة مستخدمة على نطاق واسع في عمليات ختم النبيذ والشيخوخة. يُظهر الفلين ، الذي تم الحصول عليه من لحاء شجرة البلوط Quercus suber ، هياكل خلوية متميزة توفر خصائص ميكانيكية تشبه البوليمرات الاصطناعية. في أحد المحاور ، يحتوي الفلين على هيكل قرص العسل. تم بناء المحورين الآخرين في مناشير متعددة مستطيلة الشكل. وهذا يعطي الفلين خواص ميكانيكية مختلفة حسب الاتجاه الذي يجري اختباره.

أهمية اختبار التحليل الميكانيكي الديناميكي (DMA) في تقييم الخصائص الميكانيكية للفلين

تعتمد جودة الفلين بشكل كبير على خواصها الميكانيكية والفيزيائية ، والتي تعتبر حاسمة في فعاليتها في ختم النبيذ. تشمل العوامل الرئيسية التي تحدد جودة الفلين: المرونة والعزل والمرونة وعدم نفاذية الغاز والسوائل. من خلال استخدام اختبار التحليل الميكانيكي الديناميكي (DMA) ، يمكننا تقييم خصائص المرونة والمرونة للفلين ، مما يوفر طريقة موثوقة للتقييم.

جهاز الاختبار الميكانيكي NANOVEA PB1000 في nanoindentation يتيح الوضع توصيف هذه الخصائص ، وبالتحديد معامل يونغ ، ومعامل التخزين ، ومعامل الفقد ، ودلتا tan (tan (δ)). يسمح اختبار التحليل الميكانيكي الديناميكي (DMA) أيضًا بجمع البيانات القيمة عن تحول الطور والصلابة والإجهاد والانفعال في مادة الفلين. من خلال هذه التحليلات الشاملة ، نكتسب رؤى أعمق في السلوك الميكانيكي للفلين ومدى ملاءمتها لتطبيقات ختم النبيذ.

هدف القياس

في هذه الدراسة ، قم بإجراء التحليل الميكانيكي الديناميكي (DMA) على أربعة سدادات من الفلين باستخدام NANOVEA PB1000 Mechanical Tester في وضع Nanoindentation. يتم تصنيف جودة سدادات الفلين على النحو التالي: 1 - فلور ، 2 - أولاً ، 3 - كولماتيد ، 4 - مطاط صناعي. تم إجراء اختبارات المسافة البادئة للتحليل الميكانيكي الديناميكي (DMA) في كلا الاتجاهين المحوري والقطري لكل سدادة من الفلين. من خلال تحليل الاستجابة الميكانيكية لسدادات الفلين ، كنا نهدف إلى اكتساب رؤى حول سلوكهم الديناميكي وتقييم أدائهم في ظل توجهات مختلفة.

نانوفيا

PB1000

معلمات الاختبار

ماكس فورس75 مليون
معدل التحميل150 ملي نيوتن / دقيقة
معدل التفريغ150 ملي نيوتن / دقيقة
توسيع5 ملي نيوتن
تكرار1 هرتز
زحف60 ثانية

نوع إندينتر

كرة

51200 فولاذ

قطر 3 مم

نتائج

في الجداول والرسوم البيانية أدناه ، تتم مقارنة معامل Young ، ومعامل التخزين ، ومعامل الفقد ، ودلتا tan بين كل عينة واتجاه.

معامل يونج: Sti نيس. تشير القيم العالية إلى sti ، القيم المنخفضة تشير إلى وجود قابلة للإعجاب.

معامل التخزين: استجابة مرنة الطاقة المخزنة في المادة.

معامل الخسارة: استجابة لزجة الطاقة المفقودة بسبب الحرارة.

تان (δ): التبليل. تشير القيم العالية إلى مزيد من التخميد.

التوجه المحوري

سدادةمعامل يونجمعامل التخزينوحدة الخسارةتان
#(مبا)(مبا)(مبا)(δ)
122.567522.272093.6249470.162964
218.5466418.271533.1623490.17409
323.7538123.472673.6178190.154592
423.697223.580642.3470080.099539



التوجيه الشعاعي

سدادةمعامل يونجمعامل التخزينوحدة الخسارةتان
#(مبا)(مبا)(مبا)(δ)
124.7886324.565423.3082240.134865
226.6661426.317394.2862160.163006
344.0786743.614266.3659790.146033
428.0475127.941482.4359780.087173

معامل يونج

معامل التخزين

وحدة الخسارة

تان دلتا

بين سدادات الفلين ، لا يختلف معامل Young كثيرًا عند اختباره في الاتجاه المحوري. أظهر Stopper #2 و #3 فقط فرقًا واضحًا في معامل Young بين الاتجاه الشعاعي والاتجاه المحوري. نتيجة لذلك ، سيكون معامل التخزين ومعامل الخسارة أيضًا أعلى في الاتجاه الشعاعي منه في الاتجاه المحوري. يظهر سدادة #4 خصائص مماثلة مع سدادات الفلين الطبيعية ، باستثناء معامل الخسارة. هذا مثير للاهتمام لأنه يعني أن الفلين الطبيعي له خاصية لزوجة أكثر من مادة المطاط الصناعي.

خاتمة

النانو اختبار ميكانيكي في وضع Nano Scratch Tester، يمكنك محاكاة العديد من حالات الفشل الواقعية لطلاءات الطلاء والطلاءات الصلبة. من خلال تطبيق أحمال متزايدة بطريقة يتم التحكم فيها ومراقبتها عن كثب، يسمح الجهاز بتحديد مكان فشل الأحمال. ويمكن بعد ذلك استخدام هذا كوسيلة لتحديد القيم الكمية لمقاومة الخدش. من المعروف أن الطلاء الذي تم اختباره، دون التعرض للعوامل الجوية، به صدع أول عند حوالي 22 ملي نيوتن. مع قيم أقرب إلى 5 ملي نيوتن، فمن الواضح أن دورة 7 سنوات قد أدت إلى تدهور الطلاء.

يسمح التعويض عن ملف التعريف الأصلي بالحصول على عمق مصحح أثناء الخدش وأيضًا قياس العمق المتبقي بعد الخدش. هذا يعطي معلومات إضافية عن البلاستيك مقابل السلوك المرن للطلاء تحت الحمل المتزايد. يمكن أن يكون كل من التكسير والمعلومات الخاصة بالتشوه مفيدًا بشكل كبير لتحسين الطبقة الصلبة. تظهر الانحرافات المعيارية الصغيرة جدًا أيضًا إمكانية استنساخ تقنية الأداة التي يمكن أن تساعد الشركات المصنعة على تحسين جودة الطلاء / الطلاء الصلب ودراسة تأثيرات التجوية.

اختبار النانو للخدش ومار للطلاء على الركيزة المعدنية

اختبار الخدوش والخدوش النانوية

الطلاء على الركيزة المعدنية

أُعدت بواسطة

سوزانا كابيلو

مقدمة

يعد الطلاء مع أو بدون طبقة صلبة من أكثر أنواع الطلاء شيوعًا. نراه على السيارات والجدران والأجهزة وأي شيء يحتاج إلى بعض الطلاءات الواقية أو ببساطة لأغراض جمالية. غالبًا ما تحتوي الدهانات المخصصة لحماية الركيزة الأساسية على مواد كيميائية تمنع الطلاء من الاشتعال أو تمنعه ببساطة من فقدان لونه أو تشققه. غالبًا ما يأتي الطلاء المستخدم لأغراض جمالية بألوان مختلفة ، ولكن قد لا يكون بالضرورة مخصصًا لحماية ركائزه أو لعمر طويل.

ومع ذلك ، فإن جميع الدهانات تعاني من بعض التجوية بمرور الوقت. غالبًا ما يؤدي التجوية على الطلاء إلى تغيير الخصائص عما أراده صانعوها. يمكن أن تقشر أسرع ، تقشر بالحرارة ، لون فضفاض أو تشقق. إن التغيرات المختلفة في خصائص الطلاء بمرور الوقت هي السبب في أن صانعي الطلاء يقدمون مثل هذا الاختيار الواسع. تم تصميم الدهانات لتلبية المتطلبات المختلفة للعملاء الأفراد.

أهمية اختبار خدش النانو لمراقبة الجودة

مصدر قلق كبير لصانعي الطلاء هو قدرة منتجهم على مقاومة التشقق. بمجرد أن يبدأ الطلاء في التصدع ، فإنه يفشل في حماية الركيزة التي تم تطبيقه عليها ؛ لذلك ، فشل في إرضاء العميل. على سبيل المثال ، إذا حدث أن قام فرع بضربة على جانب السيارة وبعد أن يبدأ الطلاء في الانهيار على الفور ، فإن صانعي الطلاء سيفقدون أعمالهم بسبب رداءة جودة الطلاء. تعد جودة الطلاء مهمة جدًا لأنه إذا تعرض المعدن الموجود أسفل الطلاء ، فقد يبدأ في الصدأ أو التآكل بسبب تعرضه الجديد.

 

تنطبق أسباب مثل هذه على العديد من الأطياف الأخرى مثل اللوازم المنزلية والمكتبية والإلكترونيات والألعاب وأدوات البحث والمزيد. على الرغم من أن الطلاء قد يكون مقاومًا للتشقق عند تطبيقه لأول مرة على الطلاء المعدني ، إلا أن الخصائص قد تتغير بمرور الوقت عند حدوث بعض العوامل الجوية على العينة. هذا هو السبب في أنه من المهم جدًا اختبار عينات الطلاء في مرحلة التجوية. على الرغم من أن التشقق تحت حمولة عالية من الضغط قد يكون أمرًا لا مفر منه ، يجب على المُصنِّع أن يتنبأ بمدى إضعاف التغييرات بمرور الوقت ومدى عمق الخدش المؤثر من أجل تزويد المستهلكين بأفضل المنتجات الممكنة.

هدف القياس

يجب علينا محاكاة عملية الخدش بطريقة خاضعة للرقابة والمراقبة لملاحظة تأثيرات سلوك العينة. في هذا التطبيق ، يتم استخدام جهاز اختبار NANOVEA PB1000 الميكانيكي في وضع اختبار النانو للخدش لقياس الحمل المطلوب للتسبب في فشل عينة طلاء بسمك 30-50 ميكرومتر يبلغ من العمر 7 سنوات تقريبًا على ركيزة معدنية.

يتم استخدام قلم ذو رأس ماسي بحجم 2 ميكرومتر عند حمل تدريجي يتراوح من 0.015 ملي نيوتن إلى 20.00 ملي نيوتن لخدش الطلاء. قمنا بإجراء مسح ضوئي مسبق وبعده للطلاء بحمل 0.2 ملي نيوتن لتحديد قيمة العمق الحقيقي للخدش. يحلل العمق الحقيقي التشوه البلاستيكي والمرن للعينة أثناء الاختبار ؛ في حين أن الفحص اللاحق يحلل فقط تشوه البلاستيك للخدش. يتم أخذ النقطة التي فشل فيها الطلاء عن طريق التكسير على أنها نقطة الفشل. استخدمنا ASTMD7187 كدليل لتحديد معايير الاختبار الخاصة بنا.

 

يمكننا أن نستنتج أنه بعد استخدام عينة مجوية ؛ لذلك ، فإن اختبار عينة الطلاء في مرحلتها الأضعف ، قدم لنا نقاط فشل أقل.

 

تم إجراء خمسة اختبارات على هذه العينة من أجل

تحديد الأحمال الحرجة الفشل الدقيق.

نانوفيا

PB1000

معلمات الاختبار

التالي ASTM D7027

تم مسح سطح معيار الخشونة ضوئيًا باستخدام NANOVEA ST400 المزود بمستشعر عالي السرعة يولد خطًا ساطعًا من 192 نقطة ، كما هو موضح في الشكل 1. هذه النقاط الـ 192 تفحص سطح العينة في نفس الوقت ، مما يؤدي إلى زيادة كبيرة سرعة المسح.

نوع التحميل تدريجي
التحميل الابتدائي 0.015 ملي نيوتن
التحميل النهائي ٢٠ ملي نيوتن
معدل التحميل 20 ملي نيوتن / دقيقة
طول الخدش 1.6 ملم
سرعة الخدش ، dx / dt 1.601 مم / دقيقة
تحميل ما قبل المسح 0.2 مليون نيوتن
تحميل ما بعد المسح 0.2 مليون نيوتن
إندينتر مخروطي 90 درجة نصف قطر طرف مخروطي 2 ميكرومتر

نوع إندينتر

مخروطي

الماس 90 درجة مخروط

2 ميكرومتر طرف نصف قطر

الماس إندينتر المخروطي 90 درجة نصف قطر طرف المخروط 2 ميكرومتر

نتائج

يقدم هذا القسم البيانات التي تم جمعها حول حالات الفشل أثناء اختبار الخدش. يصف القسم الأول حالات الفشل التي لوحظت في الخدش ويحدد الأحمال الحرجة التي تم الإبلاغ عنها. يحتوي الجزء التالي على جدول ملخص للأحمال الحرجة لجميع العينات ، وتمثيل رسومي. يقدم الجزء الأخير نتائج مفصلة لكل عينة: الأحمال الحرجة لكل خدش ، وميكروغرافيا لكل فشل ، والرسم البياني للاختبار.

ملاحظة الإخفاقات وتعريف الأحمال الحرجة

فشل حرج:

الضرر الأولي

هذه هي النقطة الأولى التي يتم فيها ملاحظة الضرر على طول مسار الخدش.

نانو الصفر فشل حرج الضرر الأولي

فشل حرج:

ضرر كامل

في هذه المرحلة ، يكون الضرر أكثر أهمية حيث يتشقق الطلاء ويتشقق على طول مسار الخدش.

نانو الصفر فشل حرج الضرر الكامل

النتائج التفصيلية

* تم أخذ قيم الفشل عند نقطة تكسير الركيزة.

أحمال حرجة
يخدش الضرر الأولي [مليون] ضرر كامل [ميكرون]
1 14.513 4.932
2 3.895 4.838
3 3.917 4.930
متوسط 3.988 4.900
الأمراض المنقولة جنسيا ديف 0.143 0.054
صورة مجهرية للخدش الكامل من اختبار النانو للخدش (تكبير 1000 مرة).

الشكل 2: صورة مجهرية للخدش الكامل (تكبير 1000 مرة).

صورة مجهرية للضرر الأولي من اختبار خدش النانو (تكبير 1000 مرة)

الشكل 3: صورة مجهرية للضرر الأولي (تكبير 1000 مرة).

صورة مجهرية للضرر الكامل من اختبار خدش النانو (تكبير 1000 مرة).

الشكل 4: صورة مجهرية للضرر الكامل (تكبير 1000 مرة).

قوة الاحتكاك في اختبار النانو للخدش الخطي ومعامل الاحتكاك

الشكل 5: قوة الاحتكاك وقوة الاحتكاك.

بروفيل سطح الخدش الخطي بتقنية النانو

الشكل 6: الملف الشخصي السطحي.

اختبار خدش النانو الخطي العمق الحقيقي والعمق المتبقي

الشكل 7: العمق الحقيقي والعمق المتبقي.

خاتمة

النانو اختبار ميكانيكي في ال نانو سكراتش تستر يسمح الوضع بمحاكاة العديد من حالات الفشل الواقعية لطلاء الطلاء والمعاطف الصلبة. من خلال تطبيق الأحمال المتزايدة بطريقة خاضعة للرقابة والمراقبة عن كثب ، تسمح الأداة بتحديد حالات فشل التحميل. يمكن بعد ذلك استخدام هذا كطريقة لتحديد القيم الكمية لمقاومة الخدش. من المعروف أن الطلاء الذي تم اختباره ، بدون أي عوامل جوية ، به تشققات أولية عند حوالي 22 مليون نيوتن. مع قيم تقترب من 5 ملي نيوتن ، من الواضح أن ال 7 سنوات قد أدت إلى تدهور الطلاء.

يسمح التعويض عن ملف التعريف الأصلي بالحصول على عمق مصحح أثناء الخدش وقياس العمق المتبقي بعد الخدش. هذا يعطي معلومات إضافية عن البلاستيك مقابل السلوك المرن للطلاء تحت الحمل المتزايد. يمكن أن يكون كل من التكسير والمعلومات الخاصة بالتشوه مفيدًا بشكل كبير لتحسين الطبقة الصلبة. تُظهر الانحرافات المعيارية الصغيرة جدًا إمكانية استنساخ تقنية الأداة التي يمكن أن تساعد الشركات المصنعة على تحسين جودة الطلاء / الطلاء الصلب ودراسة تأثيرات التجوية.

فحص رسم خرائط التخشن باستخدام قياس الأبعاد ثلاثي بالبروفايلو متر

قسوة تخطيط التفتيش

استخدام القياس الشخصي ثلاثي الأبعاد

أُعدت بواسطة

دوانجي ، دكتوراه

مقدمة

تعد خشونة السطح وملمسه من العوامل الحاسمة التي تؤثر على الجودة النهائية وأداء المنتج. يعد الفهم الشامل لخشونة السطح ، والملمس ، والاتساق أمرًا ضروريًا لاختيار أفضل إجراءات المعالجة والتحكم. هناك حاجة إلى فحص مضمّن سريع وقابل للقياس الكمي وموثوق به لأسطح المنتج لتحديد المنتجات المعيبة في الوقت المناسب وتحسين ظروف خط الإنتاج.

أهمية مقياس التشكيل ثلاثي الأبعاد غير المتصل لفحص السطح الداخلي

تنتج العيوب السطحية في المنتجات عن معالجة المواد وتصنيع المنتجات. يضمن فحص جودة السطح المضمن مراقبة الجودة الصارمة للمنتجات النهائية. نانوفيا ملفات التعريف البصرية ثلاثية الأبعاد غير المتصلة الاستفادة من تقنية Chromatic Light ذات القدرة الفريدة لتحديد خشونة العينة دون تلامس. يتيح مستشعر الخط مسح ملف التعريف ثلاثي الأبعاد لسطح كبير بسرعة عالية. عتبة الخشونة، المحسوبة في الوقت الحقيقي بواسطة برنامج التحليل، بمثابة أداة تمرير/فشل سريعة وموثوقة.

هدف القياس

في هذه الدراسة ، يتم استخدام Nanovea ST400 المجهز بمستشعر عالي السرعة لتفقد سطح العينة مع العيوب لإظهار قدرة Nanovea

أجهزة قياس عدم التلامس في توفير فحص سريع وموثوق للسطح في خط الإنتاج.

نانوفيا

ST400

النتائج والمناقشة

تحليل سطحي ثلاثي الأبعاد لـ العينة المعيارية الخشنة

تم مسح سطح معيار الخشونة ضوئيًا باستخدام NANOVEA ST400 المزود بمستشعر عالي السرعة يولد خطًا ساطعًا من 192 نقطة ، كما هو موضح في الشكل 1. هذه النقاط الـ 192 تفحص سطح العينة في نفس الوقت ، مما يؤدي إلى زيادة كبيرة سرعة المسح.

يوضح الشكل 2 طرق عرض ألوان خاطئة لخريطة ارتفاع السطح وخريطة توزيع الخشونة لعينة معيار الخشونة. في الشكل 2 أ ، يُظهر معيار الخشونة سطحًا مائلًا قليلاً كما هو ممثل بتدرج لوني متنوع في كل من كتل الخشونة القياسية. في الشكل 2 ب ، يظهر توزيع الخشونة المتجانس في كتل خشونة مختلفة ، ويمثل لونها الخشونة في الكتل.

يوضح الشكل 3 أمثلة خرائط النجاح / الفشل التي تم إنشاؤها بواسطة برنامج التحليل بناءً على عتبات الخشونة المختلفة. يتم تمييز كتل الخشونة باللون الأحمر عندما تكون خشونة سطحها أعلى من قيمة حدية معينة. يوفر هذا أداة للمستخدم لإعداد عتبة خشونة لتحديد جودة تشطيب سطح العينة.

شكل ١: مسح مستشعر الخط البصري على عينة Roughness Standard

أ. خريطة ارتفاع السطح:

ب. خريطة الخشونة:

الشكل 2: طرق عرض الألوان الزائفة لخريطة ارتفاع السطح وخريطة توزيع الخشونة لعينة معيار الخشونة.

الشكل 3: خريطة النجاح / الفشل على أساس Roughness Threshold.

الفحص السطحي للعينة مع العيوب

يظهر الشكل 4. خريطة توزيع الخشونة وخريطة عتبة خشونة المرور/الفشل لسطح العينة.

أ. خريطة ارتفاع السطح:

تمثل الألوان المختلفة في لوح التحميل في الشكل 4 ب قيمة الخشونة على السطح المحلي. تعرض خريطة خشونة خشونة متجانسة في المنطقة السليمة للعينة. ومع ذلك ، فإن العيوب ، في أشكال الحلقة ذات المسافة البادئة وندبة التآكل يتم إبرازها بلون ساطع. يمكن للمستخدم بسهولة إعداد حد خشونة النجاح / الفشل لتحديد عيوب السطح كما هو موضح في الشكل 4 ج. تتيح هذه الأداة للمستخدمين مراقبة جودة سطح المنتج في خط الإنتاج في الموقع واكتشاف المنتجات المعيبة في الوقت المناسب. يتم حساب قيمة الخشونة في الوقت الفعلي وتسجيلها أثناء مرور المنتجات بواسطة المستشعر البصري المضمن ، والذي يمكن أن يكون بمثابة أداة سريعة وموثوقة لمراقبة الجودة.

ب. خريطة الخشونة:

ج. خريطة حد خشونة النجاح / الفشل:

الشكل 4: خريطة ارتفاع السطح وخريطة توزيع الخشونة و اجتياز / فشل Roughness Threshold Map لـ Te على سطح العينة.

خاتمة

في هذا التطبيق ، أظهرنا كيف أن ملف التعريف البصري NANOVEA ST400 3D Non-Contact Optical Profiler المجهز بمستشعر خط بصري يعمل كأداة موثوقة لمراقبة الجودة بطريقة فعالة وفعالة.

يولد مستشعر الخط البصري خطًا ساطعًا من 192 نقطة يمسح سطح العينة في نفس الوقت ، مما يؤدي إلى زيادة سرعة المسح بشكل كبير. يمكن تثبيته في خط الإنتاج لمراقبة خشونة السطح للمنتجات في الموقع. تعمل عتبة الخشونة كمعايير يمكن الاعتماد عليها لتحديد جودة سطح المنتجات ، مما يسمح للمستخدمين بملاحظة المنتجات المعيبة في الوقت المناسب.

تمثل البيانات الموضحة هنا جزءًا فقط من الحسابات المتوفرة في برنامج التحليل. تقيس مقاييس ملف تعريف NANOVEA أي سطح تقريبًا في المجالات بما في ذلك أشباه الموصلات ، والإلكترونيات الدقيقة ، والطاقة الشمسية ، والألياف البصرية ، والسيارات ، والفضاء ، والمعادن ، والآلات ، والطلاء ، والأدوية ، والطب الحيوي ، والبيئة وغيرها الكثير.