الولايات المتحدة الأمريكية / العالمية: 9292-461-949-1+
أوروبا: 794-3052-011-39+
تراسل معنا

فحص خشونة السطح للأقراص الصيدلانية

أقراص صيدلانية

فحص الخشونة باستخدام مقاييس بروفيلومترية ثلاثية الأبعاد

مؤلف:

جوسلين اسبارزا

مقدمة

تعد الأقراص الصيدلانية أكثر الجرعات الطبية شيوعًا المستخدمة اليوم. يتكون كل قرص من مزيج من المواد الفعالة (المواد الكيميائية التي تنتج تأثيرًا دوائيًا) والمواد غير النشطة (المتحللة ، والموثق ، والمزلقات ، والمخفف - عادة في شكل مسحوق). ثم يتم ضغط المواد الفعالة وغير النشطة أو تشكيلها في مادة صلبة. بعد ذلك ، بناءً على مواصفات الشركة المصنعة ، تكون الأقراص إما مغلفة أو غير مطلية.

لكي تكون فعالة ، يجب أن تتبع أغلفة الأجهزة اللوحية الخطوط الدقيقة للشعارات أو الأحرف المنقوشة على الأجهزة اللوحية ، ويجب أن تكون ثابتة وقوية بما يكفي لتحمل التعامل مع الجهاز اللوحي ، ويجب ألا تتسبب في التصاق الأقراص ببعضها البعض أثناء الطلاء عملية. تحتوي الأقراص الحالية عادةً على طلاء متعدد السكاريد وبوليمر يحتوي على مواد مثل الأصباغ والملدنات. النوعان الأكثر شيوعًا لطلاء المائدة هما طلاء الفيلم وطلاء السكر. مقارنةً بالطلاء بالسكر ، تكون طبقات الطلاء أقل حجمًا وأكثر متانة وتستغرق وقتًا أقل في التحضير والتطبيق. ومع ذلك ، فإن طلاء الفيلم يواجه صعوبة أكبر في إخفاء مظهر الجهاز اللوحي.

تعتبر أغطية الأقراص ضرورية للحماية من الرطوبة ، وإخفاء طعم المكونات ، وجعل الأقراص أسهل في البلع. الأهم من ذلك ، أن طلاء الجهاز اللوحي يتحكم في الموقع ومعدل إطلاق الدواء.

هدف القياس

في هذا التطبيق ، نستخدم ملف ملف التعريف البصري NANOVEA وبرامج الجبال المتقدمة لقياس وتقدير تضاريس الحبوب المضغوطة ذات الأسماء التجارية المختلفة (1 مغلفة و 2 غير مصقولة) لمقارنة خشونة سطحها.

من المفترض أن يكون أدفيل (المطلي) أقل خشونة للسطح بسبب الطلاء الواقي الذي يحتوي عليه.

نانوفيا

HS2000

شروط الاختبار

تم مسح ثلاث دفعات من الأقراص المضغوطة ذات العلامات التجارية الصيدلانية باستخدام Nanovea HS2000
باستخدام مستشعر الخط عالي السرعة لقياس معلمات خشونة السطح المختلفة وفقًا لمعيار ISO 25178.

منطقة المسح

2 × 2 مم

دقة المسح الجانبي

5 × 5 ميكرومتر

وقت الفحص

4 ثوانى

عينات

النتائج والمناقشة

بعد مسح الأجهزة اللوحية ، تم إجراء دراسة خشونة السطح باستخدام برنامج تحليل الجبال المتقدم لحساب متوسط السطح ، ومتوسط الجذر التربيعي ، والحد الأقصى لارتفاع كل جهاز لوحي.

تدعم القيم المحسوبة افتراض أن Advil لديها خشونة سطح أقل بسبب الطبقة الواقية التي تغلف مكوناتها. يظهر Tylenol أن لديه أعلى خشونة سطح من بين جميع الأقراص الثلاثة المقاسة.

تم إنتاج خريطة ارتفاع ثنائية وثلاثية الأبعاد لتضاريس سطح كل لوح والتي توضح توزيعات الارتفاع المقاسة. تم اختيار واحد من خمسة أجهزة لوحية لتمثيل خرائط الارتفاع لكل علامة تجارية. تشكل خرائط الارتفاع هذه أداة رائعة للكشف البصري عن ميزات السطح البعيدة مثل الحفر أو القمم.

خاتمة

في هذه الدراسة ، قمنا بتحليل ومقارنة الخشونة السطحية لأقراص دوائية مضغوطة بثلاثة أسماء تجارية: Advil و Tylenol و Excedrin. أثبت أدفيل أن لديه أدنى متوسط خشونة للسطح. يمكن أن يعزى ذلك إلى وجود طلاء برتقالي يغطي الدواء. في المقابل ، يفتقر كل من Excedrin و Tylenol إلى الطلاءات ، ومع ذلك ، لا تزال خشونة السطح تختلف عن بعضها البعض. أثبت Tylenol أن لديه أعلى متوسط خشونة سطحية من بين جميع الأقراص المدروسة.

باستخدام نانوفيا HS2000 باستخدام مستشعر الخط عالي السرعة ، تمكنا من قياس 5 أقراص في أقل من دقيقة واحدة. يمكن أن يكون هذا مفيدًا لاختبار مراقبة الجودة لمئات الحبوب في الإنتاج اليوم.

الآن ، لنتحدث عن طلبك

الجسيمات الدقيقة: قوة الضغط والمسافة البادئة الدقيقة

جزيئات دقيقة

قوة الضغط والمسافة البادئة الدقيقة
عن طريق اختبار الأملاح

مؤلف:
خورخي راميريز

تمت مراجعته من:
جوسلين اسبارزا

مقدمة

أصبحت قوة الانضغاط أمرًا حيويًا لقياس مراقبة الجودة في تطوير وتحسين الجسيمات الدقيقة الجديدة والقائمة والسمات الدقيقة (الركائز والمجالات) التي نراها اليوم. للجسيمات الدقيقة أشكال وأحجام مختلفة ويمكن تطويرها من السيراميك والزجاج والبوليمرات والمعادن. تشمل الاستخدامات توصيل الأدوية ، وتعزيز نكهة الطعام ، والتركيبات الخرسانية من بين العديد من الاستخدامات الأخرى. يعد التحكم في الخواص الميكانيكية للجسيمات الدقيقة أو الميزات الدقيقة أمرًا بالغ الأهمية لنجاحها ويتطلب القدرة على التوصيف الكمي لسلامتها الميكانيكية  

أهمية العمق مقابل قوة ضغط التحميل

أدوات قياس الضغط القياسية ليست قادرة على تحمل الأحمال المنخفضة وتفشل في توفير ما يكفي بيانات العمق للجسيمات الدقيقة. باستخدام Nano أو تسليط دقيق، يمكن قياس قوة ضغط النانو أو الجسيمات الدقيقة (الناعمة أو الصلبة) بدقة ودقة.  

هدف القياس

في مذكرة التطبيق هذه نقيس  قوة ضغط الملح مع ال NANOVEA الفاحص الميكانيكي في وضع المسافة البادئة الدقيقة.

نانوفيا

CB500

شروط الاختبار

أقصى قوة

٣٠ نيوتن

معدل التحميل

60 نيوتن / دقيقة

معدل التفريغ

60 نيوتن / دقيقة

نوع إندينتر

لكمة مسطحة

فولاذ | قطر 1 مم

منحنيات الحمل مقابل العمق

النتائج والمناقشة

الارتفاع وقوة الفشل وقوة الجسيم 1 والجسيم 2

تم تحديد فشل الجسيمات على أنها النقطة التي بدأ فيها المنحدر الأولي لمنحنى القوة مقابل العمق في الانخفاض بشكل ملحوظ ، ويظهر هذا السلوك أن المادة وصلت إلى نقطة العائد ولم تعد قادرة على مقاومة قوى الانضغاط المطبقة. بمجرد تجاوز نقطة العائد ، يبدأ عمق المسافة البادئة في الزيادة بشكل كبير خلال فترة التحميل. يمكن رؤية هذه السلوكيات في منحنيات الحمل مقابل العمق لكلتا العينات.

خاتمة

في الختام ، لقد أظهرنا كيف نانوفيا اختبار ميكانيكي في وضع المسافة البادئة الدقيقة أداة رائعة لاختبار قوة الضغط للجسيمات الدقيقة. على الرغم من أن الجسيمات التي تم اختبارها مصنوعة من نفس المادة ، إلا أنه يُشتبه في أن نقاط الفشل المختلفة التي تم قياسها في هذه الدراسة كانت على الأرجح بسبب الشقوق الدقيقة الموجودة مسبقًا في الجسيمات وتفاوت أحجام الجسيمات. وتجدر الإشارة إلى أنه بالنسبة للمواد الهشة ، تتوفر مستشعرات انبعاث صوتية لقياس بداية انتشار الشقوق أثناء الاختبار.


ال
نانوفيا اختبار ميكانيكي يوفر قرارات إزاحة العمق وصولاً إلى مستوى النانومتر الفرعي ،
مما يجعلها أداة رائعة لدراسة الجسيمات الدقيقة أو السمات أيضًا. لنعومة وهشاشة
المواد ، الأحمال تصل إلى 0.1mN ممكنة مع وحدة المسافة البادئة النانوية الخاصة بنا

الآن ، لنتحدث عن طلبك

المحامل الكروية: دراسة مقاومة التآكل عالية القوة



مقدمة

يستخدم محمل الكرة الكرات لتقليل الاحتكاك الدوراني ودعم الأحمال الشعاعية والمحورية. تنتج الكرات المتدحرجة بين سلالات المحامل معامل احتكاك أقل بكثير (COF) مقارنة بسطحين مستويين ينزلقان ضد بعضهما البعض. غالبًا ما تتعرض المحامل الكروية لمستويات عالية من إجهاد التلامس والتآكل والظروف البيئية القاسية مثل درجات الحرارة المرتفعة. لذلك، تعد مقاومة الكرات للتآكل تحت الأحمال العالية والظروف البيئية القاسية أمرًا بالغ الأهمية لإطالة عمر محمل الكرة لتقليل التكلفة والوقت اللازم للإصلاحات والاستبدال.
يمكن العثور على المحامل الكروية في جميع التطبيقات تقريبًا التي تتضمن أجزاء متحركة. يتم استخدامها بشكل شائع في صناعات النقل مثل الطيران والسيارات بالإضافة إلى صناعة الألعاب التي تصنع عناصر مثل سبينر وألواح التزلج.

تقييم تآكل المحامل الكروية عند الأحمال العالية

يمكن تصنيع محامل الكرات من قائمة واسعة من المواد. تتراوح المواد شائعة الاستخدام بين المعادن مثل الفولاذ المقاوم للصدأ والفولاذ الكروم أو السيراميك مثل كربيد التنغستن (WC) ونيتريد السيليكون (Si3n4). للتأكد من أن المحامل الكروية المصنعة تتمتع بمقاومة التآكل المطلوبة المثالية لظروف التطبيق المحدد، من الضروري إجراء تقييمات احتكاكية موثوقة تحت الأحمال العالية. يساعد اختبار الاحتكاك في قياس سلوكيات التآكل للمحامل الكروية المختلفة ومقارنتها بطريقة يتم التحكم فيها ومراقبتها لاختيار أفضل مرشح للتطبيق المستهدف.

هدف القياس

في هذه الدراسة، نعرض النانوفيا ثلاثي الأبعاد كأداة مثالية لمقارنة مقاومة التآكل للمحامل الكروية المختلفة تحت الأحمال العالية.

الشكل 1: إعداد اختبار التحمل.

إجراء اختبار

تم تقييم معامل الاحتكاك وCOF ومقاومة التآكل للمحامل الكروية المصنوعة من مواد مختلفة بواسطة مقياس Nanovea Tribometer. تم استخدام ورق الصنفرة الحصباء P100 كمادة مضادة. تم فحص ندوب التآكل للمحامل الكروية باستخدام أ نانوفيا ملف تعريف عدم الاتصال ثلاثي الأبعاد بعد انتهاء اختبارات التآكل. يتم تلخيص معلمات الاختبار في الجدول 1. معدل التآكل، ك، باستخدام الصيغة K = V / (F × s)، أين الخامس هو الحجم البالي ، F هو الحمل العادي و س هي المسافة المنزلقة. تم تقييم ندوب ارتداء الكرة بواسطة أ نانوفيا أداة تعريف عدم الاتصال ثلاثية الأبعاد لضمان قياس دقيق لحجم التآكل.
تسمح ميزة تحديد المواقع الشعاعية الآلية لمقياس الاحتكاك بتقليل نصف قطر مسار التآكل طوال مدة الاختبار. يُطلق على وضع الاختبار هذا اسم الاختبار الحلزوني وهو يضمن أن محمل الكرة ينزلق دائمًا على سطح جديد من ورق الصنفرة (الشكل 2). إنه يحسن بشكل كبير من تكرار اختبار مقاومة التآكل على الكرة. يوفر جهاز التشفير المتقدم 20 بت للتحكم في السرعة الداخلية وجهاز التشفير 16 بت للتحكم في الموضع الخارجي معلومات دقيقة عن السرعة والموضع في الوقت الفعلي، مما يسمح بالتعديل المستمر لسرعة الدوران لتحقيق سرعة انزلاق خطية ثابتة عند جهة الاتصال.
يرجى ملاحظة أنه تم استخدام ورق الصنفرة P100 Grit لتبسيط سلوك التآكل بين المواد الكروية المختلفة في هذه الدراسة ويمكن استبداله بأي سطح مادي آخر. يمكن استبدال أي مادة صلبة لمحاكاة أداء مجموعة واسعة من أدوات التوصيل المادية في ظل ظروف التطبيق الفعلية، كما هو الحال في السوائل أو مواد التشحيم.

الشكل 2: رسم توضيحي للممرات الحلزونية لمحمل الكرة على ورق الصنفرة.
الجدول 1: اختبار معلمات قياسات التآكل.

 

النتائج والمناقشة

يعد معدل التآكل عاملاً حيويًا لتحديد عمر خدمة المحمل الكروي، في حين يكون انخفاض COF أمرًا مرغوبًا فيه لتحسين أداء المحمل وكفاءته. يقارن الشكل 3 تطور COF للمحامل الكروية المختلفة مقابل ورق الصنفرة أثناء الاختبارات. تُظهر كرة Cr Steel زيادة في COF بمقدار ~0.4 أثناء اختبار التآكل، مقارنة بـ ~0.32 و~0.28 لمحامل الكرات SS440 وAl2O3. من ناحية أخرى، تُظهر كرة المرحاض COF ثابتًا يبلغ ~0.2 طوال اختبار التآكل. يمكن ملاحظة تباين COF الملحوظ خلال كل اختبار والذي يعزى إلى الاهتزازات الناتجة عن الحركة المنزلقة للمحامل الكروية على سطح ورق الصنفرة الخشن.

 

الشكل 3: تطور COF أثناء اختبارات التآكل.

الشكل 4 والشكل 5 يقارنان ندوب التآكل للمحامل الكروية بعد أن تم قياسها بواسطة المجهر الضوئي ومحدد التعريف البصري Nanovea غير المتصل، على التوالي، ويلخص الجدول 2 نتائج تحليل مسار التآكل. يحدد ملف تعريف Nanovea 3D بدقة حجم تآكل المحامل الكروية، مما يجعل من الممكن حساب ومقارنة معدلات التآكل للمحامل الكروية المختلفة. يمكن ملاحظة أن كرات Cr Steel وSS440 تظهر عليها ندوب تآكل مسطحة أكبر بكثير مقارنة بالكرات الخزفية، أي Al2O3 وWC بعد اختبارات التآكل. تتمتع كرات Cr Steel وSS440 بمعدلات تآكل مماثلة تبلغ 3.7×10-3 و3.2×10-3 م3/ن م، على التوالي. بالمقارنة، كرة Al2O3 تظهر مقاومة تآكل محسنة مع معدل تآكل يبلغ 7.2×10-4 m3/N·m. بالكاد تظهر على كرة WC خدوش بسيطة في منطقة مسار التآكل الضحلة، مما يؤدي إلى انخفاض كبير في معدل التآكل بمقدار 3.3×10-6 مم3/نيوتن متر.

الشكل 4: ارتداء ندوب الكرات بعد الاختبارات.

الشكل 5: مورفولوجية ثلاثية الأبعاد لندوب التآكل على المحامل الكروية.

الجدول 2: تحليل ارتداء الندبة للمحامل الكروية.

يوضح الشكل 6 صورًا مجهرية لمسارات التآكل الناتجة على الورق الرملي بواسطة المحامل الكروية الأربعة. من الواضح أن كرة المرحاض أنتجت مسار التآكل الأكثر شدة (إزالة جميع جزيئات الرمل تقريبًا في طريقها) وتمتلك أفضل مقاومة للتآكل. بالمقارنة، تركت كرات Cr Steel وSS440 كمية كبيرة من الحطام المعدني على مسار تآكل ورق الصنفرة.
توضح هذه الملاحظات أيضًا أهمية الاستفادة من الاختبار الحلزوني. إنه يضمن أن محمل الكرة ينزلق دائمًا على سطح جديد من ورق الصنفرة، مما يحسن بشكل كبير من تكرار اختبار مقاومة التآكل.

الشكل 6: وضع المسارات على ورق الصنفرة مقابل محامل كروية مختلفة.

خاتمة

تلعب مقاومة التآكل للمحامل الكروية تحت الضغط العالي دورًا حيويًا في أداء الخدمة. تتميز محامل الكرات الخزفية بمقاومة تآكل محسنة بشكل كبير في ظل ظروف الضغط العالي وتقليل الوقت والتكلفة بسبب إصلاح المحامل أو استبدالها. في هذه الدراسة، يُظهر محمل كروي WC مقاومة تآكل أعلى بكثير مقارنة بالمحامل الفولاذية، مما يجعله مرشحًا مثاليًا لتطبيقات المحامل حيث يحدث تآكل شديد.
تم تصميم Nanovea Tribometer بقدرات عزم دوران عالية لأحمال تصل إلى 2000 نيوتن ومحرك دقيق ومتحكم لسرعات دوران من 0.01 إلى 15000 دورة في الدقيقة. إنه يوفر اختبار التآكل والاحتكاك المتكرر باستخدام الأوضاع الدورانية والخطية المتوافقة مع ISO وASTM، مع توفر وحدات التآكل والتشحيم الاختيارية ذات درجة الحرارة العالية في نظام واحد متكامل مسبقًا. يتيح هذا النطاق الذي لا مثيل له للمستخدمين محاكاة بيئات العمل القاسية المختلفة للمحامل الكروية بما في ذلك الضغط العالي والتآكل ودرجة الحرارة المرتفعة، وما إلى ذلك. كما أنه يعمل كأداة مثالية للتقييم الكمي للسلوكيات الاحتكاكية للمواد الفائقة المقاومة للتآكل تحت الأحمال العالية.
يوفر ملف تعريف Nanovea 3D Non-Contact Profiler قياسات دقيقة لحجم التآكل ويعمل كأداة لتحليل الشكل التفصيلي لمسارات التآكل، مما يوفر رؤى إضافية في الفهم الأساسي لآليات التآكل.

أُعدت بواسطة
دوانجي لي، دكتوراه، جوناثان توماس، وبيير ليرو

مسامير الأسنان - القياس - الأبعاد - باستخدام - مقياس التشكيل الجانبي ثلاثي الأبعاد

أدوات طب الأسنان: تحليل الأبعاد وخشونة السطح



مقدمة

 

يعد الحصول على أبعاد دقيقة وخشونة سطحية مثالية أمرًا حيويًا لوظيفة براغي الأسنان. تتطلب العديد من أبعاد براغي الأسنان دقة عالية مثل نصف القطر والزوايا والمسافات وارتفاعات الخطوات. يعد فهم خشونة السطح المحلية أمرًا مهمًا أيضًا لأي أداة طبية أو جزء يتم إدخاله داخل جسم الإنسان لتقليل الاحتكاك المنزلق.

 

 

ملف تعريف عدم الاتصال للدراسة الأبعاد

 

نانوفيا ملفات تعريف عدم الاتصال ثلاثية الأبعاد استخدم تقنية لونية تعتمد على الضوء لقياس أي سطح مادي: شفاف أو غير شفاف أو براق أو منتشر أو مصقول أو خشن. على عكس تقنية مسبار اللمس، يمكن لتقنية عدم الاتصال القياس داخل المناطق الضيقة ولن تضيف أي أخطاء جوهرية بسبب التشوه الناجم عن ضغط الطرف على مادة بلاستيكية أكثر ليونة. كما توفر التكنولوجيا المستندة إلى الضوء اللوني دقة جانبية ودقة فائقة في الارتفاع مقارنةً بتقنية تباين التركيز البؤري. يمكن لملفات تعريف Nanovea مسح الأسطح الكبيرة مباشرة دون خياطة وتحديد طول الجزء في بضع ثوانٍ. يمكن قياس النانو من خلال ميزات سطح النطاق الكلي وزوايا السطح العالية نظرًا لقدرة محلل التعريف على قياس الأسطح دون أي خوارزميات معقدة تعالج النتائج.

 

 

هدف القياس

 

في هذا التطبيق، تم استخدام جهاز التعريف البصري Nanovea ST400 لقياس برغي الأسنان على طول الميزات المسطحة والخيطية في قياس واحد. تم حساب خشونة السطح من المساحة المسطحة، وتم تحديد الأبعاد المختلفة للمعالم الملولبة.

 

مراقبة جودة المسمار الأسنان

عينة من المسمار الأسنان التي تم تحليلها بواسطة نانوفيا ملف التعريف البصري.

 

تحليل عينة المسمار الأسنان.

 

نتائج

 

3D السطح

يُظهر العرض ثلاثي الأبعاد وعرض الألوان الزائفة للمسمار السني منطقة مسطحة مع بدء الخيوط على كلا الجانبين. فهو يوفر للمستخدمين أداة مباشرة لمراقبة شكل المسمار بشكل مباشر من زوايا مختلفة. تم استخراج المنطقة المسطحة من المسح الكامل لقياس خشونة سطحها.

 

 

تحليل السطح ثنائي الأبعاد

يمكن أيضًا استخراج ملفات تعريف الخط من السطح لإظهار عرض مقطعي للمسمار. تم استخدام التحليل المحيطي ودراسات ارتفاع الخطوة لقياس الأبعاد الدقيقة في موقع معين على المسمار.

 

 

خاتمة

 

في هذا التطبيق، قمنا بعرض قدرة Nanovea 3D Non-Contact Profiler على حساب خشونة السطح المحلي بدقة وقياس ميزات الأبعاد الكبيرة في مسح واحد.

تُظهر البيانات خشونة سطحية محلية تبلغ 0.9637 ميكرومتر. وجد أن نصف قطر المسمار بين الخيوط هو 1.729 ملم، وكان متوسط ارتفاع الخيوط 0.413 ملم. تم تحديد متوسط الزاوية بين الخيوط بـ 61.3 درجة.

تمثل البيانات الموضحة هنا جزءًا فقط من الحسابات المتوفرة في برنامج التحليل.

 

أُعدت بواسطة
دوانجي لي، دكتوراه، جوناثان توماس، وبيير ليرو

السيراميك: رسم خرائط سريع بميزة تحديد المسافة النانوية لاكتشاف الحبوب

مقدمة

 

nanoindentation أصبحت تقنية مطبقة على نطاق واسع لقياس السلوكيات الميكانيكية للمواد على نطاقات صغيرةأنا ثانيا. يمكن لمنحنيات إزاحة الحمل عالية الدقة الناتجة عن قياس المسافة البادئة النانوية أن توفر مجموعة متنوعة من الخصائص الفيزيائية والميكانيكية، بما في ذلك الصلابة، ومعامل يونج، والزحف، وصلابة الكسر، وغيرها الكثير.

 

 

أهمية المسافة البادئة لرسم الخرائط السريعة

 

أحد الاختناقات الهامة لمزيد من تعميم تقنية النانو هو استهلاك الوقت. يمكن أن يستغرق رسم خرائط الخصائص الميكانيكية عن طريق إجراء الحفر النانوي التقليدي ساعات بسهولة مما يعيق تطبيق التقنية في صناعات الإنتاج الضخم، مثل أشباه الموصلات والفضاء والأنظمة الكهروميكانيكية الدقيقة والمنتجات الاستهلاكية مثل بلاط السيراميك وغيرها الكثير.

يمكن أن يكون التعيين السريع أمرًا ضروريًا في صناعة تصنيع بلاط السيراميك، ويمكن أن توفر تعيينات معامل الصلابة ويونغ عبر بلاطة سيراميك واحدة توزيعًا للبيانات التي تشير إلى مدى تجانس السطح. يمكن تحديد المناطق الأكثر ليونة على البلاط في هذه الخريطة وإظهار المواقع الأكثر عرضة للفشل من التأثيرات المادية التي تحدث على أساس يومي في مسكن شخص ما. يمكن إجراء التعيينات على أنواع مختلفة من البلاطات لإجراء دراسات مقارنة وعلى مجموعة من البلاطات المماثلة لقياس اتساق البلاط في عمليات مراقبة الجودة. يمكن أن يكون الجمع بين إعدادات القياسات شاملاً ودقيقًا وفعالاً باستخدام طريقة التعيين السريعة.

 

هدف القياس

 

في هذه الدراسة ، فإن Nanovea اختبار ميكانيكي، في وضع FastMap يتم استخدامه لرسم خريطة للخصائص الميكانيكية لبلاط الأرضية بسرعات عالية. نعرض قدرة جهاز الاختبار الميكانيكي Nanovea على إجراء تعيينين سريعين للمسافة النانوية بدقة عالية وإمكانية التكرار.

 

شروط الاختبار

 

تم استخدام جهاز اختبار Nanovea الميكانيكي لإجراء سلسلة من المسافات البادئة النانوية باستخدام وضع FastMap على بلاط الأرضية باستخدام مسافة بادئة من Berkovich. يتم تلخيص معلمات الاختبار أدناه لمصفوفتي المسافة البادئة اللتين تم إنشاؤهما.

 

الجدول 1: ملخص معلمة الاختبار.

 

النتائج والمناقشة 

 

الشكل 1: عرض ثنائي وثلاثي الأبعاد لرسم خرائط صلابة 625 مسافة بادئة.

 

 

 

الشكل 2: صورة مجهرية لمصفوفة ذات مسافة بادئة 625 تعرض الحبوب.

 

 

تم إجراء مصفوفة ذات مسافة بادئة 625 على 0.20 مم2 منطقة بها حبوب كبيرة مرئية. كان لهذه الحبوب (الشكل 2) صلابة متوسطة أقل من السطح الكلي للبلاط. يسمح برنامج Nanovea الميكانيكي للمستخدم برؤية خريطة توزيع الصلابة في الوضع ثنائي وثلاثي الأبعاد الموضح في الشكل 1. وباستخدام التحكم عالي الدقة في الموضع لمرحلة العينة، يتيح البرنامج للمستخدمين استهداف مناطق مثل هذه للتعمق رسم خرائط الخواص الميكانيكية.

الشكل 3: عرض ثنائي وثلاثي الأبعاد لرسم خرائط صلابة 1600 مسافة بادئة.

 

 

الشكل 4: صورة مجهرية لمصفوفة ذات مسافة بادئة 1600.

 

 

تم أيضًا إنشاء مصفوفة ذات مسافة بادئة تبلغ 1600 مسافة على نفس البلاط لقياس تجانس السطح. هنا مرة أخرى، يتمتع المستخدم بالقدرة على رؤية توزيع الصلابة في الوضع ثلاثي الأبعاد أو ثنائي الأبعاد (الشكل 3) بالإضافة إلى صورة المجهر للسطح ذي المسافة البادئة. استناداً إلى توزيع الصلابة المقدم، يمكن أن نستنتج أن المادة مسامية بسبب التشتت المتساوي لنقاط بيانات الصلابة العالية والمنخفضة.

بالمقارنة مع إجراءات التحسس النانوي التقليدية، فإن وضع FastMap في هذه الدراسة أقل استهلاكًا للوقت وأكثر فعالية من حيث التكلفة. فهو يتيح رسم خرائط كمية سريعة للخصائص الميكانيكية بما في ذلك الصلابة ومعامل يونغ ويوفر حلاً للكشف عن الحبوب واتساق المواد وهو أمر بالغ الأهمية لمراقبة الجودة لمجموعة متنوعة من المواد في الإنتاج الضخم.

 

 

خاتمة

 

في هذه الدراسة، عرضنا قدرة جهاز الاختبار الميكانيكي Nanovea على إجراء رسم خرائط سريع ودقيق للمسافة النانوية باستخدام وضع FastMap. تستخدم خرائط الخصائص الميكانيكية الموجودة على بلاط السيراميك التحكم في موضع المراحل (بدقة 0.2 ميكرومتر) وحساسية وحدة القوة لاكتشاف حبيبات السطح وقياس تجانس السطح بسرعة عالية.

تم تحديد معلمات الاختبار المستخدمة في هذه الدراسة بناءً على حجم المصفوفة ومواد العينة. يمكن اختيار مجموعة متنوعة من معلمات الاختبار لتحسين إجمالي وقت دورة المسافة البادئة إلى 3 ثوانٍ لكل مسافة بادئة (أو 30 ثانية لكل 10 مسافات بادئة).

تشتمل جميع وحدات Nano وMicro في جهاز اختبار Nanovea الميكانيكي على المسافة البادئة المتوافقة مع ISO وASTM، وأوضاع اختبار الخدش والتآكل، مما يوفر نطاقًا أوسع وأكثر سهولة في الاستخدام من الاختبارات المتاحة في نظام واحد. يعد نطاق Nanovea الذي لا مثيل له حلاً مثاليًا لتحديد النطاق الكامل للخصائص الميكانيكية للطلاءات والأغشية والركائز الرقيقة أو السميكة أو الناعمة أو الصلبة، بما في ذلك الصلابة، ومعامل Young، وصلابة الكسر، والالتصاق، ومقاومة التآكل وغيرها الكثير.

بالإضافة إلى ذلك، يتوفر ملف تعريف عدم الاتصال ثلاثي الأبعاد ووحدة AFM للتصوير ثلاثي الأبعاد عالي الدقة للمسافة البادئة والخدش ومسار التآكل بالإضافة إلى قياسات السطح الأخرى مثل الخشونة.

 

المؤلف: دوانجي لي، دكتوراه، مراجعة بيير ليرو وجوسلين إسبارزا