الولايات المتحدة الأمريكية / العالمية: 9292-461-949-1+
أوروبا: 794-3052-011-39+
تراسل معنا

التصنيف: اختبار بروفيلوميتري

 

فحص خشونة السطح للأقراص الصيدلانية

أقراص صيدلانية

فحص الخشونة باستخدام مقاييس بروفيلومترية ثلاثية الأبعاد

مؤلف:

جوسلين اسبارزا

مقدمة

تعد الأقراص الصيدلانية أكثر الجرعات الطبية شيوعًا المستخدمة اليوم. يتكون كل قرص من مزيج من المواد الفعالة (المواد الكيميائية التي تنتج تأثيرًا دوائيًا) والمواد غير النشطة (المتحللة ، والموثق ، والمزلقات ، والمخفف - عادة في شكل مسحوق). ثم يتم ضغط المواد الفعالة وغير النشطة أو تشكيلها في مادة صلبة. بعد ذلك ، بناءً على مواصفات الشركة المصنعة ، تكون الأقراص إما مغلفة أو غير مطلية.

لكي تكون فعالة ، يجب أن تتبع أغلفة الأجهزة اللوحية الخطوط الدقيقة للشعارات أو الأحرف المنقوشة على الأجهزة اللوحية ، ويجب أن تكون ثابتة وقوية بما يكفي لتحمل التعامل مع الجهاز اللوحي ، ويجب ألا تتسبب في التصاق الأقراص ببعضها البعض أثناء الطلاء عملية. تحتوي الأقراص الحالية عادةً على طلاء متعدد السكاريد وبوليمر يحتوي على مواد مثل الأصباغ والملدنات. النوعان الأكثر شيوعًا لطلاء المائدة هما طلاء الفيلم وطلاء السكر. مقارنةً بالطلاء بالسكر ، تكون طبقات الطلاء أقل حجمًا وأكثر متانة وتستغرق وقتًا أقل في التحضير والتطبيق. ومع ذلك ، فإن طلاء الفيلم يواجه صعوبة أكبر في إخفاء مظهر الجهاز اللوحي.

تعتبر أغطية الأقراص ضرورية للحماية من الرطوبة ، وإخفاء طعم المكونات ، وجعل الأقراص أسهل في البلع. الأهم من ذلك ، أن طلاء الجهاز اللوحي يتحكم في الموقع ومعدل إطلاق الدواء.

هدف القياس

في هذا التطبيق ، نستخدم ملف ملف التعريف البصري NANOVEA وبرامج الجبال المتقدمة لقياس وتقدير تضاريس الحبوب المضغوطة ذات الأسماء التجارية المختلفة (1 مغلفة و 2 غير مصقولة) لمقارنة خشونة سطحها.

من المفترض أن يكون أدفيل (المطلي) أقل خشونة للسطح بسبب الطلاء الواقي الذي يحتوي عليه.

نانوفيا

HS2000

شروط الاختبار

تم مسح ثلاث دفعات من الأقراص المضغوطة ذات العلامات التجارية الصيدلانية باستخدام Nanovea HS2000
باستخدام مستشعر الخط عالي السرعة لقياس معلمات خشونة السطح المختلفة وفقًا لمعيار ISO 25178.

منطقة المسح

2 × 2 مم

دقة المسح الجانبي

5 × 5 ميكرومتر

وقت الفحص

4 ثوانى

عينات

النتائج والمناقشة

بعد مسح الأجهزة اللوحية ، تم إجراء دراسة خشونة السطح باستخدام برنامج تحليل الجبال المتقدم لحساب متوسط السطح ، ومتوسط الجذر التربيعي ، والحد الأقصى لارتفاع كل جهاز لوحي.

تدعم القيم المحسوبة افتراض أن Advil لديها خشونة سطح أقل بسبب الطبقة الواقية التي تغلف مكوناتها. يظهر Tylenol أن لديه أعلى خشونة سطح من بين جميع الأقراص الثلاثة المقاسة.

تم إنتاج خريطة ارتفاع ثنائية وثلاثية الأبعاد لتضاريس سطح كل لوح والتي توضح توزيعات الارتفاع المقاسة. تم اختيار واحد من خمسة أجهزة لوحية لتمثيل خرائط الارتفاع لكل علامة تجارية. تشكل خرائط الارتفاع هذه أداة رائعة للكشف البصري عن ميزات السطح البعيدة مثل الحفر أو القمم.

خاتمة

في هذه الدراسة ، قمنا بتحليل ومقارنة الخشونة السطحية لأقراص دوائية مضغوطة بثلاثة أسماء تجارية: Advil و Tylenol و Excedrin. أثبت أدفيل أن لديه أدنى متوسط خشونة للسطح. يمكن أن يعزى ذلك إلى وجود طلاء برتقالي يغطي الدواء. في المقابل ، يفتقر كل من Excedrin و Tylenol إلى الطلاءات ، ومع ذلك ، لا تزال خشونة السطح تختلف عن بعضها البعض. أثبت Tylenol أن لديه أعلى متوسط خشونة سطحية من بين جميع الأقراص المدروسة.

باستخدام نانوفيا HS2000 باستخدام مستشعر الخط عالي السرعة ، تمكنا من قياس 5 أقراص في أقل من دقيقة واحدة. يمكن أن يكون هذا مفيدًا لاختبار مراقبة الجودة لمئات الحبوب في الإنتاج اليوم.

الآن ، لنتحدث عن طلبك

مسامير الأسنان - القياس - الأبعاد - باستخدام - مقياس التشكيل الجانبي ثلاثي الأبعاد

أدوات طب الأسنان: تحليل الأبعاد وخشونة السطح



مقدمة

 

يعد الحصول على أبعاد دقيقة وخشونة سطحية مثالية أمرًا حيويًا لوظيفة براغي الأسنان. تتطلب العديد من أبعاد براغي الأسنان دقة عالية مثل نصف القطر والزوايا والمسافات وارتفاعات الخطوات. يعد فهم خشونة السطح المحلية أمرًا مهمًا أيضًا لأي أداة طبية أو جزء يتم إدخاله داخل جسم الإنسان لتقليل الاحتكاك المنزلق.

 

 

ملف تعريف عدم الاتصال للدراسة الأبعاد

 

نانوفيا ملفات تعريف عدم الاتصال ثلاثية الأبعاد استخدم تقنية لونية تعتمد على الضوء لقياس أي سطح مادي: شفاف أو غير شفاف أو براق أو منتشر أو مصقول أو خشن. على عكس تقنية مسبار اللمس، يمكن لتقنية عدم الاتصال القياس داخل المناطق الضيقة ولن تضيف أي أخطاء جوهرية بسبب التشوه الناجم عن ضغط الطرف على مادة بلاستيكية أكثر ليونة. كما توفر التكنولوجيا المستندة إلى الضوء اللوني دقة جانبية ودقة فائقة في الارتفاع مقارنةً بتقنية تباين التركيز البؤري. يمكن لملفات تعريف Nanovea مسح الأسطح الكبيرة مباشرة دون خياطة وتحديد طول الجزء في بضع ثوانٍ. يمكن قياس النانو من خلال ميزات سطح النطاق الكلي وزوايا السطح العالية نظرًا لقدرة محلل التعريف على قياس الأسطح دون أي خوارزميات معقدة تعالج النتائج.

 

 

هدف القياس

 

في هذا التطبيق، تم استخدام جهاز التعريف البصري Nanovea ST400 لقياس برغي الأسنان على طول الميزات المسطحة والخيطية في قياس واحد. تم حساب خشونة السطح من المساحة المسطحة، وتم تحديد الأبعاد المختلفة للمعالم الملولبة.

 

مراقبة جودة المسمار الأسنان

عينة من المسمار الأسنان التي تم تحليلها بواسطة نانوفيا ملف التعريف البصري.

 

تحليل عينة المسمار الأسنان.

 

نتائج

 

3D السطح

يُظهر العرض ثلاثي الأبعاد وعرض الألوان الزائفة للمسمار السني منطقة مسطحة مع بدء الخيوط على كلا الجانبين. فهو يوفر للمستخدمين أداة مباشرة لمراقبة شكل المسمار بشكل مباشر من زوايا مختلفة. تم استخراج المنطقة المسطحة من المسح الكامل لقياس خشونة سطحها.

 

 

تحليل السطح ثنائي الأبعاد

يمكن أيضًا استخراج ملفات تعريف الخط من السطح لإظهار عرض مقطعي للمسمار. تم استخدام التحليل المحيطي ودراسات ارتفاع الخطوة لقياس الأبعاد الدقيقة في موقع معين على المسمار.

 

 

خاتمة

 

في هذا التطبيق، قمنا بعرض قدرة Nanovea 3D Non-Contact Profiler على حساب خشونة السطح المحلي بدقة وقياس ميزات الأبعاد الكبيرة في مسح واحد.

تُظهر البيانات خشونة سطحية محلية تبلغ 0.9637 ميكرومتر. وجد أن نصف قطر المسمار بين الخيوط هو 1.729 ملم، وكان متوسط ارتفاع الخيوط 0.413 ملم. تم تحديد متوسط الزاوية بين الخيوط بـ 61.3 درجة.

تمثل البيانات الموضحة هنا جزءًا فقط من الحسابات المتوفرة في برنامج التحليل.

 

أُعدت بواسطة
دوانجي لي، دكتوراه، جوناثان توماس، وبيير ليرو

فحص الخشونة في الخط

الكشف الفوري عن الخطأ باستخدام ملفات التعريف المضمنة

يتعلم أكثر

أهمية المحلل في عدم الاتصال لفحص الخشونة على الإنترنت

تنبع العيوب السطحية من معالجة المواد وتصنيع المنتجات. يضمن فحص جودة السطح داخل الخط التحكم الصارم في جودة المنتجات النهائية. النانوفيا مقاييس عدم الاتصال ثلاثية الأبعاد الاستفادة من تقنية البؤر اللونية مع قدرة فريدة لتحديد خشونة العينة دون الاتصال. يمكن تركيب أجهزة استشعار متعددة لمراقبة خشونة وملمس مناطق مختلفة من المنتج في نفس الوقت. تعد عتبة الخشونة المحسوبة في الوقت الفعلي بواسطة برنامج التحليل بمثابة أداة تمرير/فشل سريعة وموثوقة.

هدف القياس

في هذه الدراسة ، تم استخدام نظام ناقل فحص خشونة Nanovea المجهز بجهاز استشعار نقطي لفحص خشونة السطح لعينات الأكريليك وورق الصنفرة. نعرض قدرة Nanovea مقياس ملف تعريف عدم التلامس في توفير فحص سريع وموثوق به للخشونة في خط الإنتاج في الوقت الفعلي.

النتائج والمناقشة

يمكن أن يعمل نظام مقياس ملف تعريف الناقل في وضعين ، وهما وضع الزناد والوضع المستمر. كما هو موضح في الشكل 2 ، يتم قياس خشونة سطح العينات عند مرورها تحت رؤوس ملف التعريف البصري تحت وضع الزناد. بالمقارنة ، يوفر الوضع المستمر قياسًا بدون توقف لخشونة السطح على العينة المستمرة ، مثل الصفائح المعدنية والنسيج. يمكن تركيب مستشعرات بصرية متعددة للملفات التعريفية لمراقبة وتسجيل خشونة مناطق العينة المختلفة.

 

أثناء قياس فحص الخشونة في الوقت الفعلي ، يتم عرض تنبيهات النجاح والفشل على نوافذ البرنامج كما هو موضح في الشكل 4 والشكل 5. عندما تكون قيمة الخشونة ضمن الحدود المحددة ، يتم تمييز الخشونة المقاسة باللون الأخضر. ومع ذلك ، يتحول الإبراز إلى اللون الأحمر عندما تكون خشونة السطح المقاسة خارج نطاق قيم العتبة المحددة. يوفر هذا أداة للمستخدم لتحديد جودة تشطيب سطح المنتج.

في الأقسام التالية ، يتم استخدام نوعين من العينات ، على سبيل المثال أكريليك وورق صنفرة ، لبيان الزناد والنمط المستمر لنظام الفحص.

وضع الزناد: فحص سطح عينة الاكريليك

يتم محاذاة سلسلة من عينات الأكريليك على الحزام الناقل وتتحرك أسفل رأس أداة التعريف البصرية كما هو موضح في الشكل 1. ويظهر عرض اللون الخاطئ في الشكل 6 تغير ارتفاع السطح. تم صقل بعض عينات الأكريليك النهائية التي تشبه المرآة لإنشاء نسيج سطح خشن كما هو موضح في الشكل 6 ب.

نظرًا لأن عينات الأكريليك تتحرك بسرعة ثابتة تحت رأس ملف التعريف البصري ، يتم قياس المظهر الجانبي للسطح كما هو موضح في الشكل 7 والشكل 8. يتم حساب قيمة الخشونة للملف الشخصي المقاس في نفس الوقت ومقارنتها بقيم العتبة. يتم تشغيل تنبيه الفشل الأحمر عندما تكون قيمة الخشونة أعلى من الحد المحدد ، مما يسمح للمستخدمين باكتشاف المنتج المعيب وتحديد موقعه على خط الإنتاج على الفور.

الوضع المستمر: فحص السطح لعينة ورق الصنفرة

خريطة ارتفاع السطح وخريطة توزيع الخشونة وخريطة حد خشونة المرور / الفشل لسطح عينة ورق الصنفرة كما هو موضح في الشكل 9. تحتوي عينة ورق الصنفرة على زوج من القمم الأعلى في الجزء المستخدم كما هو موضح في خريطة ارتفاع السطح. تمثل الألوان المختلفة في لوح التحميل في الشكل 9 ج قيمة خشونة السطح المحلي. تُظهر Roughness Map خشونة متجانسة في المنطقة السليمة لعينة ورق الصنفرة ، بينما يتم تمييز المنطقة المستخدمة باللون الأزرق الداكن ، مما يشير إلى انخفاض قيمة الخشونة في هذه المنطقة. يمكن إعداد عتبة خشونة النجاح / الفشل لتحديد هذه المناطق كما هو موضح في الشكل 9 د.

نظرًا لأن ورق الصنفرة يمر باستمرار أسفل مستشعر ملف التعريف المضمن ، يتم حساب قيمة الخشونة المحلية في الوقت الفعلي وتسجيلها كما هو موضح في الشكل 10. يتم عرض تنبيهات النجاح / الفشل على شاشة البرنامج بناءً على قيم عتبة الخشونة المحددة ، والتي تقدم الخدمة كأداة سريعة وموثوقة لمراقبة الجودة. يتم فحص جودة سطح المنتج في خط الإنتاج في الموقع لاكتشاف المناطق المعيبة في الوقت المناسب.

خاتمة

في هذا التطبيق ، أظهرنا أن مقياس ملف تعريف ناقل Nanovea المجهز بمستشعر بصري لملف التعريف غير متصل يعمل كأداة مراقبة جودة مضمنة موثوقة بفعالية وكفاءة.

يمكن تثبيت نظام الفحص في خط الإنتاج لمراقبة جودة سطح المنتجات في الموقع. تعمل عتبة الخشونة كمعايير يمكن الاعتماد عليها لتحديد جودة سطح المنتجات ، مما يسمح للمستخدمين بملاحظة المنتجات المعيبة في الوقت المناسب. يتم توفير وضعين للفحص ، وهما وضع المشغل والوضع المستمر ، لتلبية متطلبات الفحص على أنواع مختلفة من المنتجات.

تمثل البيانات الموضحة هنا جزءًا فقط من الحسابات المتوفرة في برنامج التحليل. تقيس مقاييس ملف تعريف نانوفيا أي سطح تقريبًا في المجالات بما في ذلك أشباه الموصلات ، والإلكترونيات الدقيقة ، والطاقة الشمسية ، والألياف ، والبصريات ، والسيارات ، والفضاء ، والمعادن ، والآلات ، والطلاء ، والأدوية ، والطب الحيوي ، والبيئة وغيرها الكثير.

الآن ، لنتحدث عن طلبك

اختبار ارتداء الكتلة على الحلقة

أهمية تقييم ارتداء البلوك على الحلبة

التآكل المنزلق هو الفقد التدريجي للمواد الذي ينتج عن انزلاق مادتين ضد بعضهما البعض في منطقة التلامس تحت الحمل. يحدث ذلك حتماً في مجموعة متنوعة من الصناعات التي تعمل فيها الآلات والمحركات ، بما في ذلك السيارات والفضاء والنفط والغاز وغيرها الكثير. تسبب حركة الانزلاق هذه تآكلًا ميكانيكيًا خطيرًا ونقل المواد على السطح ، مما قد يؤدي إلى انخفاض كفاءة الإنتاج أو أداء الماكينة أو حتى تلف الجهاز.
 

 

غالبًا ما يتضمن التآكل المنزلق آليات تآكل معقدة تحدث عند سطح التلامس، مثل تآكل الالتصاق، وتآكل الجسمين، وتآكل ثلاثة أجسام، وتآكل التعب. يتأثر سلوك تآكل المواد بشكل كبير ببيئة العمل، مثل التحميل العادي والسرعة والتآكل والتشحيم. متعدد الاستخدامات تريبومتر التي يمكنها محاكاة ظروف العمل الواقعية المختلفة ستكون مثالية لتقييم التآكل.
يعد اختبار Block-on-Ring (ASTM G77) تقنية مستخدمة على نطاق واسع لتقييم سلوكيات التآكل المنزلق للمواد في ظروف محاكاة مختلفة، ويسمح بتصنيف موثوق لأزواج المواد لتطبيقات احتكاكية محددة.
 
 

 

هدف القياس

في هذا التطبيق ، يقيس جهاز الفحص الميكانيكي Nanovea YS و UTS من عينات الفولاذ المقاوم للصدأ SS304 وعينات سبائك الألومنيوم Al6061 المعدنية. تم اختيار العينات لقيم YS و UTS المعترف بها بشكل شائع والتي توضح موثوقية طرق المسافة البادئة لـ Nanovea.

 

تم تقييم سلوك التآكل المنزلق لكتلة H-30 على حلقة S-10 بواسطة مقياس الاحتكاك الخاص بـ Nanovea باستخدام وحدة Block-on-Ring. كتلة H-30 مصنوعة من فولاذ أداة 01 بصلابة 30HRC، في حين أن الحلقة S-10 مصنوعة من الفولاذ من النوع 4620 بصلابة سطحية 58 إلى 63 HRC وقطر الحلقة ~ 34.98 ملم. تم إجراء اختبارات الكتلة على الحلقة في بيئات جافة ومشحمة لدراسة التأثير على سلوك التآكل. تم إجراء اختبارات التشحيم في الزيوت المعدنية الثقيلة USP. تم فحص مسار التآكل باستخدام Nanovea مقياس عدم الاتصال ثلاثي الأبعاد. يتم تلخيص معلمات الاختبار في الجدول 1. تم تقييم معدل التآكل (K) باستخدام الصيغة K=V/(F×s)، حيث V هو الحجم البالي، F هو الحمل الطبيعي، s هي المسافة المنزلقة.

 

 

النتائج والمناقشة

يقارن الشكل 2 معامل الاحتكاك (COF) لاختبارات Block-on-Ring في البيئات الجافة والمشحمة. تحتوي الكتلة على احتكاك أكبر بكثير في البيئة الجافة مقارنة بالبيئة المشحمة. COF
يتقلب خلال فترة التشغيل في أول 50 ثورة ويصل إلى COF ثابت يبلغ ~ 0.8 لبقية اختبار التآكل في 200 ثورة. بالمقارنة، فإن اختبار Block-on-Ring الذي تم إجراؤه في تشحيم الزيوت المعدنية الثقيلة USP يُظهر COF منخفضًا ثابتًا يبلغ 0.09 طوال اختبار التآكل ذو 500000 ثورة. يقلل زيت التشحيم بشكل كبير من COF بين الأسطح بمقدار 90 مرة تقريبًا.

 

يوضح الشكلان 3 و 4 الصور البصرية والمقاطع العرضية ثنائية الأبعاد لندبات التآكل على الكتل بعد اختبارات التآكل الجافة والمزلقة. يتم سرد أحجام مسار التآكل ومعدلات التآكل في الجدول 2. تُظهر الكتلة الفولاذية بعد اختبار التآكل الجاف بسرعة دوران منخفضة تبلغ 72 دورة في الدقيقة لـ 200 دورة حجم ندبة تآكل كبيرة تبلغ 9.45 مم˙. وبالمقارنة ، فإن اختبار التآكل الذي يتم إجراؤه بسرعة أعلى تبلغ 197 دورة في الدقيقة لـ 500000 دورة في زيوت التشحيم بالزيوت المعدنية ينتج عنه حجم مسار تآكل أصغر بكثير يبلغ 0.03 مم˙.

 


تُظهر الصور الموجودة في ÿgure 3 حدوث تآكل شديد أثناء الاختبارات في الظروف الجافة مقارنة بالتآكل الخفيف الناتج عن اختبار التآكل المزلّق. تعمل الحرارة العالية والاهتزازات الشديدة المتولدة أثناء اختبار التآكل الجاف على تعزيز أكسدة الحطام المعدني مما يؤدي إلى تآكل شديد لثلاثة أجسام. في اختبار التزليق ، يقلل الزيت المعدني من الاحتكاك ويبرد وجه التلامس بالإضافة إلى نقل الحطام الكاشطة الناتج أثناء التآكل. وهذا يؤدي إلى انخفاض كبير في معدل التآكل بمعامل ~ 8 × 10. يوضح هذا الاختلاف الكبير في مقاومة التآكل في بيئات مختلفة أهمية محاكاة التآكل الانزلاقي المناسبة في ظروف الخدمة الواقعية.

 


يمكن أن يتغير سلوك التآكل بشكل كبير عند إدخال تغييرات صغيرة في ظروف الاختبار. إن تعدد استخدامات مقياس النبض في Nanovea يسمح بقياس التآكل في درجات الحرارة العالية ، والتشحيم ، وظروف تريبوكوروسيون. يتيح التحكم الدقيق في السرعة والموضع بواسطة المحرك المتقدم إجراء اختبارات التآكل بسرعات تتراوح من 0.001 إلى 5000 دورة في الدقيقة ، مما يجعله أداة مثالية لمختبرات البحث / الاختبار لفحص التآكل في مختلف الظروف الترايبولوجية.

 

تم فحص حالة سطح العينات بواسطة جهاز القياس البصري غير المتصل بـ Nanovea. يوضح الشكل 5 الشكل المورفولوجي السطحي للحلقات بعد اختبارات التآكل. تتم إزالة شكل الأسطوانة لتقديم أفضل مظهر وخشونة السطح الناتجة عن عملية التآكل المنزلق. حدث تخشين السطح بشكل كبير بسبب عملية الكشط ثلاثية الأجسام أثناء اختبار التآكل الجاف لـ 200 دورة. تظهر الكتلة والحلقة بعد اختبار التآكل الجاف خشونة Ra تبلغ 14.1 و 18.1 ميكرومتر ، على التوالي ، مقارنة بـ 5.7 و 9.1 ميكرومتر على المدى الطويل 500000 - اختبار التآكل المشحم بالثورة بسرعة أعلى. يوضح هذا الاختبار أهمية التشحيم المناسب لتلامس أسطوانة حلقة المكبس. يؤدي التآكل الشديد إلى إتلاف سطح التلامس بسرعة دون تزييت ويؤدي إلى تدهور لا رجعة فيه في جودة الخدمة وحتى كسر المحرك.

 

 

خاتمة

نعرض في هذه الدراسة كيفية استخدام مقياس Tribometer الخاص بـ Nanovea لتقييم سلوك التآكل المنزلق للزوجين المعدنيين الفولاذيين باستخدام وحدة Block-on-Ring التي تتبع معيار ASTM G77. يلعب زيت التشحيم دورًا حاسمًا في خصائص التآكل لزوج المواد. يقلل الزيت المعدني من معدل تآكل كتلة H-30 بعامل ~8×10ˆ وCOF بمقدار ~90 مرة. إن تعدد استخدامات مقياس Tribometer الخاص بـ Nanovea يجعله أداة مثالية لقياس سلوك التآكل في ظل ظروف التشحيم المختلفة ودرجات الحرارة المرتفعة وظروف التآكل الثلاثي.

يقدم مقياس Tribometer من Nanovea اختبارًا دقيقًا ومتكررًا للتآكل والاحتكاك باستخدام الأوضاع الدورانية والخطية المتوافقة مع ISO وASTM، مع وحدات اختيارية للتآكل والتشحيم والتآكل الثلاثي عند درجة الحرارة العالية متوفرة في نظام واحد متكامل مسبقًا. يعد نطاق Nanovea الذي لا مثيل له حلاً مثاليًا لتحديد النطاق الكامل للخصائص الاحتكاكية للطبقات والأغشية والركائز الرقيقة أو السميكة أو الناعمة أو الصلبة.

الآن ، لنتحدث عن طلبك

تحليل المواد المركبة باستخدام قياس الأبعاد ثلاثي الأبعاد

أهمية قياس ملامح عدم الاتصال للمواد المركبة

من الأهمية بمكان أن يتم تقليل العيوب إلى أدنى حد ، لذا فإن المواد المركبة تكون قوية قدر الإمكان في تطبيقات التعزيز. كمواد متباينة الخواص ، فمن الأهمية بمكان أن يكون اتجاه النسج متسقًا للحفاظ على القدرة على التنبؤ بالأداء العالي. تتمتع المواد المركبة بأعلى نسب مقاومة للوزن مما يجعلها أقوى من الفولاذ في بعض الحالات. من المهم الحد من مساحة السطح المكشوفة في المركبات لتقليل الضعف الكيميائي وتأثيرات التمدد الحراري. يعد فحص سطح قياس بروفيلومتر أمرًا بالغ الأهمية لمراقبة جودة إنتاج المواد المركبة لضمان الأداء القوي على مدار فترة خدمة طويلة.

نانوفيا مقياس عدم الاتصال ثلاثي الأبعاد يختلف عن تقنيات قياس السطح الأخرى مثل مجسات اللمس أو قياس التداخل. تستخدم مقاييس ملفات التعريف لدينا اللوني المحوري لقياس أي سطح تقريبًا ويسمح التدريج المفتوح لعينات من أي حجم دون الحاجة إلى إعداد. يتم الحصول على النانو من خلال القياسات الكلية أثناء قياس المظهر الجانبي للسطح مع عدم وجود تأثير من انعكاس العينة أو الامتصاص. تقيس ملفات التعريف لدينا بسهولة أي مادة: شفافة، وغير شفافة، ومرآة، ومنتشرة، ومصقولة، وخشنة مع القدرة المتقدمة على قياس زوايا السطح العالية دون أي معالجة برمجية. توفر تقنية مقياس عدم الاتصال القدرة المثالية وسهلة الاستخدام لتحقيق أقصى قدر من الدراسات السطحية للمواد المركبة؛ إلى جانب فوائد القدرة المدمجة ثنائية وثلاثية الأبعاد.

هدف القياس

قام مقياس ملف التعريف Nanovea HS2000L المستخدم في هذا التطبيق بقياس سطح نسجين من مركبات ألياف الكربون. يتم استخدام خشونة السطح ، وطول النسج ، والتناحي الخواص ، والتحليل النمطي هندسي متكرر ، ومعلمات السطح الأخرى لتوصيف المركبات. تم اختيار المنطقة التي تم قياسها بشكل عشوائي وافترض أنها كبيرة بما يكفي بحيث يمكن مقارنة قيم الخصائص باستخدام برنامج تحليل السطح القوي من Nanovea.

النتائج والمناقشة

تحليل السطح

 
 
 
تحدد معلمات الارتفاع كيف ستكون الأجزاء المركبة الخشنة مع نسبة ألياف إلى مصفوفة منخفضة. تقارن نتائجنا أنواع النسج المختلفة والأقمشة لتحديد معالجة السطح النهائية. يصبح تشطيب السطح أمرًا بالغ الأهمية في التطبيقات التي قد تتدخل فيها الديناميكا الهوائية.
 
الخواص

يظهر الخواص اتجاهية النسج لتحديد قيم الممتلكات المتوقعة. توضح دراستنا كيف يكون المركب ثنائي الاتجاه ~ 60% متناحٍ كما هو متوقع. وفي الوقت نفسه ، يكون المركب أحادي الاتجاه ~ 13% خواص الخواص بسبب الألياف القوية لاتجاه مسار الألياف الأحادية.

تحليل النسج
 

يحدد حجم النسج اتساق التعبئة وعرض الألياف المستخدمة في المركب. توضح دراستنا مدى سهولة قياس حجم النسج وصولاً إلى دقة الميكرون لضمان جودة الأجزاء.

تحليل الملمس

يشير تحليل النسيج للطول الموجي السائد إلى أن حجم الشريط لكلا المركبين يبلغ سمكه 4.27 ميكرون. يحدد تحليل البعد الكسري لسطح الألياف النعومة للعثور على مدى سهولة ضبط الألياف في مصفوفة. البعد الفركتلي للألياف أحادية الاتجاه أعلى من الألياف ثنائية الاتجاه التي قد تؤثر على معالجة المركبات.

خاتمة

في هذا التطبيق ، أظهرنا أن مقياس التشكيل الجانبي عدم الاتصال Nanovea HS2000L يميز بدقة السطح الليفي للمواد المركبة. لقد ميزنا الاختلافات بين أنواع نسج ألياف الكربون مع معلمات الارتفاع والتناحي وتحليل النسيج وقياسات المسافة إلى جانب المزيد.

تعمل قياسات سطح مقياس البروفايل الخاصة بنا على تخفيف الضرر المركب بدقة وبسرعة مما يقلل من العيوب في الأجزاء ، مما يزيد من قدرة المواد المركبة إلى أقصى حد. تتراوح سرعة مقياس التشكيل الجانبي ثلاثي الأبعاد من Nanovea من <1 مم / ثانية إلى 500 مم / ثانية لملاءمتها في تطبيقات البحث لاحتياجات الفحص عالي السرعة. مقياس النواحي النانوية هو الحل
لأي حاجة قياس مركب.

الآن ، لنتحدث عن طلبك

تقييم الاهتراء والخدش للأسلاك النحاسية المعالجة بالسطح

أهمية تقييم اهتراء وخدش الأسلاك النحاسية

للنحاس تاريخ طويل من الاستخدام في الأسلاك الكهربائية منذ اختراع المغناطيس الكهربائي والتلغراف. يتم استخدام الأسلاك النحاسية في مجموعة واسعة من المعدات الإلكترونية مثل الألواح والعدادات وأجهزة الكمبيوتر وآلات الأعمال والأجهزة بفضل مقاومتها للتآكل وقابلية اللحام والأداء في درجات حرارة مرتفعة تصل إلى 150 درجة مئوية. يستخدم ما يقرب من نصف النحاس المستخرج في تصنيع الأسلاك الكهربائية وموصلات الكابلات.

تعد جودة سطح الأسلاك النحاسية أمرًا بالغ الأهمية لأداء خدمة التطبيق وعمره. قد تؤدي العيوب الدقيقة في الأسلاك إلى التآكل المفرط ، وبدء الشقوق وانتشارها ، وانخفاض الموصلية ، وقابلية اللحام غير الكافية. تزيل المعالجة المناسبة للأسطح النحاسية عيوب السطح الناتجة أثناء سحب الأسلاك مما يحسن مقاومة التآكل والخدش والتآكل. تتطلب العديد من تطبيقات الفضاء مع الأسلاك النحاسية سلوكًا متحكمًا لمنع حدوث عطل غير متوقع في المعدات. هناك حاجة إلى قياسات موثوقة وقابلة للقياس الكمي لتقييم مقاومة التآكل والخدش بشكل صحيح لسطح الأسلاك النحاسية.

 
 

 

هدف القياس

في هذا التطبيق ، نقوم بمحاكاة عملية تآكل متحكم بها لمعالجات مختلفة لأسطح الأسلاك النحاسية. اختبار الخدش يقيس الحمل المطلوب للتسبب في فشل الطبقة السطحية المعالجة. تعرض هذه الدراسة النانوفيا ثلاثي الأبعاد و اختبار ميكانيكي كأدوات مثالية لتقييم ومراقبة جودة الأسلاك الكهربائية.

 

 

إجراءات الاختبار وإجراءاته

تم تقييم معامل الاحتكاك (COF) ومقاومة التآكل لمعالجتين سطحيتين مختلفتين على الأسلاك النحاسية (السلك A والسلك B) بواسطة مقياس Tribometer Nanovea باستخدام وحدة التآكل الترددية الخطية. كرة Al₂O₃ (قطرها 6 مم) هي المادة المضادة المستخدمة في هذا التطبيق. تم فحص مسار التآكل باستخدام Nanovea مقياس عدم الاتصال ثلاثي الأبعاد. يتم تلخيص معلمات الاختبار في الجدول 1.

تم استخدام كرة Al₂O الملساء كمواد مضادة كمثال في هذه الدراسة. يمكن تطبيق أي مادة صلبة ذات شكل وتشطيب سطحي مختلفين باستخدام تركيبات مخصصة لمحاكاة حالة التطبيق الفعلية.

 

 

أجرى اختبار Nanovea الميكانيكي المجهز بقلم Rockwell C الماسي (نصف قطر 100 ميكرومتر) اختبارات خدش الحمل التدريجي على الأسلاك المطلية باستخدام وضع الخدش الصغير. يتم عرض معلمات اختبار الخدش وهندسة الأطراف في الجدول 2.
 

 

 

 

النتائج والمناقشة

ارتداء الأسلاك النحاسية:

يوضح الشكل 2 تطور COF للأسلاك النحاسية أثناء اختبارات التآكل. يُظهر السلك A COF ثابتًا بمقدار 0.4 ~ طوال اختبار التآكل بينما يُظهر السلك B COF من ~ 0.35 في أول 100 دورة ويزيد تدريجياً إلى ~ 0.4.

 

يقارن الشكل 3 مسارات اهتراء الأسلاك النحاسية بعد الاختبارات. قدم مقياس أبعاد عدم التلامس ثلاثي الأبعاد من Nanovea تحليلًا فائقًا للتشكيل التفصيلي لمسارات التآكل. يسمح بتحديد مباشر ودقيق لحجم مسار التآكل من خلال توفير فهم أساسي لآلية التآكل. يحتوي سطح السلك B على تلف كبير في مسار التآكل بعد 600 ثورة من اختبار التآكل. يُظهر العرض ثلاثي الأبعاد لمقياس التشكيل الجانبي إزالة الطبقة المعالجة السطحية من السلك B تمامًا مما أدى إلى تسريع عملية التآكل بشكل كبير. ترك هذا مسار تآكل مسطح على السلك B حيث تتعرض الركيزة النحاسية. قد يؤدي هذا إلى تقصير كبير في عمر المعدات الكهربائية حيث يتم استخدام السلك ب. بالمقارنة ، يُظهر السلك A تآكلًا خفيفًا نسبيًا يظهر من خلال مسار تآكل ضحل على السطح. لم تتم إزالة الطبقة المعالجة بالسطح على السلك A مثل الطبقة الموجودة على السلك B في نفس الظروف.

مقاومة خدش سطح الأسلاك النحاسية:

يوضح الشكل 4 مسارات الخدش على الأسلاك بعد الاختبار. تُظهر الطبقة الواقية للسلك A مقاومة جيدة للخدش. ينفصل عند حمولة تبلغ حوالي 12.6 نيوتن. وبالمقارنة ، فشلت الطبقة الواقية من السلك B عند حمل ~ 1.0 نيوتن.مثل هذا الاختلاف الكبير في مقاومة الخدش لهذه الأسلاك يساهم في أداء التآكل ، حيث يمتلك السلك A تعزيزًا كبيرًا ارتداء المقاومة. يوفر تطور القوة العادية و COF والعمق أثناء اختبارات الخدش الموضحة في الشكل 5 مزيدًا من المعلومات حول فشل الطلاء أثناء الاختبارات.

خاتمة

في هذه الدراسة الخاضعة للرقابة ، عرضنا مقياس تربومتر Nanovea الذي يجري تقييمًا كميًا لمقاومة التآكل للأسلاك النحاسية المعالجة بالسطح ، والاختبار الميكانيكي لـ Nanovea الذي يوفر تقييمًا موثوقًا لمقاومة خدش الأسلاك النحاسية. تلعب معالجة سطح الأسلاك دورًا مهمًا في الخواص الميكانيكية الميكانيكية خلال فترة حياتها. المعالجة المناسبة لسطح السلك مقاومة محسّنة للخدش والاحتكاك بشكل كبير ، وهو أمر بالغ الأهمية في أداء وعمر الأسلاك الكهربائية في البيئات القاسية.

يوفر مقياس الاحتكاك من Nanovea اختبارًا دقيقًا ومتكررًا للتآكل والاحتكاك باستخدام أوضاع دوارة وخطية متوافقة مع ISO و ASTM ، مع تآكل اختياري بدرجة حرارة عالية ، وتزييت ، ووحدات تآكل تريبو متوفرة في نظام واحد متكامل مسبقًا. تعد مجموعة Nanovea التي لا مثيل لها حلاً مثاليًا لتحديد النطاق الكامل للخصائص الترايبولوجية للطلاءات والأغشية والركائز الرقيقة أو السميكة أو الناعمة أو الصلبة.

الآن ، لنتحدث عن طلبك

تحميل ديناميكي ترايبولوجي

تحميل ديناميكي ترايبولوجي

مقدمة

يحدث التآكل في كل قطاع صناعي تقريبًا ويفرض تكاليف تبلغ ~ 0.75% من الناتج المحلي الإجمالي 1. تعتبر أبحاث الترايبولوجي أمرًا حيويًا في تحسين كفاءة الإنتاج وأداء التطبيق ، فضلاً عن الحفاظ على المواد والطاقة والبيئة. يحدث الاهتزاز والتذبذب حتمًا في مجموعة واسعة من التطبيقات الترايبولوجية. يعمل الاهتزاز الخارجي المفرط على تسريع عملية التآكل ويقلل من أداء الخدمة مما يؤدي إلى أعطال كارثية للأجزاء الميكانيكية.

تطبق مقاييس الحمل الميتة التقليدية أحمالًا عادية حسب أوزان الكتلة. لا تقصر تقنية التحميل هذه خيارات التحميل على حمل ثابت فحسب ، بل إنها تخلق أيضًا اهتزازات شديدة لا يمكن التحكم فيها عند الأحمال والسرعات العالية مما يؤدي إلى تقييمات محدودة وغير متسقة لسلوك التآكل. من المستحسن إجراء تقييم موثوق لتأثير التذبذب المتحكم فيه على سلوك تآكل المواد في البحث والتطوير ومراقبة الجودة في التطبيقات الصناعية المختلفة.

حمولة عالية رائدة من Nanovea تريبومتر يتمتع بقدرة تحميل قصوى تبلغ 2000 نيوتن مع نظام تحكم ديناميكي في الحمل. يمكّن نظام تحميل الهواء المضغوط الهوائي المتقدم المستخدمين من تقييم السلوك الاحتكاكي للمادة تحت الأحمال العادية العالية مع ميزة تخميد الاهتزازات غير المرغوب فيها التي تنشأ أثناء عملية التآكل. لذلك، يتم قياس الحمل مباشرة دون الحاجة إلى النوابض العازلة المستخدمة في التصميمات القديمة. تطبق وحدة التحميل المتأرجحة بمغناطيس كهربائي متوازي تذبذبًا يتم التحكم فيه جيدًا بالسعة المطلوبة حتى 20 نيوتن وتردد يصل إلى 150 هرتز.

يتم قياس الاحتكاك بدقة عالية مباشرة من القوة الجانبية المطبقة على الحامل العلوي. تتم مراقبة الإزاحة في الموقع، مما يوفر نظرة ثاقبة لتطور سلوك التآكل لعينات الاختبار. يمكن أيضًا إجراء اختبار التآكل تحت تحميل التذبذب المتحكم فيه في بيئات التآكل ودرجة الحرارة المرتفعة والرطوبة والتشحيم لمحاكاة ظروف العمل الحقيقية للتطبيقات الاحتكاكية. متكاملة عالية السرعة مقياس عدم الاتصال يقوم تلقائيًا بقياس شكل مسار التآكل وحجم التآكل في بضع ثوانٍ.

هدف القياس

في هذه الدراسة ، نعرض قدرة Nanovea T2000 Dynamic Load Tribometer في دراسة السلوك التراثي لعينات الطلاء والمعادن المختلفة في ظل ظروف تحميل متذبذبة محكومة.

 

إجراء الاختبار

تم تقييم السلوك الترابيولوجي ، على سبيل المثال معامل الاحتكاك ، COF ، ومقاومة التآكل لطلاء مقاوم للتآكل بسمك 300 ميكرومتر ومقارنته بواسطة Nanovea T2000 Tribometer بمقياس ترايب للحمل الميت التقليدي باستخدام دبوس على إعداد القرص باتباع ASTM G992.

تم تقييم العينات المطلية بالنحاس والتين المنفصلة مقابل كرة Al₂0₃ مقاس 6 مم تحت تذبذب متحكم فيه بواسطة وضع احتكاك التحميل الديناميكي لمقياس Tribometer Nanovea T2000.

تم تلخيص معلمات الاختبار في الجدول 1.

يقوم مقياس التآكل المدمج ثلاثي الأبعاد المزود بمستشعر خط بمسح مسار التآكل تلقائيًا بعد الاختبارات ، مما يوفر قياس حجم التآكل الأكثر دقة في ثوانٍ.

النتائج والمناقشة

 

نظام التحميل الهوائي مقابل نظام الحمولة الميتة

 

تتم مقارنة السلوك الترايبولوجي للطلاء المقاوم للاهتراء باستخدام Nanovea T2000 Tribometer مع مقياس الضغط التقليدي للحمل الميت (DL). يظهر تطور COF للطلاء في الشكل 2. نلاحظ أن الطلاء يعرض قيمة COF قابلة للمقارنة تبلغ 0.6 ~ أثناء اختبار التآكل. ومع ذلك ، تشير الأشكال الجانبية العشرين للمقطع العرضي في مواقع مختلفة من مسار التآكل في الشكل 3 إلى أن الطلاء تعرض لتآكل أكثر شدة في ظل نظام الحمل الميت.

تم إنشاء اهتزازات شديدة من خلال عملية التآكل لنظام الحمولة الميتة عند التحميل والسرعة العالية. يؤدي الضغط المركّز الهائل على وجه التلامس جنبًا إلى جنب مع سرعة الانزلاق العالية إلى خلق وزن كبير واهتزاز هيكل يؤدي إلى تآكل متسارع. يطبق مقياس تربومتر الحمل الميت التقليدي الحمل باستخدام أوزان الكتلة. هذه الطريقة موثوقة في أحمال التلامس المنخفضة في ظروف التآكل الخفيف ؛ ومع ذلك ، في ظل ظروف التآكل الشديدة في الأحمال والسرعات العالية ، يؤدي الاهتزاز الكبير إلى ارتداد الأوزان بشكل متكرر ، مما يؤدي إلى مسار تآكل غير متساوٍ مما يتسبب في تقييم ترايبولوجي غير موثوق به. معدل التآكل المحسوب هو 8.0 ± 2.4 × 10-4 مم 3 / نيوتن متر ، مما يدل على معدل تآكل مرتفع وانحراف معياري كبير.

صُمم مقياس الاحتكاك Nanovea T2000 بنظام تحكم ديناميكي في التحميل لتخميد التذبذبات. يطبق الحمل العادي بهواء مضغوط مما يقلل الاهتزاز غير المرغوب فيه الناتج أثناء عملية التآكل. بالإضافة إلى ذلك ، يضمن التحكم النشط في تحميل الحلقة المغلقة تطبيق حمل ثابت طوال اختبار التآكل ويتبع القلم تغيير عمق مسار التآكل. يتم قياس ملف مسار تآكل أكثر اتساقًا بشكل ملحوظ كما هو موضح في الشكل 3 أ ، مما يؤدي إلى معدل تآكل منخفض يبلغ 3.4 ± 0.5 × 10-4 مم 3 / نيوتن متر.

يؤكد تحليل مسار التآكل الموضح في الشكل 4 أن اختبار التآكل الذي تم إجراؤه بواسطة نظام تحميل الهواء المضغوط الهوائي لمقياس Nanovea T2000 يخلق مسار تآكل أكثر سلاسة واتساقًا مقارنةً بمقياس الحمل الميت التقليدي. بالإضافة إلى ذلك ، يقيس مقياس الانحراف Nanovea T2000 إزاحة القلم أثناء عملية التآكل مما يوفر مزيدًا من المعلومات حول تقدم سلوك التآكل في الموقع.

 

 

التذبذب المتحكم فيه عند اهتراء عينة النحاس

تمكّن وحدة المغناطيس الكهربائي ذات التحميل المتذبذب المتوازي في Nanovea T2000 Tribometer المستخدمين من التحقيق في تأثير السعة الخاضعة للتحكم وتذبذبات التردد على سلوك تآكل المواد. يتم تسجيل COF لعينات النحاس في الموقع كما هو موضح في الشكل 6. تُظهر عينة النحاس COF ثابتًا بمقدار 0.3 تقريبًا أثناء القياس الأول 330 ثورة ، مما يدل على تشكيل اتصال ثابت في الواجهة ومسار تآكل سلس نسبيًا . مع استمرار اختبار التآكل ، يشير تباين COF إلى حدوث تغيير في آلية التآكل. بالمقارنة ، تُظهر اختبارات التآكل تحت 5 N تذبذب يتم التحكم في السعة عند 50 N سلوك تآكل مختلف: يزيد COF على الفور في بداية عملية التآكل ، ويظهر تباينًا كبيرًا خلال اختبار التآكل. يشير هذا السلوك لـ COF إلى أن التذبذب المفروض في الحمل الطبيعي يلعب دورًا في حالة الانزلاق غير المستقرة عند جهة الاتصال.

يقارن الشكل 7 شكل مسار التآكل المقاس بواسطة مقياس التشكيل البصري المتكامل غير المتصل. يمكن ملاحظة أن عينة النحاس تحت سعة تذبذب مضبوطة تبلغ 5 نيوتن تظهر مسار تآكل أكبر بكثير بحجم 1.35 × 109 ميكرومتر 3 ، مقارنة بـ 5.03 × 108 ميكرومتر في ظل عدم وجود تذبذب مفروض. يعمل التذبذب المتحكم فيه على تسريع معدل التآكل بشكل كبير بعامل ~ 2.7 ، مما يُظهر التأثير الحاسم للتذبذب على سلوك التآكل.

 

التذبذب المتحكم فيه عند اهتراء طلاء TiN

يظهر في الشكل 8. COF ومسارات التآكل لعينة طلاء TiN. يُظهر طلاء TiN سلوكيات تآكل مختلفة بشكل كبير تحت التذبذب كما يتضح من تطور COF أثناء الاختبارات. يُظهر طلاء TiN ثابت COF بمقدار 0.3 ~ بعد فترة التشغيل في بداية اختبار التآكل ، بسبب التلامس الانزلاقي المستقر عند السطح البيني بين طلاء TiN وكرة Al₂O. ومع ذلك ، عندما يبدأ طلاء TiN بالفشل ، تخترق كرة Al₂O من خلال الطلاء وتنزلق ضد الركيزة الفولاذية الجديدة تحتها. يتم إنشاء كمية كبيرة من حطام طلاء TiN الصلب في مسار التآكل في نفس الوقت ، مما يؤدي إلى تآكل انزلاقي ثابت بجسمين إلى تآكل تآكل ثلاثي الأجسام. يؤدي مثل هذا التغيير في خصائص الزوجين الماديين إلى زيادة الاختلافات في تطور COF. يعمل التذبذب المفروض 5 N و 10 N على تسريع فشل طلاء TiN من حوالي 400 دورة إلى أقل من 100 دورة. تتفق مسارات التآكل الأكبر على عينات طلاء TiN بعد اختبارات التآكل تحت التذبذب المتحكم فيه مع مثل هذا التغيير في COF.

خاتمة

يتمتع نظام التحميل الهوائي المتقدم لمقياس Nanovea T2000 بميزة جوهرية كمثبط اهتزاز سريع بشكل طبيعي مقارنة بأنظمة الأحمال الميتة التقليدية. هذه الميزة التكنولوجية للأنظمة الهوائية صحيحة مقارنة بالأنظمة التي يتم التحكم فيها بالحمل والتي تستخدم مجموعة من المحركات المؤازرة والينابيع لتطبيق الحمل. تضمن هذه التقنية تقييم التآكل الموثوق به والتحكم فيه بشكل أفضل عند الأحمال العالية كما هو موضح في هذه الدراسة. بالإضافة إلى ذلك ، يمكن لنظام تحميل الحلقة المغلقة النشطة تغيير الحمل العادي إلى القيمة المطلوبة أثناء اختبارات التآكل لمحاكاة تطبيقات الحياة الواقعية التي تظهر في أنظمة الفرامل.

بدلاً من التأثير من ظروف الاهتزاز غير المتحكم فيها أثناء الاختبارات ، أظهرنا أن Nanovea T2000 Dynamic-Load Tribometer يمكّن المستخدمين من التقييم الكمي للسلوكيات الترايبولوجية للمواد في ظل ظروف تذبذب محكومة مختلفة. تلعب الاهتزازات دورًا مهمًا في سلوك التآكل لعينات طلاء المعدن والسيراميك.

توفر وحدة التحميل المتذبذب الكهرومغناطيسي المتوازي اهتزازات يتم التحكم فيها بدقة عند السعات والترددات المحددة ، مما يسمح للمستخدمين بمحاكاة عملية التآكل في ظل ظروف الحياة الواقعية عندما تكون الاهتزازات البيئية غالبًا عاملاً مهمًا. في حالة وجود تذبذبات مفروضة أثناء التآكل ، تُظهر عينات طلاء Cu و TiN زيادة كبيرة في معدل التآكل. يعد تطور معامل الاحتكاك وإزاحة القلم المقاس في الموقع مؤشرات مهمة لأداء المادة أثناء التطبيقات الترايبولوجية. يوفر مقياس التشكيل الجانبي غير المتصل ثلاثي الأبعاد أداة لقياس حجم التآكل بدقة وتحليل الشكل التفصيلي لمسارات التآكل في ثوانٍ ، مما يوفر مزيدًا من التبصر في الفهم الأساسي لآلية التآكل.

تم تجهيز T2000 بمحرك عزم دوران عالي الجودة وعالي الضبط ذاتيًا مع سرعة داخلية 20 بت ومشفّر موضع خارجي 16 بت. إنه يتيح لمقياس الترايبوميتر توفير نطاق لا مثيل له من سرعات الدوران من 0.01 إلى 5000 دورة في الدقيقة والتي يمكن أن تتغير في القفزات التدريجية أو بمعدلات مستمرة. على عكس الأنظمة التي تستخدم مستشعر عزم الدوران الموجود في الأسفل ، يستخدم Nanovea Tribometer أعلى خلية تحميل عالية الدقة لقياس قوى الاحتكاك بدقة وبشكل منفصل.

تقدم Nanovea Tribometer اختبارات تآكل واحتكاك دقيقة وقابلة للتكرار باستخدام أوضاع دوارة وخطية متوافقة مع ISO و ASTM (بما في ذلك اختبارات 4 كرات ، وغسالة دفع ، واختبارات كتلة على الحلقة) ، مع تآكل اختياري عالي درجة الحرارة ، وتزييت ، ووحدات تآكل تريبو متوفرة في واحد مسبق. -نظام متكامل. تعد مجموعة Nanovea T2000 التي لا مثيل لها حلاً مثاليًا لتحديد النطاق الكامل للخصائص الترايبولوجية للطلاء الرقيق أو السميك ، واللين أو الصلب ، والأغشية ، والركائز.

الآن ، لنتحدث عن طلبك

طلاء تحليل قشر البرتقال باستخدام مقياس ثلاثي الأبعاد

طلاء تحليل قشر البرتقال باستخدام مقياس ثلاثي الأبعاد

مقدمة

يؤثر حجم وتكرار الهياكل السطحية على الركائز على جودة الطلاء اللامع. يمكن أن يتطور نسيج قشر البرتقال ، الذي سمي على اسم مظهره ، من تأثير الركيزة وتقنية تطبيق الطلاء. عادة ما يتم قياس مشاكل النسيج من خلال التموج وطول الموجة والتأثير البصري الذي تحدثه على الطلاء اللامع. تؤدي القوام الأصغر إلى تقليل اللمعان بينما تؤدي القوام الأكبر إلى ظهور تموجات مرئية على السطح المطلي. إن فهم تطور هذه القوام وعلاقته بالركائز والتقنيات أمر بالغ الأهمية لمراقبة الجودة.

أهمية قياس الملامح لقياس النسيج

على عكس الأدوات التقليدية ثنائية الأبعاد المستخدمة لقياس النسيج اللامع ، يوفر القياس ثلاثي الأبعاد غير الملامس بسرعة صورة ثلاثية الأبعاد تُستخدم لفهم خصائص السطح مع القدرة الإضافية على استكشاف مجالات الاهتمام بسرعة. بدون السرعة والمراجعة ثلاثية الأبعاد ، ستعتمد بيئة مراقبة الجودة فقط على المعلومات ثنائية الأبعاد التي توفر القليل من القدرة على التنبؤ بالسطح بأكمله. يتيح فهم القوام بالأبعاد الثلاثية أفضل اختيار لتدابير المعالجة والتحكم. يعتمد ضمان مراقبة الجودة لمثل هذه المعلمات بشكل كبير على فحص قابل للقياس الكمي وقابل للتكرار وموثوق. نانوفيا 3D عدم الاتصال بروفایلومتر استخدم تقنية (كنفوكل) اللونية للحصول على قدرة فريدة لقياس الزوايا الحادة التي تم العثور عليها أثناء القياس السريع. تنجح مقاييس ملف تعريف نانوفيا حيث تفشل التقنيات الأخرى في توفير بيانات موثوقة بسبب ملامسة المسبار أو اختلاف السطح أو الزاوية أو الانعكاسية.

هدف القياس

في هذا التطبيق ، يقيس Nanovea HS2000L ملمس قشر البرتقال للطلاء اللامع. هناك معلمات سطحية لا حصر لها يتم حسابها تلقائيًا من مسح السطح ثلاثي الأبعاد. نقوم هنا بتحليل سطح ثلاثي الأبعاد ممسوح ضوئيًا من خلال تحديد خصائص نسيج قشر برتقال الطلاء.

النتائج والمناقشة

مقياس Nanovea HS2000L الخواص والارتفاع لطلاء قشر البرتقال. حدد نسيج قشر البرتقال اتجاه النمط العشوائي بـ 94.4%. تحدد معلمات الارتفاع النسيج بفارق ارتفاع يبلغ 24.84 ميكرون.

منحنى نسبة الاتجاه في الشكل 4 هو تمثيل رسومي لتوزيع العمق. هذه ميزة تفاعلية داخل البرنامج تتيح للمستخدم عرض التوزيعات والنسب المئوية على أعماق متفاوتة. يعطي المظهر الجانبي المستخرج في الشكل 5 قيم خشونة مفيدة لنسيج قشر البرتقال. يُظهر استخراج الذروة فوق عتبة 144 ميكرون نسيج قشر البرتقال. يتم تعديل هذه المعلمات بسهولة لمناطق أو معلمات أخرى ذات أهمية.

خاتمة

في هذا التطبيق ، يميز مقياس التشكيل الجانبي عدم التلامس Nanovea HS2000L 3D بدقة كلاً من التفاصيل الطبوغرافية والنانومترية لنسيج قشر البرتقال الدهان على الطلاء اللامع. يتم تحديد مجالات الاهتمام من قياسات الأسطح ثلاثية الأبعاد وتحليلها بسرعة باستخدام العديد من القياسات المفيدة (البعد ، نسيج النهاية الخشنة ، طبوغرافيا شكل الشكل ، تسطيح صفحة الالتواء ، مساحة الحجم ، ارتفاع الخطوة ، إلخ.). توفر المقاطع العرضية ثنائية الأبعاد المختارة بسرعة مجموعة كاملة من موارد قياس السطح على نسيج لامع. يمكن تحليل مجالات الاهتمام الخاصة بشكل أكبر باستخدام وحدة AFM المتكاملة. تتراوح سرعة Nanovea 3D Profilometer من <1 مم / ثانية إلى 500 مم / ثانية لملاءمتها في تطبيقات البحث لاحتياجات الفحص عالي السرعة. تحتوي مقاييس ملف التعريف Nanovea 3D على مجموعة واسعة من التكوينات لتناسب تطبيقك.

الآن ، لنتحدث عن طلبك

تحليل سطحي ثلاثي الأبعاد لبنس مع قياس ملامح عدم التلامس

أهمية قياس ملامح عدم الاتصال للعملات المعدنية

تحظى العملة بتقدير كبير في المجتمع الحديث لأنه يتم تداولها مقابل السلع والخدمات. يتم تداول العملات المعدنية والورقية في أيدي العديد من الأشخاص. يؤدي النقل المستمر للعملة المادية إلى تشوه السطح. نانوفيا 3D مقياس الملامح يقوم بمسح تضاريس العملات المعدنية المسكوكة في سنوات مختلفة للتحقق من الاختلافات السطحية.

يمكن بسهولة التعرف على ميزات العملة لعامة الناس لأنها أشياء شائعة. يعتبر البنس مثاليًا لتقديم قوة برنامج تحليل الأسطح المتقدم من Nanovea: Mountains 3D. تسمح البيانات السطحية التي تم جمعها باستخدام مقياس التعريف ثلاثي الأبعاد الخاص بنا بإجراء تحليلات عالية المستوى للهندسة المعقدة من خلال طرح السطح واستخراج الكفاف ثنائي الأبعاد. يقارن الطرح السطحي باستخدام قناع أو ختم أو قالب يمكن التحكم فيه جودة عمليات التصنيع بينما يحدد الاستخراج الكفافي التفاوتات المسموح بها من خلال تحليل الأبعاد. يقوم برنامج Nanovea's 3D Profilometer وبرنامج Mountains 3D بالتحقيق في التضاريس دون الميكرونية للأشياء التي تبدو بسيطة، مثل البنسات.



هدف القياس

تم مسح السطح العلوي الكامل لخمسة بنسات باستخدام مستشعر الخط عالي السرعة من Nanovea. تم قياس نصف القطر الداخلي والخارجي لكل بنس باستخدام برنامج Mountains Advanced Analysis Software. استخراج من كل سطح بنس في منطقة الاهتمام مع الطرح السطحي المباشر تشوه السطح كميا.

 



النتائج والمناقشة

3D السطح

استغرق مقياس التشكيل الجانبي Nanovea HS2000 24 ثانية فقط لمسح 4 ملايين نقطة في منطقة 20 مم × 20 مم بحجم خطوة 10um x 10um للحصول على سطح بنس واحد. يوجد أدناه خريطة ارتفاع وتصور ثلاثي الأبعاد للمسح. يُظهر العرض ثلاثي الأبعاد قدرة المستشعر عالي السرعة على التقاط التفاصيل الصغيرة التي لا يمكن للعين تصورها. تظهر العديد من الخدوش الصغيرة على سطح العملة المعدنية. يتم فحص نسيج وخشونة العملة التي تظهر في العرض ثلاثي الأبعاد.

 










التحليل البعدي

تم استخلاص ملامح العملة المعدنية وحصل تحليل الأبعاد على الأقطار الداخلية والخارجية لميزة الحافة. بلغ متوسط نصف القطر الخارجي 9.500 مم ± 0.024 بينما بلغ متوسط نصف القطر الداخلي 8.960 مم ± 0.032. تحليلات الأبعاد الإضافية التي يمكن أن تقوم بها Mountains 3D على مصادر البيانات ثنائية وثلاثية الأبعاد هي قياسات المسافة ، ارتفاع الخطوة ، التسوية ، وحسابات الزاوية.







طرح السطح

يوضح الشكل 5 مجال الاهتمام لتحليل الطرح السطحي. تم استخدام بنس 2007 كسطح مرجعي للبنسات الأربعة الأقدم. يُظهر الطرح السطحي من سطح البنس لعام 2007 الاختلافات بين البنسات ذات الثقوب / القمم. يتم الحصول على فرق حجم السطح الكلي من خلال إضافة أحجام الثقوب / القمم. يشير خطأ RMS إلى مدى توافق الأسطح الصغيرة مع بعضها البعض.


 









خاتمة





مسح HS2000L عالي السرعة من Nanovea خمسة بنسات تم سكها في سنوات مختلفة. قارن برنامج Mountains 3D بين أسطح كل عملة باستخدام استخراج الكنتور وتحليل الأبعاد والطرح السطحي. يحدد التحليل بوضوح نصف القطر الداخلي والخارجي بين العملات المعدنية أثناء المقارنة المباشرة للاختلافات في سمات السطح. مع قدرة مقياس التشكيل الجانبي ثلاثي الأبعاد من Nanovea على قياس أي أسطح بدقة على مستوى النانومتر ، جنبًا إلى جنب مع إمكانات تحليل Mountains 3D ، فإن تطبيقات البحث ومراقبة الجودة الممكنة لا حصر لها.

 


الآن ، لنتحدث عن طلبك

الأبعاد والتشطيب السطحي للأنابيب البوليمرية

أهمية التحليل البعدي والسطحي للأنابيب البوليمرية

تُستخدم الأنابيب المصنوعة من المواد البوليمرية بشكل شائع في العديد من الصناعات التي تتراوح بين السيارات والطبية والكهربائية والعديد من الفئات الأخرى. تمت في هذه الدراسة دراسة القسطرة الطبية المصنوعة من مواد بوليمرية مختلفة باستخدام النانوفيا مقياس عدم الاتصال ثلاثي الأبعاد لقياس خشونة السطح والتشكل والأبعاد. خشونة السطح أمر بالغ الأهمية للقسطرة حيث يمكن ربط العديد من مشاكل القسطرة ، بما في ذلك العدوى والصدمات الجسدية والالتهاب بسطح القسطرة. يمكن أيضًا دراسة الخواص الميكانيكية ، مثل معامل الاحتكاك ، من خلال ملاحظة خصائص السطح. يمكن الحصول على هذه البيانات القابلة للقياس الكمي لضمان إمكانية استخدام القسطرة في التطبيقات الطبية.

مقارنة بالمجهر البصري والمجهر الإلكتروني ، يُفضل قياس الأبعاد غير الملامسة ثلاثي الأبعاد باستخدام الزيغ المحوري بشكل كبير لتوصيف أسطح القسطرة نظرًا لقدرتها على قياس الزوايا / الانحناء ، والقدرة على قياس أسطح المواد على الرغم من الشفافية أو الانعكاسية ، والحد الأدنى من إعداد العينة ، وعدم الطبيعة الغازية. على عكس الفحص المجهري البصري التقليدي ، يمكن الحصول على ارتفاع السطح واستخدامه في التحليل الحسابي ؛ على سبيل المثال ، إيجاد الأبعاد وإزالة الشكل لإيجاد خشونة السطح. إن وجود القليل من التحضير للعينة ، على عكس الفحص المجهري الإلكتروني ، وطبيعة عدم الاتصال يسمح أيضًا بجمع البيانات بسرعة دون الخوف من التلوث والخطأ في تحضير العينة.

هدف القياس

في هذا التطبيق ، يتم استخدام Nanovea 3D Non-Contact Profilometer لمسح سطح اثنين من القسطرة: أحدهما مصنوع من TPE (المطاط الصناعي الحراري) والآخر مصنوع من PVC (كلوريد البولي فينيل). سيتم الحصول على ومقارنة معلمات التشكل والأبعاد الشعاعية وارتفاع القسطرتين.

 

 

النتائج والمناقشة

3D السطح

على الرغم من الانحناء على الأنابيب البوليمرية ، يمكن لمقياس التشكيل الجانبي عدم التلامس Nanovea 3D مسح سطح القسطرة. من الفحص الذي تم إجراؤه ، يمكن الحصول على صورة ثلاثية الأبعاد للفحص البصري السريع والمباشر للسطح.

 
 

 

2D الأبعاد التحليل

تم الحصول على البعد الشعاعي الخارجي عن طريق استخراج ملف تعريف من المسح الأصلي وتركيب قوس في الملف الشخصي. يوضح هذا قدرة مقياس ملف تعريف عدم الاتصال ثلاثي الأبعاد في إجراء تحليل سريع للأبعاد لتطبيقات مراقبة الجودة. يمكن بسهولة الحصول على ملفات تعريف متعددة بطول القسطرة أيضًا.

 

 

خشونة تحليل السطح

تم الحصول على البعد الشعاعي الخارجي عن طريق استخراج ملف تعريف من المسح الأصلي وتركيب قوس في الملف الشخصي. يوضح هذا قدرة مقياس ملف تعريف عدم الاتصال ثلاثي الأبعاد في إجراء تحليل سريع للأبعاد لتطبيقات مراقبة الجودة. يمكن بسهولة الحصول على ملفات تعريف متعددة بطول القسطرة أيضًا.

خاتمة

في هذا التطبيق ، أظهرنا كيف يمكن استخدام مقياس التشكيل الجانبي عدم التلامس Nanovea 3D لتوصيف الأنابيب البوليمرية. على وجه التحديد ، تم الحصول على قياس السطح والأبعاد الشعاعية وخشونة السطح للقسطرة الطبية. نصف القطر الخارجي لقسطرة TPE كان 2.40 مم بينما القسطرة البلاستيكية 1.27 مم. تم العثور على سطح القسطرة TPE ليكون أكثر خشونة من القسطرة البلاستيكية. كان Sa لـ TPE 0.9740 ميكرومتر مقارنة بـ 0.1791 ميكرومتر من PVC. أثناء استخدام القسطرة الطبية لهذا التطبيق ، يمكن أيضًا تطبيق قياس الأبعاد غير الملامس ثلاثي الأبعاد على مجموعة كبيرة ومتنوعة من الأسطح. لا تقتصر البيانات والحسابات التي يمكن الحصول عليها على ما هو معروض.

الآن ، لنتحدث عن طلبك