EEUU/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTÁCTENOS

Categoría: Tribología líquida

 

Rendimiento de la abrasión del papel de lija mediante un tribómetro

RENDIMIENTO DE LA ABRASIÓN DEL PAPEL DE LIJA

UTILIZANDO UN TRIBÓMETRO

Preparado por

DUANJIE LI, PhD

INTRODUCCIÓN

El papel de lija está formado por partículas abrasivas pegadas a una cara de un papel o tela. Se pueden utilizar diversos materiales abrasivos para las partículas, como granate, carburo de silicio, óxido de aluminio y diamante. El papel de lija se aplica ampliamente en diversos sectores industriales para crear acabados superficiales específicos en madera, metal y paneles de yeso. Suelen trabajar en contacto con alta presión aplicada con herramientas manuales o eléctricas.

IMPORTANCIA DE EVALUAR EL RENDIMIENTO DE LA ABRASIÓN DEL PAPEL DE LIJA

La eficacia del papel de lija suele estar determinada por su rendimiento de abrasión en diferentes condiciones. El tamaño de grano, es decir, el tamaño de las partículas abrasivas incrustadas en la lija, determina la velocidad de desgaste y el tamaño de los arañazos del material lijado. Las lijas de mayor número de grano tienen partículas más pequeñas, por lo que la velocidad de lijado es menor y el acabado de la superficie es más fino. Las lijas con el mismo número de grano pero fabricadas con materiales diferentes pueden tener comportamientos distintos en condiciones secas o húmedas. Se necesitan evaluaciones tribológicas fiables para garantizar que las lijas fabricadas tienen el comportamiento abrasivo deseado. Estas evaluaciones permiten a los usuarios comparar cuantitativamente los comportamientos de desgaste de diferentes tipos de lijas de forma controlada y supervisada, con el fin de seleccionar el mejor candidato para la aplicación prevista.

OBJETIVO DE MEDICIÓN

En este estudio, mostramos la capacidad del Tribómetro NANOVEA para evaluar cuantitativamente el rendimiento de la abrasión de varias muestras de papel de lija en condiciones secas y húmedas.

NANOVEA

T2000

PROCEDIMIENTOS DE PRUEBA

El tribómetro NANOVEA T100 evaluó el coeficiente de fricción (COF) y el rendimiento de abrasión de dos tipos de papeles de lija. Como contramaterial se utilizó una bola de acero inoxidable 440. Las cicatrices del desgaste de la pelota se examinaron después de cada prueba de desgaste utilizando NANOVEA. Perfilador óptico 3D sin contacto para garantizar mediciones precisas de la pérdida de volumen.

Tenga en cuenta que se eligió una bola de acero inoxidable 440 como contra material para crear un estudio comparativo, pero cualquier material sólido podría ser sustituido para simular una condición de aplicación diferente.

RESULTADOS DE LAS PRUEBAS Y DISCUSIÓN

La FIGURA 1 muestra una comparación del COF del papel de lija 1 y 2 en condiciones ambientales secas y húmedas. El papel de lija 1, en condiciones secas, muestra un COF de 0,4 al principio de la prueba, que disminuye progresivamente y se estabiliza en 0,3. En condiciones húmedas, esta muestra presenta un COF medio inferior, de 0,27. En cambio, los resultados del COF de la muestra 2 muestran un COF en seco de 0,27 y un COF en húmedo de ~ 0,37. 

Obsérvese que la oscilación en los datos de todos los gráficos de COF fue causada por las vibraciones generadas por el movimiento de deslizamiento de la bola contra las superficies rugosas del papel de lija.

FIGURA 1: Evolución del COF durante las pruebas de desgaste.

La FIGURA 2 resume los resultados del análisis de las cicatrices de desgaste. Las cicatrices de desgaste se midieron utilizando un microscopio óptico y un perfilador óptico sin contacto NANOVEA 3D. La FIGURA 3 y la FIGURA 4 comparan las cicatrices de desgaste de las bolas SS440 desgastadas después de las pruebas de desgaste en el papel de lija 1 y 2 (condiciones húmedas y secas). Como se muestra en la FIGURA 4, el Perfilador Óptico NANOVEA captura con precisión la topografía de la superficie de las cuatro bolas y sus respectivas huellas de desgaste, que luego fueron procesadas con el software de Análisis Avanzado NANOVEA Mountains para calcular la pérdida de volumen y la tasa de desgaste. En la imagen del microscopio y del perfil de la bola se puede observar que la bola utilizada para la prueba del papel de lija 1 (en seco) presentaba una cicatriz de desgaste aplanada más grande en comparación con las demás, con una pérdida de volumen de 0,313 mm3. En cambio, la pérdida de volumen del papel de lija 1 (húmedo) fue de 0,131 mm3. Para el papel de lija 2 (seco) la pérdida de volumen fue de 0,163 mm3 y para el papel de lija 2 (húmedo) la pérdida de volumen aumentó a 0,237 mm3.

Además, es interesante observar que el COF desempeñó un papel importante en el rendimiento de abrasión de las lijas. El papel de lija 1 mostró un mayor COF en seco, lo que dio lugar a un mayor índice de abrasión de la bola SS440 utilizada en la prueba. En comparación, el mayor COF del papel de lija 2 en condiciones húmedas dio lugar a un mayor índice de abrasión. Las huellas de desgaste de las lijas tras las mediciones se muestran en la FIGURA 5.

Tanto el papel de lija 1 como el 2 afirman funcionar en ambientes secos y húmedos. Sin embargo, exhibieron un rendimiento de abrasión significativamente diferente en condiciones secas y húmedas. NANOVEA tribómetros Proporcionar capacidades de evaluación de desgaste confiables, cuantificables y bien controladas que garanticen evaluaciones de desgaste reproducibles. Además, la capacidad de medición de COF in situ permite a los usuarios correlacionar diferentes etapas de un proceso de desgaste con la evolución de COF, lo cual es fundamental para mejorar la comprensión fundamental del mecanismo de desgaste y las características tribológicas del papel de lija.

FIGURA 2: Volumen de la cicatriz de desgaste de las bolas y promedio del COF en diferentes condiciones.

FIGURA 3: Las cicatrices de las bolas después de las pruebas.

FIGURA 4: Morfología 3D de las cicatrices de desgaste en las bolas.

FIGURA 5: Huellas de desgaste en las lijas bajo diferentes condiciones.

CONCLUSIÓN

En este estudio se evaluó el rendimiento de abrasión de dos tipos de lijas del mismo número de grano en condiciones secas y húmedas. Las condiciones de servicio de la lija desempeñan un papel fundamental en la eficacia del rendimiento de trabajo. La lija 1 tuvo un comportamiento de abrasión significativamente mejor en condiciones secas, mientras que la lija 2 se comportó mejor en condiciones húmedas. La fricción durante el proceso de lijado es un factor importante a tener en cuenta a la hora de evaluar el rendimiento de la abrasión. El perfilador óptico NANOVEA mide con precisión la morfología 3D de cualquier superficie, como las cicatrices de desgaste en una bola, asegurando una evaluación fiable sobre el rendimiento de la abrasión del papel de lija en este estudio. El Tribómetro NANOVEA mide el coeficiente de fricción in situ durante una prueba de desgaste, proporcionando una visión de las diferentes etapas de un proceso de desgaste. También ofrece pruebas de desgaste y fricción repetibles utilizando modos rotativos y lineales que cumplen con las normas ISO y ASTM, con módulos opcionales de desgaste y lubricación a alta temperatura disponibles en un sistema preintegrado. Esta gama inigualable permite a los usuarios simular diferentes entornos de trabajo severos de los rodamientos de bolas, incluyendo alta tensión, desgaste y alta temperatura, etc. También proporciona una herramienta ideal para evaluar cuantitativamente los comportamientos tribológicos de los materiales superiores resistentes al desgaste bajo altas cargas.

AHORA, HABLEMOS DE SU SOLICITUD

Pruebas de desgaste del pistón

Pruebas de desgaste del pistón

Uso de un tribómetro

Preparado por

FRANK LIU

INTRODUCCIÓN

Las pérdidas por fricción representan aproximadamente 10% de la energía total del combustible para un motor diesel[1]. 40-55% de la pérdida por fricción proviene del sistema de cilindros de potencia. La pérdida de energía por fricción puede disminuirse con una mejor comprensión de las interacciones tribológicas que se producen en el sistema de cilindros de potencia.

Una parte importante de las pérdidas por fricción en el sistema de cilindros de potencia proviene del contacto entre la falda del pistón y la camisa del cilindro. La interacción entre la falda del pistón, el lubricante y las interfaces del cilindro es bastante compleja debido a los constantes cambios de fuerza, temperatura y velocidad en un motor de la vida real. La optimización de cada factor es clave para obtener un rendimiento óptimo del motor. Este estudio se centrará en reproducir los mecanismos que causan las fuerzas de fricción y el desgaste en las interfaces falda del pistón-lubricante-carcasa del cilindro (P-L-C).

 Esquema del sistema de cilindros de potencia y de las interfaces entre la falda del pistón y la camisa del cilindro.

[1] Bai, Dongfang. Modelización de la lubricación de la falda del pistón en motores de combustión interna. Diss. MIT, 2012

IMPORTANCIA DE LA COMPROBACIÓN DE LOS PISTONES CON TRIBÓMETROS

El aceite de motor es un lubricante bien diseñado para su aplicación. Además del aceite base, se añaden aditivos como detergentes, dispersantes, mejoradores de la viscosidad (VI), agentes antidesgaste/antifricción e inhibidores de la corrosión para mejorar su rendimiento. Estos aditivos afectan al comportamiento del aceite en diferentes condiciones de funcionamiento. El comportamiento del aceite afecta a las interfaces P-L-C y determina si se produce un desgaste significativo por contacto metal-metal o si se produce una lubricación hidrodinámica (muy poco desgaste).

Es difícil entender las interfaces P-L-C sin aislar la zona de las variables externas. Es más práctico simular el evento con condiciones representativas de su aplicación en la vida real. La página web NANOVEA Tribómetro es ideal para esto. Equipado con múltiples sensores de fuerza, un sensor de profundidad, un módulo de lubricante gota a gota y una etapa alternativa lineal, el NANOVEA El T2000 es capaz de imitar de cerca los eventos que ocurren dentro de un bloque de motor y obtener datos valiosos para entender mejor las interfaces P-L-C.

Módulo de líquidos en el tribómetro NANOVEA T2000

El módulo gota a gota es crucial para este estudio. Dado que los pistones pueden moverse a una velocidad muy rápida (por encima de las 3.000 rpm), es difícil crear una fina película de lubricante sumergiendo la muestra. Para remediar este problema, el módulo gota a gota es capaz de aplicar una cantidad constante de lubricante en la superficie de la falda del pistón.

La aplicación de lubricante fresco también elimina la preocupación de que los contaminantes de desgaste desalojados influyan en las propiedades del lubricante.

NANOVEA T2000

Tribómetro de alta carga

OBJETIVO DE MEDICIÓN

En este informe se estudiarán las interfaces falda del pistón-lubricante-guarnición del cilindro. Las interfaces se reproducirán mediante la realización de una prueba de desgaste alternativo lineal con módulo de lubricante gota a gota.

El lubricante se aplicará a temperatura ambiente y en condiciones de calentamiento para comparar el arranque en frío y las condiciones óptimas de funcionamiento. Se observará el COF y la tasa de desgaste para comprender mejor el comportamiento de las interfaces en aplicaciones reales.

PARÁMETROS DE LA PRUEBA

para las pruebas tribológicas de los pistones

CARGA ............................ 100 N

DURACIÓN DE LA PRUEBA ............................ 30 minutos

VELOCIDAD ............................ 2000 rpm

AMPLITUD ............................ 10 mm

DISTANCIA TOTAL ............................ 1200 m

REVESTIMIENTO DE LA FALDA ............................ Moly-grafito

MATERIAL DE LOS PINES ............................ Aleación de aluminio 5052

DIÁMETRO DEL PIN ............................ 10 mm

LUBRICANTE ............................ Aceite de motor (10W-30)

APROX. CAUDAL ............................ 60 mL/min

TEMPERATURA ............................ Temperatura ambiente y 90°C

RESULTADOS DE LA PRUEBA DE RECIPROCIDAD LINEAL

En este experimento, se utilizó el A5052 como contramaterial. Aunque los bloques de motor suelen estar hechos de aluminio fundido, como el A356, el A5052 tiene propiedades mecánicas similares al A356 para este ensayo de simulación [2].

En las condiciones de prueba, se produjo un desgaste significativo
observado en la falda del pistón a temperatura ambiente
en comparación con los 90°C. Los profundos arañazos observados en las muestras sugieren que el contacto entre el material estático y la falda del pistón se produce con frecuencia a lo largo de la prueba. La alta viscosidad a temperatura ambiente puede impedir que el aceite llene completamente los huecos en las interfaces y cree un contacto metal-metal. A mayor temperatura, el aceite se diluye y puede fluir entre el bulón y el pistón. Como resultado, se observa un desgaste significativamente menor a mayor temperatura. La FIGURA 5 muestra que un lado de la cicatriz de desgaste se desgastó mucho menos que el otro. Esto se debe probablemente a la ubicación de la salida de aceite. El espesor de la película de lubricante era más grueso en un lado que en el otro, lo que provocó un desgaste desigual.

 

 

[2] "Aluminio 5052 frente a aluminio 356.0". MakeItFrom.com, makeitfrom.com/compare/5052-O-Aluminum/A356.0-SG70B-A13560-Cast-Aluminum

El COF de las pruebas tribológicas lineales alternativas puede dividirse en un paso alto y un paso bajo. El paso alto se refiere a la muestra que se mueve en la dirección de avance, o positiva, y el paso bajo se refiere a la muestra que se mueve en la dirección inversa, o negativa. Se observó que el COF medio del aceite RT era inferior a 0,1 en ambas direcciones. El COF medio entre pasadas fue de 0,072 y 0,080. Se observó que el COF medio del aceite a 90°C era diferente entre pasadas. Se observaron valores medios de COF de 0,167 y 0,09. La diferencia en el COF es una prueba adicional de que el aceite sólo pudo mojar adecuadamente un lado del pasador. Se obtuvo un COF elevado cuando se formó una película gruesa entre el bulón y la falda del pistón debido a que se produjo una lubricación hidrodinámica. Se observa un COF más bajo en la otra dirección cuando se produce una lubricación mixta. Para obtener más información sobre la lubricación hidrodinámica y la lubricación mixta, visite nuestra nota de aplicación en Curvas Stribeck.

Tabla 1: Resultados de la prueba de desgaste lubricado de los pistones.

FIGURA 1: Gráficos COF para la prueba de desgaste del aceite a temperatura ambiente A perfil bruto B paso alto C paso bajo.

FIGURA 2: Gráficos COF para la prueba de aceite de desgaste a 90°C A perfil bruto B paso alto C paso bajo.

FIGURA 3: Imagen óptica de la cicatriz de desgaste de la prueba de desgaste del aceite de motor RT.

FIGURA 4: Volumen de un análisis de la cicatriz de desgaste de la prueba de desgaste del aceite de motor RT.

FIGURA 5: Perfilometría de la cicatriz de desgaste de la prueba de desgaste del aceite de motor RT.

FIGURA 6: Imagen óptica de la cicatriz de desgaste de la prueba de desgaste del aceite de motor a 90°C

FIGURA 7: Volumen de un análisis de la cicatriz de desgaste de la prueba de desgaste del aceite de motor a 90°C.

FIGURA 8: Perfilometría de la cicatriz de desgaste de la prueba de desgaste del aceite de motor a 90°C.

CONCLUSIÓN

Se han realizado pruebas de desgaste lineal lubricado en un pistón para simular lo que ocurre en un
motor operativo en la vida real. La interfaz entre la falda del pistón, el lubricante y la camisa del cilindro es crucial para el funcionamiento de un motor. El espesor del lubricante en la interfaz es responsable de la pérdida de energía debida a la fricción o al desgaste entre la falda del pistón y la camisa. Para optimizar el motor, el espesor de la película debe ser lo más fino posible sin que la falda del pistón y la camisa se toquen. El reto, sin embargo, es cómo los cambios de temperatura, velocidad y fuerza afectarán a las interfaces P-L-C.

Con su amplia gama de carga (hasta 2000 N) y velocidad (hasta 15000 rpm), el tribómetro NANOVEA T2000 es capaz de simular diferentes condiciones posibles en un motor. Los posibles estudios futuros sobre este tema incluyen cómo se comportarán las interfaces P-L-C bajo diferentes cargas constantes, cargas oscilantes, temperatura del lubricante, velocidad y método de aplicación del lubricante. Estos parámetros pueden ajustarse fácilmente con el tribómetro NANOVEA T2000 para obtener una comprensión completa de los mecanismos de las interfaces falda del pistón-lubricante-guarnición del cilindro.

AHORA, HABLEMOS DE SU SOLICITUD

Medición continua de la curva Stribeck con el tribómetro Pin-on-Disk

Introducción:

Cuando se aplica la lubricación para reducir el desgaste/fricción de las superficies en movimiento, el contacto de lubricación en la interfaz puede pasar por varios regímenes, como la lubricación límite, la mixta y la hidrodinámica. El espesor de la película de fluido desempeña un papel importante en este proceso, determinado principalmente por la viscosidad del fluido, la carga aplicada en la interfaz y la velocidad relativa entre las dos superficies. La forma en que los regímenes de lubricación reaccionan al rozamiento se muestra en lo que se denomina curva de Stribeck [1-4].

En este estudio demostramos por primera vez la capacidad de medir una curva de Stribeck continua. Usando la Nanovea Tribómetro Control avanzado de velocidad continuo, de 15000 a 0,01 rpm, en 10 minutos el software proporciona directamente una curva Stribeck completa. La configuración inicial simple solo requiere que los usuarios seleccionen el modo de rampa exponencial e ingresen las velocidades inicial y final, en lugar de tener que realizar múltiples pruebas o programar un procedimiento paso a paso a diferentes velocidades que requieren unir datos para las mediciones de curvas de Stribeck convencionales. Este avance proporciona datos precisos durante la evaluación del régimen de lubricante y reduce sustancialmente el tiempo y el costo. La prueba muestra un gran potencial para ser utilizada en diferentes aplicaciones de ingeniería industrial.

 

Haga clic para leer más.

Comparación de gotas oculares lubricantes con el tribómetro Nanovea T50

La importancia de probar las soluciones de gotas para los ojos

Los colirios se utilizan para aliviar los síntomas causados por una serie de problemas oculares. Por ejemplo, pueden utilizarse para tratar pequeñas irritaciones oculares (por ejemplo, sequedad y enrojecimiento), retrasar la aparición del glaucoma o tratar infecciones. Los colirios que se venden sin receta médica se utilizan principalmente para tratar la sequedad. Su eficacia para lubricar el ojo puede compararse y medirse con una prueba de coeficiente de fricción.
 
La sequedad ocular puede deberse a un amplio abanico de factores, por ejemplo, la fatiga ocular causada por el ordenador o la exposición a condiciones climáticas extremas. Unas buenas gotas lubricantes ayudan a mantener y complementar la humedad de la superficie externa de los ojos. De este modo, se alivian las molestias, el ardor o la irritación y el enrojecimiento asociados a la sequedad ocular. Al medir el coeficiente de fricción (COF) de una solución de gotas oculares, se puede determinar su eficacia lubricante y su comparación con otras soluciones.

Objetivo de medición

En este estudio, se midió el coeficiente de fricción (COF) de tres soluciones lubricantes de gotas para los ojos, utilizando la configuración pin-on-disk en el tribómetro Nanovea T50.

Procedimiento de prueba y procedimientos

Se aplicó una clavija esférica de 6 mm de diámetro hecha de alúmina a un portaobjetos de vidrio con cada solución de gotas oculares actuando como lubricante entre las dos superficies. Los parámetros de la prueba utilizados para todos los experimentos se resumen en la Tabla 1 a continuación.

Resultados y discusión

Los valores máximos, mínimos y medios del coeficiente de fricción de las tres soluciones de colirio probadas se tabulan en la Tabla 2. Los gráficos de COF v. Revoluciones para cada solución de colirio se representan en las figuras 2-4. El COF durante cada prueba se mantuvo relativamente constante durante la mayor parte de la duración total de la prueba. La muestra A tuvo el COF medio más bajo, lo que indica que tiene las mejores propiedades de lubricación.

 

Conclusión:

En este estudio mostramos la capacidad del tribómetro Nanovea T50 para medir el coeficiente de fricción de tres soluciones de colirio. Basándonos en estos valores, mostramos que la muestra A tenía un menor coeficiente de fricción y, por tanto, presenta una mejor lubricación en comparación con las otras dos muestras.

Nanovea Los Tribómetros ofrece pruebas de desgaste y fricción precisas y repetibles utilizando módulos lineales y rotativos que cumplen con ISO y ASTM. También proporciona módulos opcionales de tribocorrosión, lubricación y desgaste a alta temperatura disponibles en un sistema preintegrado. Esta versatilidad permite a los usuarios simular mejor el entorno de aplicación real y mejorar la comprensión fundamental del mecanismo de desgaste y las características tribológicas de diversos materiales.

AHORA, HABLEMOS DE SU SOLICITUD

Rendimiento de la rigidez de las cerdas del cepillo mediante el tribómetro

Los pinceles se encuentran entre las herramientas más básicas y utilizadas del mundo. Pueden utilizarse para eliminar material (cepillo de dientes, cepillo arqueológico, cepillo de amoladora de banco), aplicar material (cepillo de pintura, cepillo de maquillaje, cepillo de dorado), peinar filamentos o añadir un dibujo. Debido a las fuerzas mecánicas y abrasivas que se ejercen sobre ellos, los cepillos deben ser sustituidos constantemente tras un uso moderado. Por ejemplo, los cabezales de los cepillos de dientes deben sustituirse cada tres o cuatro meses debido a que se deshilachan como consecuencia del uso repetido. Si los filamentos de las fibras del cepillo de dientes son demasiado rígidos, se corre el riesgo de desgastar el diente real en lugar de la placa blanda. Hacer las fibras del cepillo de dientes demasiado blandas hace que el cepillo pierda su forma más rápidamente. Es necesario comprender el cambio de curvatura del cepillo, así como el desgaste y el cambio general de la forma de los filamentos en diferentes condiciones de carga para diseñar cepillos que cumplan mejor su aplicación.

Rendimiento de la rigidez de las cerdas del cepillo mediante el tribómetro