EEUU/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTÁCTENOS

Categoría: Pruebas mecánicas

 

Prueba de desgaste del revestimiento de PTFE

ENSAYO DE DESGASTE DEL REVESTIMIENTO DE PTFE

UTILIZANDO TRIBÓMETROS Y COMPROBADORES MECÁNICOS

Preparado por

DUANJIE LI, PhD

INTRODUCCIÓN

El politetrafluoroetileno (PTFE), conocido comúnmente como teflón, es un polímero con un coeficiente de fricción (COF) excepcionalmente bajo y una excelente resistencia al desgaste, en función de las cargas aplicadas. El PTFE presenta una inercia química superior, un alto punto de fusión de 327°C (620°F) y mantiene una alta resistencia, tenacidad y autolubricación a bajas temperaturas. La excepcional resistencia al desgaste de los revestimientos de PTFE hace que sean muy solicitados en una amplia gama de aplicaciones industriales, como la automoción, la industria aeroespacial, la medicina y, sobre todo, los utensilios de cocina.

IMPORTANCIA DE LA EVALUACIÓN CUANTITATIVA DE LOS REVESTIMIENTOS DE PTFE

La combinación de un coeficiente de fricción (COF) superbajo, una excelente resistencia al desgaste y una excepcional inercia química a altas temperaturas hace del PTFE una opción ideal para los revestimientos antiadherentes de sartenes. Para mejorar aún más sus procesos mecánicos durante la I+D, así como para garantizar un control óptimo sobre la prevención de fallos y las medidas de seguridad en el proceso de control de calidad, es crucial disponer de una técnica fiable para evaluar cuantitativamente los procesos tribomecánicos de los revestimientos de PTFE. El control preciso de la fricción superficial, el desgaste y la adherencia de los revestimientos es esencial para garantizar su rendimiento previsto.

OBJETIVO DE MEDICIÓN

En esta aplicación, se simula el proceso de desgaste de un revestimiento de PTFE para una sartén antiadherente utilizando el Tribómetro NANOVEA en modo lineal alternativo.

NANOVEA T50

Tribómetro compacto de peso libre

Además, se utilizó el probador mecánico NANOVEA para realizar una prueba de adherencia por microarañazos con el fin de determinar la carga crítica del fallo de adherencia del revestimiento de PTFE.

NANOVEA PB1000

Comprobador mecánico de gran plataforma

PROCEDIMIENTO DE PRUEBA

PRUEBA DE DESGASTE

DESGASTE LINEAL ALTERNATIVO MEDIANTE TRIBÓMETRO

El comportamiento tribológico de la muestra de recubrimiento de PTFE, incluido el coeficiente de fricción (COF) y la resistencia al desgaste, se evaluó utilizando el sistema NANOVEA. Tribómetro en modo alternativo lineal. Contra el revestimiento se utilizó una punta de bola de acero inoxidable 440 con un diámetro de 3 mm (Grado 100). El COF se controló continuamente durante la prueba de desgaste del revestimiento de PTFE.

 

La tasa de desgaste, K, se calculó usando la fórmula K=V/(F×s)=A/(F×n), donde V representa el volumen desgastado, F es la carga normal, s es la distancia de deslizamiento, A es el área de la sección transversal de la pista de desgaste, y n es el número de carreras. Los perfiles de desgaste de la pista se evaluaron utilizando el NANOVEA Perfilómetro óptico, y la morfología de la pista de desgaste se examinó utilizando un microscopio óptico.

PARÁMETROS DE LA PRUEBA DE DESGASTE

CARGA 30 N
DURACIÓN DE LA PRUEBA 5 minutos
TASA DE DESLIZAMIENTO 80 rpm
AMPLITUD DE VÍA 8 mm
REVOLUCIONES 300
DIÁMETRO DE LA BOLA 3 mm
MATERIAL DE LA BOLA Acero inoxidable 440
LUBRICANTE Ninguno
ATMOSFERA Aire
TEMPERATURA 230C (RT)
HUMEDAD 43%

PROCEDIMIENTO DE PRUEBA

PRUEBA DE RASPADO

PRUEBA DE ADHERENCIA AL MICROARAÑAZO CON UN COMPROBADOR MECÁNICO

La medición de la adherencia al rayado de PTFE se realizó utilizando el NANOVEA Probador Mecánico con una aguja de diamante Rockwell C 1200 (radio de 200 μm) en el modo Micro Scratch Tester.

 

Para garantizar la reproducibilidad de los resultados, se realizaron tres pruebas en condiciones idénticas.

PARÁMETROS DE LA PRUEBA DE RASCADO

TIPO DE CARGA Progresiva
CARGA INICIAL 0,01 mN
CARGA FINAL 20 mN
TASA DE CARGA 40 mN/min
LONGITUD DEL RASPADO 3 mm
VELOCIDAD DE RASGADO, dx/dt 6,0 mm/min
GEOMETRÍA DEL PENETRADOR 120o Rockwell C
MATERIAL INDENTADO (punta) Diamante
RADIO DE LA PUNTA DEL PENETRADOR 200 μm

RESULTADOS Y DISCUSIÓN

DESGASTE LINEAL ALTERNATIVO MEDIANTE TRIBÓMETRO

El COF registrado in situ se muestra en la FIGURA 1. La muestra de prueba exhibió un COF de ~0,18 durante las primeras 130 revoluciones, debido a la baja adherencia del PTFE. Sin embargo, hubo un aumento repentino en el COF a ~1 una vez que el recubrimiento se abrió paso, revelando el sustrato debajo. Después de las pruebas lineales alternativas, el perfil de desgaste de la pista se midió usando el NANOVEA Perfilómetro óptico sin contacto, como se muestra en la FIGURA 2. A partir de los datos obtenidos, se calculó que la tasa de desgaste correspondiente era ~2,78 × 10-3 mm3/Nm, mientras que se determinó que la profundidad de la pista de desgaste era 44,94 µm.

Configuración de la prueba de desgaste del revestimiento de PTFE en el tribómetro NANOVEA T50.

FIGURA 1: Evolución del COF durante el ensayo de desgaste del revestimiento de PTFE.

FIGURA 2: Profile de extracción de la pista de desgaste PTFE.

PTFE Antes de la ruptura

COF máximo 0.217
Mín COF 0.125
COF medio 0.177

PTFE Después de la ruptura

COF máximo 0.217
Mín COF 0.125
COF medio 0.177

TABLA 1: COF antes y después de la rotura durante la prueba de desgaste.

RESULTADOS Y DISCUSIÓN

PRUEBA DE ADHERENCIA AL MICROARAÑAZO CON UN COMPROBADOR MECÁNICO

La adherencia del revestimiento de PTFE al sustrato se mide mediante ensayos de rayado con un estilete de diamante de 200 µm. La micrografía se muestra en la FIGURA 3 y FIGURA 4, la evolución del COF, y la profundidad de penetración en la FIGURA 5. Los resultados de la prueba de rayado del recubrimiento de PTFE se resumen en la TABLA 4. A medida que aumentaba la carga sobre el estilete de diamante, éste penetraba progresivamente en el revestimiento, lo que provocaba un aumento del COF. Cuando se alcanzó una carga de ~8,5 N, se produjo la ruptura del revestimiento y la exposición del sustrato a alta presión, lo que dio lugar a un COF elevado de ~0,3. El bajo St Dev mostrado en la TABLA 2 demuestra la repetibilidad del ensayo de rayado del revestimiento de PTFE realizado con el Comprobador Mecánico NANOVEA.

FIGURA 3: Micrografía del rayado completo sobre PTFE (10X).

FIGURA 4: Micrografía del rayado completo sobre PTFE (10X).

FIGURA 5: Gráfico de fricción que muestra la línea del punto crítico de fallo para el PTFE.

Rayado Punto de fallo [N] Fuerza de rozamiento [N] COF
1 0.335 0.124 0.285
2 0.337 0.207 0.310
3 0.380 0.229 0.295
Media 8.52 2.47 0.297
St dev 0.17 0.16 0.012

TABLA 2: Resumen de la carga crítica, la fuerza de fricción y el COF durante la prueba de rayado.

CONCLUSIÓN

En este estudio, realizamos una simulación del proceso de desgaste de un revestimiento de PTFE para sartenes antiadherentes utilizando el tribómetro NANOVEA T50 en modo lineal alternativo. El recubrimiento de PTFE exhibió un bajo COF de ~0,18 el recubrimiento experimentó una ruptura alrededor de las 130 revoluciones. La evaluación cuantitativa de la adhesión del revestimiento de PTFE al sustrato metálico se realizó utilizando el comprobador mecánico NANOVEA, que determinó que la carga crítica del fallo de adhesión del revestimiento era de ~8,5 N en esta prueba.

 

Los tribómetros NANOVEA ofrecen capacidades de ensayo de desgaste y fricción precisas y repetibles mediante modos rotativos y lineales conformes a las normas ISO y ASTM. Ofrecen módulos opcionales para desgaste a alta temperatura, lubricación y tribocorrosión, todo integrado en un único sistema. Esta versatilidad permite a los usuarios simular entornos de aplicación reales con mayor precisión y comprender mejor los mecanismos de desgaste y las propiedades tribológicas de distintos materiales.

 

Los comprobadores mecánicos NANOVEA cuentan con módulos Nano, Micro y Macro, cada uno de los cuales incluye modos de ensayo de indentación, rayado y desgaste conformes con las normas ISO y ASTM, proporcionando la gama más amplia y fácil de usar de capacidades de ensayo disponibles en un solo sistema.

AHORA, HABLEMOS DE SU SOLICITUD

Análisis mecánico dinámico del corcho mediante nanoindentación

ANÁLISIS MECÁNICO DINÁMICO

DEL CORCHO MEDIANTE NANOINDENTACIÓN

Preparado por

FRANK LIU

INTRODUCCIÓN

El Análisis Mecánico Dinámico (AMD) es una potente técnica utilizada para investigar las propiedades mecánicas de los materiales. En esta aplicación, nos centramos en el análisis del corcho, un material muy utilizado en los procesos de sellado y envejecimiento del vino. El corcho, obtenido de la corteza del roble Quercus suber, presenta distintas estructuras celulares que le confieren propiedades mecánicas similares a las de los polímeros sintéticos. En un eje, el corcho tiene estructura de panal. Los otros dos ejes están estructurados en múltiples prismas de forma rectangular. Esto confiere al corcho propiedades mecánicas diferentes según la orientación con la que se pruebe.

IMPORTANCIA DE LOS ENSAYOS DE ANÁLISIS MECÁNICO DINÁMICO (DMA) EN LA EVALUACIÓN DE LAS PROPIEDADES MECÁNICAS DEL CORCHO

La calidad de los tapones de corcho depende en gran medida de sus propiedades mecánicas y físicas, que son cruciales para su eficacia en el sellado del vino. Los factores clave que determinan la calidad del corcho son la flexibilidad, el aislamiento, la resistencia y la impermeabilidad a gases y líquidos. El análisis mecánico dinámico (AMD) nos permite evaluar cuantitativamente las propiedades de flexibilidad y resiliencia de los tapones, proporcionando un método fiable de evaluación.

El Comprobador Mecánico NANOVEA PB1000 en el Nanoindentación permite caracterizar estas propiedades, en concreto el módulo de Young, el módulo de almacenamiento, el módulo de pérdida y tan delta (tan (δ)). Las pruebas DMA también permiten recopilar datos valiosos sobre el desplazamiento de fase, la dureza, la tensión y la deformación del material de corcho. Gracias a estos exhaustivos análisis, podemos comprender mejor el comportamiento mecánico de los corchos y su idoneidad para las aplicaciones de sellado del vino.

OBJETIVO DE MEDICIÓN

En este estudio, se realiza el análisis mecánico dinámico (AMD) de cuatro tapones de corcho utilizando el Probador Mecánico NANOVEA PB1000 en el modo de Nanoindentación. La calidad de los tapones de corcho se etiqueta como: 1 - Flor, 2 - Primera, 3 - Colmatado, 4 - Caucho sintético. Los ensayos de indentación DMA se realizaron tanto en dirección axial como radial para cada tapón de corcho. Mediante el análisis de la respuesta mecánica de los tapones de corcho, pretendíamos comprender mejor su comportamiento dinámico y evaluar su rendimiento en distintas orientaciones.

NANOVEA

PB1000

PARÁMETROS DE LA PRUEBA

FUERZA MÁXIMA75 mN
TASA DE CARGA150 mN/min
TASA DE DESCARGA150 mN/min
AMPLITUD5 mN
FRECUENCIA1 Hz
CREEP60 s

tipo de penetrador

Bola

51200 Acero

3 mm Diámetro

RESULTADOS

En las tablas y gráficos siguientes, se comparan el módulo de Young, el módulo de almacenamiento, el módulo de pérdida y tan delta entre cada muestra y orientación.

Módulo de Young: Stiffness; valores altos indican stiff, valores bajos indican flexible.

Módulo de almacenamiento: Respuesta elástica; energía almacenada en el material.

Módulo de pérdida: Respuesta viscosa; pérdida de energía debida al calor.

Tan (δ): Amortiguación; los valores altos indican más amortiguación.

ORIENTACIÓN AXIAL

TapónMÓDULO DE YOUNGMÓDULO DE ALMACENAMIENTOMÓDULO DE PÉRDIDATAN
#(MPa)(MPa)(MPa)(δ)
122.567522.272093.6249470.162964
218.5466418.271533.1623490.17409
323.7538123.472673.6178190.154592
423.697223.580642.3470080.099539



ORIENTACIÓN RADIAL

TapónMÓDULO DE YOUNGMÓDULO DE ALMACENAMIENTOMÓDULO DE PÉRDIDATAN
#(MPa)(MPa)(MPa)(δ)
124.7886324.565423.3082240.134865
226.6661426.317394.2862160.163006
344.0786743.614266.3659790.146033
428.0475127.941482.4359780.087173

MÓDULO DE YOUNG

MÓDULO DE ALMACENAMIENTO

MÓDULO DE PÉRDIDA

TAN DELTA

Entre los tapones de corcho, el módulo de Young no es muy diferente cuando se ensaya en la orientación axial. Sólo los tapones #2 y #3 mostraron una diferencia aparente en el módulo de Young entre la dirección radial y axial. En consecuencia, el módulo de almacenamiento y el módulo de pérdida también serán mayores en la dirección radial que en la axial. El tapón #4 muestra características similares a las de los tapones de corcho natural, excepto en el módulo de pérdida. Esto es bastante interesante, ya que significa que los tapones de corcho natural tienen una propiedad más viscosa que el material de caucho sintético.

CONCLUSIÓN

La Nanovea Probador Mecánico en el modo Nano Scratch Tester permite la simulación de muchos fallos reales de revestimientos de pintura y capas duras. Al aplicar cargas crecientes de manera controlada y monitoreada de cerca, el instrumento permite identificar en qué carga ocurren las fallas. Esto luego se puede utilizar como una forma de determinar valores cuantitativos de resistencia al rayado. Se sabe que el revestimiento ensayado, sin meteorización, tiene una primera grieta a aproximadamente 22 mN. Con valores más cercanos a 5 mN, está claro que el lapso de 7 años ha degradado la pintura.

La compensación del perfil original permite obtener la profundidad corregida durante el rayado y también medir la profundidad residual después del rayado. Esto proporciona información adicional sobre el comportamiento plástico frente al elástico del revestimiento bajo una carga creciente. Tanto el agrietamiento como la información sobre la deformación pueden ser de gran utilidad para mejorar el revestimiento duro. Las muy pequeñas desviaciones estándar también muestran la reproducibilidad de la técnica del instrumento, que puede ayudar a los fabricantes a mejorar la calidad de su revestimiento duro/pintura y estudiar los efectos de la intemperie.

AHORA, HABLEMOS DE SU SOLICITUD

Ensayo Nano Scratch & Mar de pintura sobre sustrato metálico

Pruebas Nano Scratch & Mar

de pintura sobre sustrato metálico

Preparado por

SUSANA CABELLO

INTRODUCCIÓN

La pintura con o sin revestimiento duro es uno de los revestimientos más utilizados. La vemos en coches, paredes, electrodomésticos y prácticamente cualquier cosa que necesite un revestimiento protector o simplemente con fines estéticos. Las pinturas destinadas a la protección del sustrato subyacente suelen tener sustancias químicas que evitan que la pintura se incendie o simplemente que pierda su color o se agriete. A menudo, la pintura utilizada con fines estéticos viene en varios colores, pero puede no estar necesariamente destinada a la protección de su sustrato o para una larga vida útil.

No obstante, todas las pinturas sufren cierto desgaste con el paso del tiempo. A menudo, el desgaste de la pintura puede alterar sus propiedades. Puede desconcharse más rápido, descascararse con el calor, perder color o agrietarse. Los diferentes cambios en las propiedades de la pintura con el paso del tiempo son la razón por la que los fabricantes ofrecen una selección tan amplia. Las pinturas se adaptan a las necesidades de cada cliente.

IMPORTANCIA DE LOS ENSAYOS DE NANORRAYADO PARA EL CONTROL DE CALIDAD

Una de las principales preocupaciones de los fabricantes de pintura es la capacidad de su producto para resistir el agrietamiento. Una vez que la pintura empieza a agrietarse, deja de proteger el sustrato sobre el que se aplicó y, por tanto, no satisface al cliente. Por ejemplo, si una rama golpea el lateral de un coche e inmediatamente después la pintura empieza a desconcharse, los fabricantes de la pintura perderían negocio debido a la mala calidad de su pintura. La calidad de la pintura es muy importante porque si el metal bajo la pintura queda expuesto puede empezar a oxidarse o corroerse debido a su nueva exposición.

 

Razones como ésta se aplican a varios otros espectros, como suministros domésticos y de oficina y productos electrónicos, juguetes, herramientas de investigación y más. Aunque la pintura puede ser resistente al agrietamiento cuando se aplica por primera vez a los revestimientos metálicos, las propiedades pueden cambiar con el tiempo cuando se ha producido cierto desgaste en la muestra. Por eso es muy importante que las muestras de pintura se prueben en su fase de envejecimiento. Aunque el agrietamiento bajo una gran carga de tensión puede ser inevitable, el fabricante debe predecir hasta qué punto pueden debilitarse los cambios con el tiempo y la profundidad del arañazo affectante para poder ofrecer a sus consumidores los mejores productos posibles.

OBJETIVO DE MEDICIÓN

Debemos simular el proceso de rayado de forma controlada y monitorizada para observar los effectos del comportamiento de la muestra. En esta aplicación, el NANOVEA PB1000 Mechanical Tester en modo Nano Scratch Testing se utiliza para medir la carga necesaria para provocar el fallo de una muestra de pintura de aproximadamente 7 años de 30-50 μm de espesor sobre un sustrato metálico.

Se utiliza un palpador con punta de diamante de 2 μm con una carga progresiva que oscila entre 0,015 mN y 20,00 mN para rayar el revestimiento. Realizamos una exploración previa y posterior de la pintura con una carga de 0,2 mN para determinar el valor de la profundidad verdadera del rayado. La profundidad real analiza la deformación plástica y elástica de la muestra durante la prueba; mientras que el escaneado posterior sólo analiza la deformación plástica del arañazo. El punto en el que el revestimiento falla por agrietamiento se toma como punto de fallo. Utilizamos la ASTMD7187 como guía para determinar nuestros parámetros de ensayo.

 

Podemos concluir que al haber utilizado una muestra envejecida; por lo tanto, el ensayo de una muestra de pintura en su fase más débil, nos presentaba menores puntos de fallo.

 

Se realizaron cinco pruebas con esta muestra para

determinar con exactitud las cargas críticas de fallo.

NANOVEA

PB1000

PARÁMETROS DE LA PRUEBA

siguiente ASTM D7027

La superficie de un patrón de rugosidad se escaneó utilizando un NANOVEA ST400 equipado con un sensor de alta velocidad que genera una línea brillante de 192 puntos, como se muestra en la FIGURA 1. Estos 192 puntos escanean la superficie de la muestra al mismo tiempo, lo que conlleva un aumento significativo de la velocidad de escaneado.

TIPO DE CARGA Progresiva
CARGA INICIAL 0,015 mN
CARGA FINAL 20 mN
TASA DE CARGA 20 mN/min
LONGITUD DEL RASPADO 1,6 mm
VELOCIDAD SCRATCH, dx/dt 1.601 mm/min
CARGA PREVIA AL ESCANEO 0,2 mN
CARGA POST-SCAN 0,2 mN
Indentador cónico 90° Cono 2 µm radio punta

tipo de penetrador

Cónica

Cono diamante 90

Radio de punta de 2 µm

Indentador cónico Diamante Cono 90° Radio de punta 2 µm

RESULTADOS

Esta sección presenta los datos recogidos sobre los fallos durante la prueba scratch. La primera sección describe los fallos observados en el scratch y define las cargas críticas que se registraron. La siguiente parte contiene una tabla resumen de las cargas críticas para todas las muestras y una representación gráfica. La última parte presenta los resultados detallados de cada muestra: las cargas críticas de cada rayado, las micrografías de cada fallo y el gráfico de la prueba.

FALLOS OBSERVADOS Y DEFINICIÓN DE CARGAS CRÍTICAS

FALLO CRÍTICO:

DAÑOS INICIALES

Este es el primer punto en el que se observa el daño a lo largo de la pista de rayado.

nano arañazo fallo crítico daño inicial

FALLO CRÍTICO:

DAÑO TOTAL

En este punto, el daño es más significativo donde la pintura se está astillando y agrietando a lo largo de la pista de arañazos.

nano arañazo fallo crítico daño completo

RESULTADOS DETALLADOS

* Valores de fallo tomados en el punto de agrietamiento del sustrato.

CARGAS CRÍTICAS
RAYADO DAÑO INICIAL [mN] DAÑO COMPLETO [µm]
1 14.513 4.932
2 3.895 4.838
3 3.917 4.930
MEDIA 3.988 4.900
DEV STD 0.143 0.054
Micrografía de arañazo completo de la prueba de nano arañazo (magnificación 1000x).

FIGURA 2: Micrografía de rasguño completo (magnificación 1000x).

Micrografía del daño inicial del ensayo de nanorrayado (magnificación 1000x)

FIGURA 3: Micrografía del daño inicial (magnificación 1000x).

Micrografía del daño completo del ensayo de nanorrayado (magnificación 1000x).

FIGURA 4: Micrografía de daño completo (magnificación 1000x).

Fuerza de fricción y coeficiente de fricción en el ensayo lineal de nanorrayado

FIGURA 5: Fuerza de fricción y Coefficiente de fricción.

Perfil lineal de superficie de nano arañazos

FIGURA 6: Perfil de la superficie.

Linear Nano Scratch Test Profundidad real y profundidad residual

FIGURA 7: Profundidad real y profundidad residual.

CONCLUSIÓN

La Nanovea Probador Mecánico en el Nano comprobador de arañazos permite simular muchos fallos reales de revestimientos de pintura y capas duras. Aplicando cargas crecientes de forma controlada y estrechamente vigilada, el instrumento permite identificar a qué carga se producen los fallos. Esto puede utilizarse para determinar valores cuantitativos de resistencia al rayado. Se sabe que el revestimiento ensayado, sin intemperie, presenta una primera fisura a unos 22 mN. Con valores más próximos a 5 mN, es evidente que el lapso de 7 años ha degradado la pintura.

La compensación del perfil original permite obtener la profundidad corregida durante el rayado y medir la profundidad residual después del rayado. Esto proporciona información adicional sobre el comportamiento plástico frente al elástico del revestimiento bajo una carga creciente. Tanto el rayado como la información sobre la deformación pueden ser de gran utilidad para mejorar el revestimiento duro. Las muy pequeñas desviaciones estándar también muestran la reproducibilidad de la técnica del instrumento, que puede ayudar a los fabricantes a mejorar la calidad de su revestimiento duro/pintura y estudiar los effectos de la intemperie.

AHORA, HABLEMOS DE SU SOLICITUD

Dureza de los arañazos a alta temperatura mediante un tribómetro

DUREZA AL RAYADO A ALTA TEMPERATURA

UTILIZANDO UN TRIBÓMETRO

Preparado por

DUANJIE, PhD

INTRODUCCIÓN

La dureza mide la resistencia de los materiales a la deformación permanente o plástica. Desarrollado originalmente por el mineralogista alemán Friedrich Mohs en 1820, el ensayo de dureza al rayado determina la dureza de un material a los arañazos y a la abrasión debida a la fricción de un objeto afilado1. La escala de Mohs es un índice comparativo más que una escala lineal, por lo que se desarrolló una medición de la dureza al rayado más precisa y cualitativa, como se describe en la norma ASTM G171-032. Mide la anchura media del rayado creado por un palpador de diamante y calcula el número de dureza del rayado (HSP).

IMPORTANCIA DE LA MEDICIÓN DE LA DUREZA AL RAYADO A ALTAS TEMPERATURAS

Los materiales se seleccionan en función de los requisitos de servicio. Para las aplicaciones que implican cambios de temperatura significativos y gradientes térmicos, es fundamental investigar las propiedades mecánicas de los materiales a altas temperaturas para ser plenamente conscientes de los límites mecánicos. Los materiales, especialmente los polímeros, suelen ablandarse a altas temperaturas. Muchos de los fallos mecánicos se deben a la deformación por fluencia y a la fatiga térmica que sólo tienen lugar a temperaturas elevadas. Por lo tanto, es necesario disponer de una técnica fiable para medir la dureza a altas temperaturas con el fin de garantizar una selección adecuada de los materiales para aplicaciones a alta temperatura.

OBJETIVO DE MEDICIÓN

En este estudio, el tribómetro NANOVEA T50 mide la dureza al rayado de una muestra de teflón a diferentes temperaturas, desde temperatura ambiente hasta 300 °C. La capacidad de realizar mediciones de dureza al rayado a alta temperatura hace que NANOVEA Tribómetro un sistema versátil para evaluaciones tribológicas y mecánicas de materiales para aplicaciones de alta temperatura.

NANOVEA

T50

CONDICIONES DE PRUEBA

El tribómetro estándar de peso libre NANOVEA T50 se utilizó para realizar las pruebas de dureza al rayado en una muestra de teflón a temperaturas que van desde la temperatura ambiente (RT) hasta los 300°C. El teflón tiene un punto de fusión de 326,8°C. Se utilizó un palpador cónico de diamante con un ángulo de vértice de 120° y un radio de punta de 200 µm. La muestra de teflón se fijó en la platina giratoria de la muestra con una distancia de 10 mm al centro de la platina. La muestra se calentó en un horno y se probó a las temperaturas de RT, 50°C, 100°C, 150°C, 200°C, 250°C y 300°C.

PARÁMETROS DE LA PRUEBA

de la medición de la dureza al rayado a alta temperatura

FUERZA NORMAL 2 N
VELOCIDAD DE DESLIZAMIENTO 1 mm/s
DISTANCIA DE DESLIZAMIENTO 8mm por temp.
ATMOSFERA Aire
TEMPERATURA RT, 50°C, 100°C, 150°C, 200°C, 250°C, 300°C.

RESULTADOS Y DISCUSIÓN

En la FIGURA 1 se muestran los perfiles de la pista de rayado de la muestra de teflón a diferentes temperaturas con el fin de comparar la dureza del rayado a diferentes temperaturas elevadas. La acumulación de material en los bordes de la pista de rayado se forma a medida que el palpador se desplaza con una carga constante de 2 N y penetra en la muestra de teflón, empujando y deformando el material de la pista de rayado hacia un lado.

Las huellas de arañazos se examinaron bajo el microscopio óptico como se muestra en la FIGURA 2. Los anchos de las pistas de rayado medidos y los números de dureza de rayado (HSP) calculados se resumen y comparan en la FIGURA 3. El ancho de la pista de rayado medido por el microscopio coincide con el medido mediante el NANOVEA Profiler: la muestra de teflón presenta un ancho de rayado mayor a temperaturas más altas. La anchura de la pista de rayado aumenta de 281 a 539 µm a medida que la temperatura se eleva de RT a 300oC, lo que resulta en una disminución de la HSP de 65 a 18 MPa.

La dureza al rayado a temperaturas elevadas puede medirse con alta precisión y repetibilidad utilizando el Tribómetro NANOVEA T50. Proporciona una solución alternativa a otras mediciones de dureza y convierte a los tribómetros NANOVEA en un sistema más completo para las evaluaciones tribo-mecánicas integrales a alta temperatura.

FIGURA 1: Perfiles de huellas de arañazos después de las pruebas de dureza de arañazos a diferentes temperaturas.

FIGURA 2: Huellas de arañazos bajo el microscopio tras las mediciones a diferentes temperaturas.

FIGURA 3: Evolución de la anchura de la pista de rayado y de la dureza del rayado en función de la temperatura.

CONCLUSIÓN

En este estudio, mostramos cómo el tribómetro NANOVEA mide la dureza al rayado a temperaturas elevadas de acuerdo con la norma ASTM G171-03. El ensayo de dureza al rayado con carga constante proporciona una solución alternativa sencilla para comparar la dureza de los materiales utilizando el tribómetro. La capacidad de realizar mediciones de dureza al rayado a temperaturas elevadas hace del Tribómetro NANOVEA una herramienta ideal para evaluar las propiedades tribo-mecánicas de los materiales a altas temperaturas.

El tribómetro NANOVEA también ofrece pruebas de desgaste y fricción precisas y repetibles utilizando modos rotativos y lineales que cumplen con las normas ISO y ASTM, con módulos opcionales de desgaste a alta temperatura, lubricación y tribo-corrosión disponibles en un sistema preintegrado. Hay disponible un perfilador 3D sin contacto opcional para obtener imágenes 3D de alta resolución de las huellas de desgaste, además de otras mediciones de superficie como la rugosidad.

1 Wredenberg, Fredrik; PL Larsson (2009). "Pruebas de rayado de metales y polímeros: Experiments and numerics". Wear 266 (1-2): 76
2 ASTM G171-03 (2009), "Método de ensayo estándar para la dureza al rayado de los materiales utilizando un estilete de diamante"

AHORA, HABLEMOS DE SU SOLICITUD

Evaluación de arañazos y desgaste de los revestimientos industriales

REVESTIMIENTO INDUSTRIAL

EVALUACIÓN DE ARAÑAZOS Y DESGASTE MEDIANTE UN TRIBÓMETRO

Preparado por

DUANJIE LI, PhD & ANDREA HERRMANN

INTRODUCCIÓN

La pintura de uretano acrílico es un tipo de revestimiento protector de secado rápido muy utilizado en diversas aplicaciones industriales, como la pintura para suelos, la pintura para automóviles y otras. Cuando se utiliza como pintura para suelos, puede servir para zonas con mucho tráfico de personas y ruedas de goma, como pasarelas, bordillos y aparcamientos.

IMPORTANCIA DE LAS PRUEBAS DE RAYADO Y DESGASTE PARA EL CONTROL DE CALIDAD

Tradicionalmente, los ensayos de abrasión Taber se llevaban a cabo para evaluar la resistencia al desgaste de la pintura de uretano acrílico para suelos según la norma ASTM D4060. Sin embargo, como se menciona en la norma, "Para algunos materiales, los ensayos de abrasión que utilizan el abrasador Taber pueden estar sujetos a variaciones debido a los cambios en las características abrasivas de la rueda durante el ensayo".1 Esto puede dar lugar a una mala reproducibilidad de los resultados del ensayo y crear dificultades a la hora de comparar los valores comunicados por diferentes laboratorios. Además, en los ensayos de abrasión Taber, la resistencia a la abrasión se calcula como la pérdida de peso en un número determinado de ciclos de abrasión. Sin embargo, las pinturas de uretano acrílico para suelos tienen un espesor de película seca recomendado de 37,5-50 μm2.

El agresivo proceso de abrasión de Taber Abraser puede desgastar rápidamente el revestimiento de uretano acrílico y crear pérdidas de masa en el sustrato, lo que provoca errores sustanciales en el cálculo de la pérdida de peso de la pintura. La implantación de partículas abrasivas en la pintura durante el ensayo de abrasión también contribuye a los errores. Por lo tanto, una medición cuantificable y fiable bien controlada es crucial para garantizar una evaluación reproducible del desgaste de la pintura. Además, la Prueba de raspado permite a los usuarios detectar fallos prematuros de adhesivo/adhesivo en aplicaciones reales.

OBJETIVO DE MEDICIÓN

En este estudio, mostramos que NANOVEA Los Tribómetros y Probadores Mecánicos Son ideales para la evaluación y control de calidad de recubrimientos industriales.

El proceso de desgaste de las pinturas de uretano acrílico para suelos con diferentes capas de acabado se simula de forma controlada y monitorizada utilizando el Tribómetro NANOVEA. El ensayo de microrrayado se utiliza para medir la carga necesaria para provocar un fallo cohesivo o adhesivo en la pintura.

NANOVEA T100

El Tribómetro Neumático Compacto

NANOVEA PB1000

El comprobador mecánico de plataforma grande

PROCEDIMIENTO DE PRUEBA

Este estudio evalúa cuatro revestimientos acrílicos de base acuosa disponibles en el mercado que tienen la misma imprimación (capa base) y diferentes capas de acabado de la misma fórmula con una pequeña alternancia en las mezclas de aditivos con el fin de mejorar la durabilidad. Estos cuatro revestimientos se identifican como muestras A, B, C y D.

PRUEBA DE DESGASTE

Se aplicó el tribómetro NANOVEA para evaluar el comportamiento tribológico, por ejemplo, coeficiente de fricción, COF y resistencia al desgaste. Se aplicó una punta de bola SS440 (6 mm de diámetro, Grado 100) contra las pinturas probadas. El COF se registró in situ. La tasa de desgaste, K, se evaluó utilizando la fórmula K=V/(F×s)=A/(F×n), donde V es el volumen desgastado, F es la carga normal, s es la distancia de deslizamiento, A es el área de la sección transversal de la pista de desgaste, y n es el número de revoluciones. NANOVEA evaluó la rugosidad de la superficie y los perfiles de desgaste de la pista. Perfilómetro óptico, y la morfología de la pista de desgaste se examinó utilizando un microscopio óptico.

PARÁMETROS DE LA PRUEBA DE DESGASTE

FUERZA NORMAL

20 N

VELOCIDAD

15 m/min

DURACIÓN DE LA PRUEBA

100, 150, 300 y 800 ciclos

PRUEBA DE RASPADO

El probador mecánico NANOVEA equipado con un palpador de diamante Rockwell C (200 μm de radio) se utilizó para realizar ensayos de rayado de carga progresiva en las muestras de pintura utilizando el modo de micro rayado. Se utilizaron dos cargas finales: 5 N de carga final para investigar la deslaminación de la pintura de la imprimación, y 35 N para investigar la deslaminación de la imprimación de los sustratos metálicos. Se repitieron tres pruebas en las mismas condiciones de ensayo en cada muestra para garantizar la reproducibilidad de los resultados.

Se generaron automáticamente imágenes panorámicas de toda la longitud de los arañazos y el software del sistema correlacionó sus ubicaciones críticas de fallo con las cargas aplicadas. Esta función del software facilita a los usuarios realizar el análisis de las pistas de rayado en cualquier momento, en lugar de tener que determinar la carga crítica bajo el microscopio inmediatamente después de los ensayos de rayado.

PARÁMETROS DE LA PRUEBA DE RASCADO

TIPO DE CARGAProgresiva
CARGA INICIAL0,01 mN
CARGA FINAL5 N / 35 N
TASA DE CARGA10 / 70 N/min
LONGITUD DEL RASPADO3 mm
VELOCIDAD DE RASGADO, dx/dt6,0 mm/min
GEOMETRÍA DEL PENETRADORCono de 120º
MATERIAL INDENTADO (punta)Diamante
RADIO DE LA PUNTA DEL PENETRADOR200 μm

RESULTADOS DE LAS PRUEBAS DE DESGASTE

Se realizaron cuatro ensayos de desgaste pin-on-disk a diferentes números de revoluciones (100, 150, 300 y 800 ciclos) en cada muestra para controlar la evolución del desgaste. La morfología de la superficie de las muestras se midió con un perfilador sin contacto NANOVEA 3D para cuantificar la rugosidad de la superficie antes de realizar las pruebas de desgaste. Todas las muestras tenían una rugosidad superficial comparable de aproximadamente 1 μm como se muestra en la FIGURA 1. El COF se registró in situ durante las pruebas de desgaste como se muestra en la FIGURA 2. En la FIGURA 4 se presenta la evolución de las huellas de desgaste después de 100, 150, 300 y 800 ciclos, y en la FIGURA 3 se resume la tasa media de desgaste de las distintas muestras en diferentes etapas del proceso de desgaste.

 

En comparación con un valor de COF de ~0,07 para las otras tres muestras, la Muestra A presenta un COF mucho más alto de ~0,15 al principio, que aumenta gradualmente y se estabiliza en ~0,3 después de 300 ciclos de desgaste. Un COF tan alto acelera el proceso de desgaste y crea una cantidad considerable de restos de pintura, como se indica en la FIGURA 4: la capa superior de la muestra A ha empezado a eliminarse en las primeras 100 revoluciones. Como se muestra en la FIGURA 3, la Muestra A presenta la mayor tasa de desgaste de ~5 μm2/N en los primeros 300 ciclos, que disminuye ligeramente a ~3,5 μm2/N debido a la mejor resistencia al desgaste del sustrato metálico. La capa superior de la muestra C comienza a fallar después de 150 ciclos de desgaste, como se muestra en la FIGURA 4, lo que también se indica por el aumento del COF en la FIGURA 2.

 

En comparación, la muestra B y la muestra D muestran mejores propiedades tribológicas. La muestra B mantiene un COF bajo durante toda la prueba - el COF aumenta ligeramente de~0,05 a ~0,1. Este efecto lubricante mejora sustancialmente su resistencia al desgaste: la capa superior sigue proporcionando una protección superior a la imprimación inferior después de 800 ciclos de desgaste. La tasa de desgaste media más baja, de sólo ~0,77 μm2/N, se mide para la muestra B a los 800 ciclos. La capa superior de la Muestra D comienza a deslaminar después de 375 ciclos, como se refleja en el aumento abrupto del COF en la FIGURA 2. La tasa de desgaste media de la muestra D es de ~1,1 μm2/N a 800 ciclos.

 

En comparación con las mediciones de abrasión Taber convencionales, el Tribómetro NANOVEA proporciona evaluaciones de desgaste bien controladas, cuantificables y fiables, que garantizan evaluaciones reproducibles y el control de calidad de las pinturas comerciales para suelos y automóviles. Además, la capacidad de las mediciones de COF in situ permite a los usuarios correlacionar las diferentes etapas de un proceso de desgaste con la evolución del COF, lo cual es crítico para mejorar la comprensión fundamental del mecanismo de desgaste y las características tribológicas de varios recubrimientos de pintura.

FIGURA 1: Morfología 3D y rugosidad de las muestras de pintura.

FIGURA 2: COF durante las pruebas pin-on-disk.

FIGURA 3: Evolución de la tasa de desgaste de diferentes pinturas.

FIGURA 4: Evolución de las huellas de desgaste durante las pruebas de pasador sobre disco.

RESULTADOS DE LAS PRUEBAS DE DESGASTE

La FIGURA 5 muestra el gráfico de la fuerza normal, la fuerza de fricción y la profundidad real en función de la longitud del arañazo para la muestra A como ejemplo. Se puede instalar un módulo opcional de emisión acústica para obtener más información. A medida que la carga normal aumenta linealmente, la punta de indentación se hunde gradualmente en la muestra ensayada, como se refleja en el aumento progresivo de la profundidad real. La variación de las pendientes de las curvas de fuerza de fricción y profundidad real puede utilizarse como una de las implicaciones de que empiezan a producirse fallos en el revestimiento.

FIGURA 5: Fuerza normal, fuerza de fricción y profundidad real en función de la longitud de rayado para ensayo de rayado de la muestra A con una carga máxima de 5 N.

La FIGURA 6 y la FIGURA 7 muestran los arañazos completos de las cuatro muestras de pintura ensayadas con una carga máxima de 5 N y 35 N, respectivamente. La muestra D requirió una carga mayor de 50 N para deslaminar la imprimación. Los ensayos de rayado con una carga final de 5 N (FIGURA 6) evalúan el fallo cohesivo/adhesivo de la pintura superior, mientras que los de 35 N (FIGURA 7) evalúan la deslaminación de la imprimación. Las flechas en las micrografías indican el punto en el que la pintura superior o la imprimación empiezan a desprenderse completamente de la imprimación o del sustrato. La carga en este punto, llamada Carga Crítica, Lc, se utiliza para comparar las propiedades cohesivas o adhesivas de la pintura como se resume en la Tabla 1.

 

Es evidente que la pintura de la muestra D tiene la mejor adhesión interfacial - mostrando los valores más altos de Lc de 4,04 N en la delaminación de la pintura y 36,61 N en la delaminación de la imprimación. La muestra B muestra la segunda mejor resistencia al rayado. A partir del análisis de los arañazos, mostramos que la optimización de la fórmula de la pintura es fundamental para los comportamientos mecánicos, o más específicamente, la resistencia al rayado y la propiedad de adhesión de las pinturas acrílicas para suelos.

Tabla 1: Resumen de las cargas críticas.

FIGURA 6: Micrografías del rayado completo con una carga máxima de 5 N.

FIGURA 7: Micrografías del rayado completo con una carga máxima de 35 N.

CONCLUSIÓN

En comparación con las mediciones de abrasión Taber convencionales, el NANOVEA Mechanical Tester y el Tribometer son herramientas superiores para la evaluación y el control de calidad de los revestimientos comerciales para suelos y automóviles. El NANOVEA Mechanical Tester en modo de rascado puede detectar problemas de adhesión/cohesión en un sistema de revestimiento. El Tribómetro NANOVEA proporciona un análisis tribológico cuantificable y repetible bien controlado sobre la resistencia al desgaste y el coeficiente de fricción de las pinturas.

 

Basándonos en los exhaustivos análisis tribológicos y mecánicos de los recubrimientos acrílicos de base acuosa para suelos probados en este estudio, demostramos que la muestra B posee el menor índice de COF y de desgaste y la segunda mejor resistencia al rayado, mientras que la muestra D presenta la mejor resistencia al rayado y la segunda mejor resistencia al desgaste. Esta valoración nos permite evaluar y seleccionar el mejor candidato en función de las necesidades en diferentes entornos de aplicación.

 

Los módulos Nano y Micro del Comprobador Mecánico NANOVEA incluyen todos los modos de indentación, rayado y desgaste que cumplen con las normas ISO y ASTM, proporcionando la más amplia gama de pruebas disponibles para la evaluación de la pintura en un solo módulo. El Tribómetro NANOVEA ofrece pruebas de desgaste y fricción precisas y repetibles utilizando modos rotativos y lineales que cumplen con las normas ISO y ASTM, con módulos opcionales de desgaste a alta temperatura, lubricación y tribo-corrosión disponibles en un sistema preintegrado. La gama inigualable de NANOVEA es una solución ideal para determinar toda la gama de propiedades mecánicas/tribológicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros, incluyendo la dureza, el módulo de Young, la tenacidad a la fractura, la adhesión, la resistencia al desgaste y muchas otras. Hay disponibles perfiladores ópticos sin contacto NANOVEA opcionales para obtener imágenes en 3D de alta resolución de arañazos y huellas de desgaste, además de otras mediciones de superficies como la rugosidad.

AHORA, HABLEMOS DE SU SOLICITUD

Medición de la dureza de los arañazos mediante un probador mecánico

MEDICIÓN DE LA DUREZA AL RAYADO

UTILIZANDO UN PROBADOR MECÁNICO

Preparado por

DUANJIE LI, PhD

INTRODUCCIÓN

En general, los ensayos de dureza miden la resistencia de los materiales a la deformación permanente o plástica. Existen tres tipos de mediciones de la dureza: la dureza al rayado, la dureza por indentación y la dureza por rebote. El ensayo de dureza al rayado mide la resistencia de un material al rayado y a la abrasión debidos a la fricción de un objeto afilado1. Fue desarrollado originalmente por el mineralogista alemán Friedrich Mohs en 1820 y todavía se utiliza ampliamente para clasificar las propiedades físicas de los minerales2. Este método de ensayo también es aplicable a los metales, la cerámica, los polímeros y las superficies recubiertas.

Durante la medición de la dureza al rayado, un palpador de diamante de geometría especificada raya la superficie de un material a lo largo de una trayectoria lineal bajo una fuerza normal constante con una velocidad constante. Se mide la anchura media del rayado y se utiliza para calcular el número de dureza al rayado (HSP). Esta técnica proporciona una solución sencilla para escalar la dureza de diferentes materiales.

OBJETIVO DE MEDICIÓN

En este estudio, el probador mecánico NANOVEA PB1000 se utiliza para medir la dureza al rayado de diferentes metales de acuerdo con la norma ASTM G171-03.

Al mismo tiempo, este estudio muestra la capacidad de NANOVEA Probador Mecánico en la realización de mediciones de dureza al rayado con alta precisión y reproducibilidad.

NANOVEA

PB1000

CONDICIONES DE PRUEBA

El comprobador mecánico NANOVEA PB1000 realizó ensayos de dureza al rayado en tres metales pulidos (Cu110, Al6061 y SS304). Se utilizó un palpador cónico de diamante con un ángulo de vértice de 120° y un radio de punta de 200 µm. Cada muestra se rayó tres veces con los mismos parámetros de ensayo para garantizar la reproducibilidad de los resultados. Los parámetros de prueba se resumen a continuación. Se realizó un barrido de perfil a una carga normal baja de 10 mN antes y después del Prueba de raspado para medir el cambio en el perfil de la superficie del arañazo.

PARÁMETROS DE LA PRUEBA

FUERZA NORMAL

10 N

TEMPERATURA

24°C (RT)

VELOCIDAD DE DESLIZAMIENTO

20 mm/min

DISTANCIA DE DESLIZAMIENTO

10 mm

ATMOSFERA

Aire

RESULTADOS Y DISCUSIÓN

Las imágenes de las huellas de rayado de tres metales (Cu110, Al6061 y SS304) después de las pruebas se muestran en la FIGURA 1 con el fin de comparar la dureza del rayado de los diferentes materiales. La función de mapeo del software NANOVEA Mechanical se utilizó para crear tres rasguños paralelos ensayados bajo la misma condición en un protocolo automatizado. La anchura de la pista de rayado medida y el número de dureza de rayado calculado (HSP) se resumen y comparan en la TABLA 1. Los metales muestran diferentes anchos de pista de desgaste de 174, 220 y 89 µm para Al6061, Cu110 y SS304, respectivamente, dando como resultado un HSP calculado de 0,84, 0,52 y 3,2 GPa.

Además de la dureza del rayado calculada a partir de la anchura de la pista de rayado, la evolución del coeficiente de fricción (COF), la profundidad real y la emisión acústica se registraron in situ durante la prueba de dureza del rayado. La profundidad real es la diferencia de profundidad entre la profundidad de penetración del palpador durante el ensayo de rayado y el perfil de la superficie medido en la exploración previa. El COF, la profundidad real y la emisión acústica del Cu110 se muestran en la FIGURA 2 como ejemplo. Esta información proporciona una visión de los fallos mecánicos que tienen lugar durante el rayado, lo que permite a los usuarios detectar defectos mecánicos e investigar más a fondo el comportamiento de rayado del material ensayado.

Los ensayos de dureza por rayado pueden terminarse en un par de minutos con gran precisión y repetibilidad. En comparación con los procedimientos de indentación convencionales, el ensayo de dureza por rayado de este estudio proporciona una solución alternativa para las mediciones de dureza, que resulta útil para el control de calidad y el desarrollo de nuevos materiales.

Al6061

Cu110

SS304

FIGURA 1: Imagen microscópica de las huellas de arañazos después de la prueba (aumento de 100x).

 Ancho de la pista de rascado (μm)HSp (GPa)
Al6061174±110.84
Cu110220±10.52
SS30489±53.20

TABLA 1: Resumen de la anchura de la pista de rayado y del número de dureza del rayado.

FIGURA 2: La evolución del coeficiente de fricción, la profundidad real y las emisiones acústicas durante el ensayo de dureza al rayado en Cu110.

CONCLUSIÓN

En este estudio, mostramos la capacidad del NANOVEA Mechanical Tester para realizar ensayos de dureza al rayado de acuerdo con la norma ASTM G171-03. Además de la adhesión del revestimiento y la resistencia al rayado, el ensayo de rayado con carga constante proporciona una solución alternativa sencilla para comparar la dureza de los materiales. A diferencia de los comprobadores de dureza al rayado convencionales, los comprobadores mecánicos NANOVEA ofrecen módulos opcionales para controlar la evolución del coeficiente de fricción, la emisión acústica y la profundidad real in situ.

Los módulos Nano y Micro de un Comprobador Mecánico NANOVEA incluyen modos de indentación, rayado y desgaste que cumplen con las normas ISO y ASTM, proporcionando la gama de ensayos más amplia y fácil de usar disponible en un solo sistema. La gama inigualable de NANOVEA es una solución ideal para determinar toda la gama de propiedades mecánicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros, incluyendo la dureza, el módulo de Young, la tenacidad a la fractura, la adhesión, la resistencia al desgaste y muchas otras.

AHORA, HABLEMOS DE SU SOLICITUD

Prueba de rayado del revestimiento de nitruro de titanio

ENSAYO DE RAYADO DEL REVESTIMIENTO DE NITRURO DE TITANIO

INSPECCIÓN DE CONTROL DE CALIDAD

Preparado por

DUANJIE LI, PhD

INTRODUCCIÓN

La combinación de alta dureza, excelente resistencia al desgaste, resistencia a la corrosión e inercia hace que el nitruro de titanio (TiN) sea un revestimiento protector ideal para los componentes metálicos de diversas industrias. Por ejemplo, la retención de los bordes y la resistencia a la corrosión de un revestimiento de TiN pueden aumentar considerablemente la eficacia del trabajo y prolongar la vida útil de las máquinas herramienta, como las cuchillas de afeitar, los cortadores de metal, los moldes de inyección y las sierras. Su gran dureza, inercia y no toxicidad hacen del TiN un gran candidato para aplicaciones en dispositivos médicos, como implantes e instrumentos quirúrgicos.

IMPORTANCIA DE LAS PRUEBAS DE ROTURA DEL RECUBRIMIENTO DE TiN

La tensión residual en los revestimientos protectores de PVD/CVD desempeña un papel fundamental en el rendimiento y la integridad mecánica del componente revestido. La tensión residual proviene de varias fuentes principales, como la tensión de crecimiento, los gradientes térmicos, las limitaciones geométricas y la tensión de servicio¹. El desajuste de la expansión térmica entre el revestimiento y el sustrato creado durante la deposición del revestimiento a temperaturas elevadas da lugar a una elevada tensión residual térmica. Además, las herramientas con revestimiento de TiN se utilizan a menudo bajo tensiones concentradas muy elevadas, por ejemplo, en brocas y cojinetes. Es fundamental desarrollar un proceso de control de calidad fiable para inspeccionar cuantitativamente la resistencia cohesiva y adhesiva de los revestimientos funcionales de protección.

[1] V. Teixeira, Vacuum 64 (2002) 393-399.

OBJETIVO DE MEDICIÓN

En este estudio, mostramos que NANOVEA Probadores Mecánicos en modo Scratch son ideales para evaluar la fuerza cohesiva/adhesiva de recubrimientos protectores de TiN de manera controlada y cuantitativa.

NANOVEA

PB1000

CONDICIONES DE PRUEBA

Para realizar el recubrimiento se utilizó el Comprobador Mecánico NANOVEA PB1000 pruebas de resistencia al rayado en tres revestimientos de TiN utilizando los mismos parámetros de ensayo que se resumen a continuación:

MODO DE CARGA: Lineal progresivo

CARGA INICIAL

0.02 N

CARGA FINAL

10 N

TASA DE CARGA

20 N/min

LONGITUD DEL RASPADO

5 mm

TIPO DE INDENTADOR

Sphero-Conical

Diamante, 20 μm de radio

RESULTADOS Y DISCUSIÓN

La FIGURA 1 muestra la evolución registrada de la profundidad de penetración, el coeficiente de fricción (COF) y la emisión acústica durante el ensayo. En la FIGURA 2 se muestran las huellas completas de micro arañazos en las muestras de TiN. Los comportamientos de fallo a diferentes cargas críticas se muestran en la FIGURA 3, donde la carga crítica Lc1 se define como la carga a la que se produce el primer signo de grieta cohesiva en la pista de rayado, Lc2 es la carga después de la cual se producen fallos de espalación repetidos, y Lc3 es la carga a la que el recubrimiento se desprende completamente del sustrato. Los valores de la carga crítica (Lc) para los revestimientos de TiN se resumen en la FIGURA 4.

La evolución de la profundidad de penetración, del COF y de la emisión acústica permite conocer el mecanismo de fallo del recubrimiento en diferentes etapas, que están representadas por las cargas críticas en este estudio. Se puede observar que la muestra A y la muestra B presentan un comportamiento comparable durante el ensayo de rayado. El palpador penetra progresivamente en la muestra hasta una profundidad de ~0,06 mm y el COF aumenta gradualmente hasta ~0,3 a medida que la carga normal aumenta linealmente al principio del ensayo de rayado del revestimiento. Cuando se alcanza el Lc1 de ~3,3 N, se produce el primer signo de fallo por astillamiento. Esto también se refleja en los primeros picos grandes en el gráfico de la profundidad de penetración, el COF y la emisión acústica. A medida que la carga sigue aumentando hasta Lc2 de ~3,8 N, se producen nuevas fluctuaciones de la profundidad de penetración, el COF y la emisión acústica. Podemos observar un fallo de espalación continuo presente en ambos lados de la pista de rayado. En Lc3, el revestimiento se desprende completamente del sustrato metálico bajo la alta presión aplicada por el palpador, dejando el sustrato expuesto y desprotegido.

En comparación, la Muestra C presenta cargas críticas más bajas en las diferentes etapas de los ensayos de rayado del revestimiento, lo que también se refleja en la evolución de la profundidad de penetración, el coeficiente de fricción (COF) y la emisión acústica durante el ensayo de rayado del revestimiento. La muestra C posee una capa intermedia de adhesión con menor dureza y mayor tensión en la interfaz entre el revestimiento superior de TiN y el sustrato metálico en comparación con la muestra A y la muestra B.

Este estudio demuestra la importancia del soporte adecuado del sustrato y de la arquitectura del recubrimiento para la calidad del sistema de recubrimiento. Una capa intermedia más fuerte puede resistir mejor la deformación bajo una alta carga externa y la tensión de concentración, y así mejorar la fuerza cohesiva y adhesiva del sistema de recubrimiento/sustrato.

FIGURA 1: Evolución de la profundidad de penetración, del COF y de la emisión acústica de las muestras de TiN.

FIGURA 2: Rastro completo de arañazos de los revestimientos de TiN después de las pruebas.

FIGURA 3: Fallos del recubrimiento de TiN bajo diferentes cargas críticas, Lc.

FIGURA 4: Resumen de los valores de carga crítica (Lc) para los revestimientos de TiN.

CONCLUSIÓN

En este estudio, demostramos que el comprobador mecánico NANOVEA PB1000 realiza ensayos de rayado fiables y precisos en muestras recubiertas de TiN de forma controlada y estrechamente supervisada. Las mediciones de arañazos permiten a los usuarios identificar rápidamente la carga crítica a la que se producen los típicos fallos del revestimiento cohesivo y adhesivo. Nuestros instrumentos son herramientas superiores de control de calidad que pueden inspeccionar y comparar cuantitativamente la calidad intrínseca de un revestimiento y la integridad interfacial de un sistema de revestimiento/sustrato. Un revestimiento con una capa intermedia adecuada puede resistir una gran deformación bajo una alta carga externa y tensión de concentración, y mejorar la fuerza cohesiva y adhesiva de un sistema de revestimiento/sustrato.

Los módulos Nano y Micro de un comprobador mecánico NANOVEA incluyen todos los modos de indentación, rayado y desgaste que cumplen con las normas ISO y ASTM, proporcionando la gama más amplia y fácil de usar de pruebas disponibles en un solo sistema. La gama inigualable de NANOVEA es una solución ideal para determinar toda la gama de propiedades mecánicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros, incluyendo la dureza, el módulo de Young, la tenacidad a la fractura, la adhesión, la resistencia al desgaste y muchas otras.

AHORA, HABLEMOS DE SU SOLICITUD

Propiedades mecánicas del hidrogel

PROPIEDADES MECÁNICAS DEL HIDROGEL

UTILIZANDO LA NANOINDENTACIÓN

Preparado por

DUANJIE LI, PhD & JORGE RAMIREZ

INTRODUCCIÓN

El hidrogel es conocido por su gran capacidad de absorción de agua, lo que le confiere una flexibilidad muy similar a la de los tejidos naturales. Este parecido ha hecho que el hidrogel sea una opción habitual no sólo en los biomateriales, sino también en la electrónica, el medio ambiente y las aplicaciones de bienes de consumo, como las lentes de contacto. Cada aplicación única requiere propiedades mecánicas específicas del hidrogel.

IMPORTANCIA DE LA NANOINDENTACIÓN PARA EL HIDROGEL

Los hidrogeles crean desafíos únicos para la nanoindentación, como la selección de los parámetros de prueba y la preparación de la muestra. Muchos sistemas de nanoindentación tienen grandes limitaciones ya que no fueron diseñados originalmente para materiales tan blandos. Algunos de los sistemas de nanoindentación utilizan un conjunto de bobina/imán para aplicar la fuerza sobre la muestra. No se mide la fuerza real, lo que da lugar a una carga inexacta y no lineal cuando se prueban materiales blandos. materiales. Determinar el punto de contacto es extremadamente difícil ya que el La profundidad es el único parámetro que se mide realmente. Es casi imposible observar el cambio de pendiente en el Profundidad en función del tiempo parcela durante el cuando la punta del indentador se acerca al material de hidrogel.

Para superar las limitaciones de estos sistemas, el nano módulo del NANOVEA Probador Mecánico Mide la retroalimentación de fuerza con una celda de carga individual para garantizar una alta precisión en todo tipo de materiales, blandos o duros. El desplazamiento controlado piezoeléctricamente es extremadamente preciso y rápido. Esto permite una medición incomparable de las propiedades viscoelásticas al eliminar muchas suposiciones teóricas que deben tener en cuenta los sistemas con un conjunto de bobina/imán y sin retroalimentación de fuerza.

OBJETIVO DE MEDICIÓN

En esta aplicación, el NANOVEA El probador mecánico, en modo de nanoindentación, se utiliza para estudiar la dureza, el módulo elástico y la fluencia de una muestra de hidrogel.

NANOVEA

PB1000

CONDICIONES DE PRUEBA

Una muestra de hidrogel colocada en un portaobjetos de vidrio se probó mediante la técnica de nanoindentación utilizando un NANOVEA Probador mecánico. Para este material blando se utilizó una punta esférica de 3 mm de diámetro. La carga aumentó linealmente de 0,06 a 10 mN durante el periodo de carga. La fluencia se midió entonces por el cambio de la profundidad de indentación a la carga máxima de 10 mN durante 70 segundos.

VELOCIDAD DE APROXIMACIÓN: 100 μm/min

CARGA DE CONTACTO
0,06 mN
CARGA MÁXIMA
10 mN
TASA DE CARGA

20 mN/min

CREEP
70 s
RESULTADOS Y DISCUSIÓN

La evolución de la carga y la profundidad en función del tiempo se muestra en FUGURA 1. Se puede observar que en el gráfico de la Profundidad en función del tiempoEn este caso, es muy difícil determinar el punto de cambio de pendiente al principio del período de carga, que suele servir de indicación del lugar en el que el indentador empieza a entrar en contacto con el material blando. Sin embargo, el gráfico de la Carga vs. Tiempo muestra el peculiar comportamiento del hidrogel bajo una carga aplicada. Cuando el hidrogel empieza a entrar en contacto con el indentador de bola, el hidrogel tira del indentador de bola debido a su tensión superficial, lo que tiende a disminuir la superficie. Este comportamiento conduce a la carga negativa medida al principio de la etapa de carga. La carga aumenta progresivamente a medida que el indentador se hunde en el hidrogel, y luego se controla para que sea constante en la carga máxima de 10 mN durante 70 segundos para estudiar el comportamiento de fluencia del hidrogel.

FIGURA 1: Evolución de la carga y la profundidad en función del tiempo.

La trama del Profundidad de fluencia en función del tiempo se muestra en FIGURA 2y el Carga vs. Desplazamiento de la prueba de nanoindentación se muestra en FIGURA 3. El hidrogel de este estudio posee una dureza de 16,9 KPa y un módulo de Young de 160,2 KPa, calculados a partir de la curva de desplazamiento de carga mediante el método de Oliver-Pharr.

La fluencia es un factor importante para el estudio de las propiedades mecánicas de los hidrogeles. El control de retroalimentación en bucle cerrado entre el piezoeléctrico y la célula de carga ultrasensible garantiza una verdadera carga constante durante el tiempo de fluencia en la carga máxima. Como se muestra en FIGURA 2El hidrogel se hunde ~42 μm como resultado de la fluencia en 70 segundos bajo la carga máxima de 10 mN aplicada por la punta de bola de 3 mm.

FIGURA 2: Arrastre a una carga máxima de 10 mN durante 70 segundos.

FIGURA 3: Gráfico de carga vs. desplazamiento del hidrogel.

CONCLUSIÓN

En este estudio, mostramos que el NANOVEA El probador mecánico, en modo de nanoindentación, proporciona una medición precisa y repetible de las propiedades mecánicas de un hidrogel, incluyendo la dureza, el módulo de Young y la fluencia. La gran punta esférica de 3 mm garantiza un contacto adecuado con la superficie del hidrogel. La etapa de muestra motorizada de alta precisión permite el posicionamiento exacto de la cara plana de la muestra de hidrogel bajo la punta de bola. El hidrogel de este estudio presenta una dureza de 16,9 KPa y un módulo de Young de 160,2 KPa. La profundidad de fluencia es de ~42 μm bajo una carga de 10 mN durante 70 segundos.

NANOVEA Los comprobadores mecánicos ofrecen módulos Nano y Micro sin igual en una sola plataforma. Ambos módulos incluyen un comprobador de arañazos, un comprobador de dureza y un modo de comprobación de desgaste, ofreciendo la gama de pruebas más amplia y fácil de usar disponible en una sola
sistema.

AHORA, HABLEMOS DE SU SOLICITUD

Propiedades de adhesión del revestimiento de oro sobre un sustrato de cristal de cuarzo

Propiedades de adhesión del revestimiento de oro

en sustrato de cristal de cuarzo

Preparado por

DUANJIE LI, Doctorado

INTRODUCCIÓN

La microbalanza de cristal de cuarzo (QCM) es un sensor de masa extremadamente sensible capaz de realizar mediciones precisas de pequeñas masas en el rango de los nanogramos. La QCM mide el cambio de masa en la superficie mediante la detección de variaciones en la frecuencia de resonancia del cristal de cuarzo con dos electrodos fijados a cada lado de la placa. La capacidad de medir pesos extremadamente pequeños lo convierte en un componente clave en una variedad de instrumentos de investigación e industriales para detectar y controlar la variación de masa, adsorción, densidad y corrosión, etc.

IMPORTANCIA DE LA PRUEBA DEL RASGUÑO PARA EL QCM

Al ser un dispositivo extremadamente preciso, el QCM mide el cambio de masa hasta 0,1 nanogramos. Cualquier pérdida de masa o delaminación de los electrodos en la placa de cuarzo será detectada por el cristal de cuarzo y causará errores de medición significativos. En consecuencia, la calidad intrínseca del revestimiento del electrodo y la integridad interfacial del sistema de revestimiento/sustrato desempeñan un papel esencial en la realización de una medición de masa precisa y repetible. El ensayo de micro rayado es una medida comparativa ampliamente utilizada para evaluar las propiedades relativas de cohesión o adhesión de los revestimientos, basada en la comparación de las cargas críticas a las que aparecen los fallos. Es una herramienta superior para el control de calidad fiable de los QCM.

OBJETIVO DE MEDICIÓN

En esta aplicación, el NANOVEA Probador Mecánico, en modo Micro Scratch, se utiliza para evaluar la fuerza cohesiva y adhesiva del recubrimiento de oro sobre el sustrato de cuarzo de una muestra de QCM. Nos gustaría mostrar la capacidad de la NANOVEA Probador mecánico en la realización de pruebas de micro rayado en una muestra delicada con alta precisión y repetibilidad.

NANOVEA

PB1000

CONDICIONES DE PRUEBA

El NANOVEA Se utilizó el probador mecánico PB1000 para realizar los ensayos de micro rayado en una muestra de QCM utilizando los parámetros de ensayo que se resumen a continuación. Se realizaron tres arañazos para garantizar la reproducibilidad de los resultados.

TIPO DE CARGA: Progresiva

CARGA INICIAL

0.01 N

CARGA FINAL

30 N

ATMOSFERA: Aire 24°C

VELOCIDAD DE DESLIZAMIENTO

2 mm/min

DISTANCIA DE DESLIZAMIENTO

2 mm

RESULTADOS Y DISCUSIÓN

La huella completa de la micro raya en la muestra de QCM se muestra en FIGURA 1. En la FIGURA 2 se muestran los comportamientos de fallo a diferentes cargas críticasdonde la carga crítica, LC1 se define como la carga a la que se produce el primer signo de fallo del adhesivo en la pista de rayado, LC2 es la carga después de la cual se producen fallos adhesivos repetitivos, y LC3 es la carga a la que el recubrimiento se desprende completamente del sustrato. Se puede observar que a LC1 de 11,15 N, el primer signo de fallo del revestimiento. 

Como la carga normal sigue aumentando durante el ensayo de micro rayado, se producen fallos repetitivos del adhesivo después de LC2 de 16,29 N. Cuando LC3 de 19,09 N, el revestimiento se desprende completamente del sustrato de cuarzo. Estas cargas críticas pueden utilizarse para comparar cuantitativamente la resistencia cohesiva y adhesiva del revestimiento y seleccionar el mejor candidato para las aplicaciones previstas.

FIGURA 1: Pista de microrrayado completa en la muestra de QCM.

FIGURA 2: Pista de microrrayado a diferentes cargas críticas.

FIGURA 3 traza la evolución del coeficiente de fricción y de la profundidad que puede proporcionar más información sobre la progresión de los fallos del revestimiento durante el ensayo de microrrayado.

FIGURA 3: Evolución del COF y de la profundidad durante el ensayo de micro scratch.

CONCLUSIÓN

En este estudio, mostramos que el NANOVEA Mechanical Tester realiza ensayos de microarañazos fiables y precisos en una muestra de QCM. Mediante la aplicación de cargas linealmente crecientes de forma controlada y estrechamente supervisada, la medición del rayado permite a los usuarios identificar la carga crítica en la que se produce el típico fallo del revestimiento cohesivo y adhesivo. Proporciona una herramienta superior para evaluar y comparar cuantitativamente la calidad intrínseca del revestimiento y la integridad interfacial del sistema de revestimiento/sustrato para QCM.

Los módulos Nano, Micro o Macro del NANOVEA Todos los comprobadores mecánicos incluyen modos de indentación, rayado y desgaste conformes a las normas ISO y ASTM, lo que proporciona la gama de pruebas más amplia y fácil de usar disponible en un solo sistema. NANOVEAes una solución ideal para determinar toda la gama de propiedades mecánicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros, incluyendo la dureza, el módulo de Young, la resistencia a la fractura, la adhesión, la resistencia al desgaste y muchas otras.

Además, se dispone de un perfilador 3D sin contacto y un módulo AFM opcionales para obtener imágenes 3D de alta resolución de la indentación, el rayado y la huella de desgaste, además de otras mediciones de superficie, como la rugosidad y el alabeo.

AHORA, HABLEMOS DE SU SOLICITUD

El líder mundial en pruebas micromecánicas

AHORA EL LÍDER MUNDIAL

PRUEBAS MICROMECÁNICAS

Preparado por

PIERRE LEROUX y DUANJIE LI, PhD

INTRODUCCIÓN

Los Microdurómetros Vickers estándar tienen rangos de carga utilizables de 10 a 2000 gramos de fuerza (gf). Los Macro Durómetros Vickers estándar cargan de 1 a 50 Kgf. Estos instrumentos no sólo son muy limitados en cuanto a la gama de cargas, sino que también son inexactos cuando se trata de superficies más rugosas o de cargas bajas, cuando las muescas son demasiado pequeñas para ser medidas visualmente. Estas limitaciones son intrínsecas a la tecnología más antigua y, como resultado, la indentación instrumentada se está convirtiendo en la opción estándar debido a la mayor precisión y rendimiento que aporta.

Con El sistema de ensayos micromecánicos líder en el mundo de NANOVEA, la dureza Vickers se calcula automáticamente a partir de los datos de profundidad frente a la carga con el rango de carga más amplio en un solo módulo jamás disponible (de 0,3 gramos a 2 Kg o de 6 gramos a 40 Kg). Dado que mide la dureza a partir de las curvas de profundidad frente a la carga, el Módulo NANOVEA Micro puede medir cualquier tipo de materiales, incluidos los muy elásticos. También puede proporcionar no sólo la dureza Vickers, sino también datos precisos del módulo elástico y de la fluencia, además de otros tipos de pruebas como la prueba de adhesión al rayado, el desgaste, la prueba de fatiga, el límite elástico y la tenacidad a la fractura para una gama completa de datos de control de calidad.

AHORA EL LÍDER MUNDIAL EN PRUEBAS MICROMECÁNICAS

En esta nota de aplicación, se explicará cómo se ha diseñado el Micro Module para ofrecer los principales ensayos de indentación y rayado instrumentados del mundo. La capacidad de ensayo de amplio rango del Micro Module es ideal para muchas aplicaciones. Por ejemplo, el rango de carga permite realizar mediciones precisas de la dureza y el módulo elástico de revestimientos duros y delgados, y luego puede aplicar cargas mucho más altas para medir la adherencia de estos mismos revestimientos.

OBJETIVO DE MEDICIÓN

La capacidad del micromódulo se muestra con el NANOVEA CB500 Probador Mecánico por
realizando tanto ensayos de indentación como de rayado con una precisión y fiabilidad superiores utilizando un amplio rango de carga de 0,03 a 200 N.

NANOVEA

CB500

CONDICIONES DE PRUEBA

Se realizó una serie (3×4, 12 indentaciones en total) de microindentaciones en una muestra de acero estándar utilizando un indentador Vickers. La carga y la profundidad se midieron y registraron para el ciclo completo de la prueba de indentación. Las indentaciones se realizaron con diferentes cargas máximas que iban de 0,03 N a 200 N (0,0031 a 20,4 kgf) para mostrar la capacidad del micromódulo de realizar ensayos de indentación precisos con diferentes cargas. Cabe destacar que también está disponible una célula de carga opcional de 20 N para proporcionar una resolución 10 veces mayor para los ensayos en el rango de carga inferior, desde 0,3 gf hasta 2 kgf.

Se realizaron dos ensayos de rayado con el Módulo Micro con una carga lineal creciente de 0,01 N a 200 N y de 0,01 N a 0,5 N, respectivamente, utilizando palpadores de diamante cónico-esféricos con radios de punta de 500 μm y 20 μm.

Veinte Microindentación se llevaron a cabo ensayos en la muestra estándar de acero a 4 N mostrando la superior repetibilidad de los resultados del Micro Módulo que contrasta con el rendimiento de los durómetros Vickers convencionales.

*microindentador en la muestra de acero

PARÁMETROS DE LA PRUEBA

de la cartografía de indentación

MAPEO: 3 POR 4 INDENTOS

RESULTADOS Y DISCUSIÓN

El nuevo Micro Módulo tiene una combinación única de motor Z, célula de carga de alta fuerza y un sensor de profundidad capacitivo de alta precisión. La utilización exclusiva de sensores de profundidad y carga independientes garantiza una gran precisión en todas las condiciones.

Los ensayos de dureza Vickers convencionales utilizan puntas de penetración piramidales con base de diamante que crean muescas de forma cuadrada. Midiendo la longitud media de la diagonal, d, se puede calcular la dureza Vickers.

En comparación, la técnica de indentación instrumentada utilizada por NANOVEAmide directamente las propiedades mecánicas a partir de las mediciones de carga y desplazamiento de la indentación. No es necesaria la observación visual de la indentación. Esto elimina los errores de procesamiento de imágenes del usuario o del ordenador en la determinación de los valores d de la indentación. El sensor de profundidad del condensador de alta precisión, con un nivel de ruido muy bajo de 0,3 nm, puede medir con precisión la profundidad de las indentaciones que son difíciles o imposibles de medir visualmente bajo un microscopio con los durómetros Vickers tradicionales.

Además, la técnica de la viga en voladizo utilizada por los competidores aplica la carga normal sobre una viga en voladizo mediante un muelle, y esta carga se aplica a su vez sobre el penetrador. Este diseño tiene un defecto en caso de que se aplique una carga elevada: la viga en voladizo no puede proporcionar una rigidez estructural suficiente, lo que provoca la deformación de la viga en voladizo y, a su vez, la desalineación del penetrador. En comparación, el Micro Módulo aplica la carga normal a través del motor Z que actúa sobre la célula de carga y, a continuación, el penetrador para la aplicación directa de la carga. Todos los elementos están alineados verticalmente para obtener la máxima rigidez, lo que garantiza mediciones de indentación y rayado repetibles y precisas en todo el rango de carga.

Primer plano del nuevo Micro Módulo

INDENTACIÓN DE 0,03 A 200 N

La imagen del mapa de indentación se muestra en la FIGURA 1. La distancia entre las dos indentaciones adyacentes por encima de 10 N es de 0,5 mm, mientras que la de cargas inferiores es de 0,25 mm. El control de posición de alta precisión de la platina de la muestra permite a los usuarios seleccionar la ubicación objetivo para el mapeo de las propiedades mecánicas. Gracias a la excelente rigidez del micromódulo debido a la alineación vertical de sus componentes, el indentador Vickers mantiene una orientación vertical perfecta mientras penetra en la muestra de acero bajo una carga de hasta 200 N (400 N opcional). Esto crea impresiones de una forma cuadrada simétrica en la superficie de la muestra con diferentes cargas.

Las indentaciones individuales a diferentes cargas bajo el microscopio se muestran junto a los dos arañazos como se muestra en la FIGURA 2, para mostrar la capacidad del nuevo micromódulo en la realización de ensayos de indentación y de arañazos en un amplio rango de carga con una alta precisión. Como se muestra en los gráficos de carga normal frente a la longitud del rayado, la carga normal aumenta linealmente a medida que el palpador de diamante cónico-esférico se desliza sobre la superficie de la muestra de acero. Crea una pista de rayado lisa y recta de anchura y profundidad progresivamente mayores.

FIGURA 1: Mapa de indentación

Se realizaron dos ensayos de rayado con el Módulo Micro con una carga lineal creciente de 0,01 N a 200 N y de 0,01 N a 0,5 N, respectivamente, utilizando palpadores de diamante cónico-esféricos con radios de punta de 500 μm y 20 μm.

Se llevaron a cabo veinte ensayos de microindentación en la muestra estándar de acero a 4 N, mostrando la repetibilidad superior de los resultados del Micro Módulo que contrasta con el rendimiento de los durómetros Vickers convencionales.

A: HENDIDURA Y ARAÑAZO AL MICROSCOPIO (360X)

B: HENDIDURA Y RAYADO AL MICROSCOPIO (3000X)

FIGURA 2: Gráficos de carga vs. Desplazamiento a diferentes cargas máximas.

Las curvas carga-desplazamiento durante la indentación a diferentes cargas máximas se muestran en FIGURA 3. La dureza y el módulo elástico se resumen y comparan en la FIGURA 4. La muestra de acero exhibe un módulo elástico constante a lo largo de la carga de ensayo que va de 0,03 a 200 N (rango posible de 0,003 a 400 N), lo que resulta en un valor medio de ~211 GPa. La dureza exhibe un valor relativamente constante de ~6,5 GPa medido bajo una carga máxima superior a 100 N. A medida que la carga disminuye hasta un rango de 2 a 10 N, se mide una dureza media de ~9 GPa.

FIGURA 3: Gráficos de carga vs. Desplazamiento a diferentes cargas máximas.

FIGURA 4: Dureza y módulo de Young de la muestra de acero medidos con diferentes cargas máximas.

INDENTACIÓN DE 0,03 A 200 N

Se realizaron 20 ensayos de microindentación con una carga máxima de 4N. Las curvas carga-desplazamiento se muestran en FIGURA 5 y la dureza Vickers y el módulo de Young resultantes se muestran en FIGURA 6.

FIGURA 5: Curvas carga-desplazamiento de los ensayos de microindentación a 4 N.

FIGURA 6: Dureza Vickers y módulo de Young para 20 microindentaciones a 4 N.

Las curvas carga-desplazamiento demuestran la superior repetibilidad del nuevo Micro Módulo. El estándar de acero posee una dureza Vickers de 842±11 HV medida por el nuevo Micro Módulo, en comparación con los 817±18 HV medidos con el durómetro Vickers convencional. La pequeña desviación estándar de la medición de la dureza garantiza una caracterización fiable y reproducible de las propiedades mecánicas en la I+D y el control de calidad de los materiales tanto en el sector industrial como en la investigación académica.

Además, se calcula un módulo de Young de 208±5 GPa a partir de la curva carga-desplazamiento, que no está disponible para el durómetro Vickers convencional debido a la falta de medición de la profundidad durante la indentación. A medida que disminuye la carga y el tamaño de la indentación, el NANOVEA Las ventajas del micromódulo en términos de repetibilidad en comparación con los durómetros Vickers aumentan hasta que ya no es posible medir el indent a través de la inspección visual.

La ventaja de medir la profundidad para calcular la dureza también se hace evidente cuando se trata de muestras más ásperas o cuando son más difíciles de observar con los microscopios estándar que proporcionan los durómetros Vickers.

CONCLUSIÓN

En este estudio, hemos mostrado cómo el nuevo Módulo Micro de NANOVEA, líder mundial (rango de 200 N), realiza mediciones de indentación y rayado inigualables, reproducibles y precisas, en un amplio rango de carga de 0,03 a 200 N (3 gf a 20,4 kgf). Un Micro Módulo opcional de rango inferior puede proporcionar pruebas de 0,003 a 20 N (0,3 gf a 2 kgf). La exclusiva alineación vertical del motor Z, la célula de carga de alta fuerza y el sensor de profundidad garantizan la máxima rigidez estructural durante las mediciones. Las hendiduras medidas con diferentes cargas poseen todas ellas una forma cuadrada simétrica en la superficie de la muestra. En el ensayo de rayado con una carga máxima de 200 N se crea una huella de rayado recta de anchura y profundidad progresivamente mayores.

El nuevo Micromódulo puede configurarse en la base mecánica PB1000 (150 x 200 mm) o en la CB500 (100 x 50 mm) con una motorización z (rango de 50 mm). Combinado con un potente sistema de cámaras (precisión de posición de 0,2 micras), los sistemas proporcionan las mejores capacidades de automatización y mapeo del mercado. NANOVEA también ofrece una función única patentada (EP No. 30761530) que permite la verificación y calibración de los indentadores Vickers realizando un único indentador en todo el rango de cargas. Por el contrario, los durómetros Vickers estándar sólo pueden proporcionar la calibración en una carga.

Además, el software NANOVEA permite al usuario medir la dureza Vickers a través del método tradicional de medición de las diagonales de indentación si es necesario (para ASTM E92 y E384). Como se muestra, en este documento, los ensayos de dureza de profundidad frente a la carga (ASTM E2546 e ISO 14577) realizados por un Micro Módulo NANOVEA son precisos y reproducibles en comparación con los durómetros tradicionales. Especialmente para las muestras que no pueden ser observadas/medidas con un microscopio.

En conclusión, la mayor precisión y repetibilidad del diseño del Micromódulo con su amplia gama de cargas y ensayos, su alta automatización y sus opciones de mapeo hacen que los durómetros Vickers tradicionales queden obsoletos. Pero lo mismo ocurre con los durómetros de arañazos y micro arañazos que aún se ofrecen en la actualidad, pero que se diseñaron con defectos en la década de 1980.

El desarrollo y la mejora continuos de esta tecnología hacen de NANOVEA un líder mundial en ensayos micromecánicos.

AHORA, HABLEMOS DE SU SOLICITUD