الولايات المتحدة الأمريكية / العالمية: 9292-461-949-1+
أوروبا: 794-3052-011-39+
تراسل معنا

التصنيف: درجات حرارة عالية ترايبولوجي

 

درجة حرارة عالية للصلابة للخدش باستخدام مقياس الضغط

درجة حرارة عالية تصلب الخدش

استخدام ثلاثي الأبعاد

أُعدت بواسطة

دوانجي ، دكتوراه

مقدمة

تقيس الصلابة مقاومة المواد للتشوه الدائم أو البلاستيكي. تم تطويره في الأصل من قبل عالم المعادن الألماني فريدريش موس في عام 1820 ، اختبار صلابة الخدش يحدد صلابة المادة للخدوش والتآكل بسبب الاحتكاك من جسم حاد1. مقياس موس هو مؤشر مقارن وليس مقياسًا خطيًا ، لذلك تم تطوير قياس صلابة الخدش بدقة ونوعية كما هو موضح في معيار ASTM G171-032. يقيس متوسط عرض الخدش الناتج عن قلم ماسي ويحسب رقم صلابة الخدش (HSP).

أهمية قياس صلابة الخدوش في درجات الحرارة العالية

يتم اختيار المواد بناءً على متطلبات الخدمة. بالنسبة للتطبيقات التي تنطوي على تغيرات كبيرة في درجات الحرارة وتدرجات حرارية ، فمن الأهمية بمكان فحص الخواص الميكانيكية للمواد عند درجات حرارة عالية لتكون على دراية كاملة بالحدود الميكانيكية. المواد ، وخاصة البوليمرات ، عادة ما تنعم في درجات حرارة عالية. تحدث الكثير من الأعطال الميكانيكية بسبب التشوه الزاحف والتعب الحراري الذي يحدث فقط في درجات حرارة مرتفعة. لذلك ، هناك حاجة إلى تقنية موثوقة لقياس الصلابة في درجات حرارة عالية لضمان الاختيار المناسب للمواد لتطبيقات درجات الحرارة العالية.

هدف القياس

في هذه الدراسة، يقيس مقياس Tribometer NANOVEA T50 صلابة الخدش لعينة تفلون في درجات حرارة مختلفة من درجة حرارة الغرفة إلى 300 درجة مئوية. القدرة على إجراء قياس صلابة الصفر في درجات الحرارة العالية تجعل NANOVEA ثلاثي الأبعاد نظام متعدد الاستخدامات للتقييمات الاحتكاكية والميكانيكية للمواد لتطبيقات درجات الحرارة العالية.

نانوفيا

T50

شروط الاختبار

تم استخدام مقياس التثبيومتر القياسي NANOVEA T50 للوزن الحر لإجراء اختبارات صلابة الخدش على عينة من التفلون في درجات حرارة تتراوح من درجة حرارة الغرفة (RT) إلى 300 درجة مئوية. تبلغ درجة انصهار التفلون 326.8 درجة مئوية. تم استخدام قلم ماسي مخروطي بزاوية قمة 120 درجة ونصف قطر طرف يبلغ 200 ميكرومتر. تم تثبيت عينة التفلون على مرحلة العينة الدورانية بمسافة 10 ملم إلى مركز المرحلة. تم تسخين العينة بواسطة فرن واختبارها عند درجات حرارة RT و 50 درجة مئوية و 100 درجة مئوية و 150 درجة مئوية و 200 درجة مئوية و 250 درجة مئوية و 300 درجة مئوية.

معلمات الاختبار

من قياس صلابة خدش ارتفاع درجة الحرارة

قوى طبيعية 2 ن
سرعة انزلاق 1 مم / ثانية
مسافة انزلاق 8 مم لكل درجة حرارة
أَجواء هواء
درجة حرارة RT ، 50 درجة مئوية ، 100 درجة مئوية ، 150 درجة مئوية ، 200 درجة مئوية ، 250 درجة مئوية ، 300 درجة مئوية.

النتائج والمناقشة

يتم عرض ملفات تعريف مسار الخدش لعينة Teflon عند درجات حرارة مختلفة في الشكل 1 لمقارنة صلابة الخدش عند درجات حرارة مرتفعة مختلفة. تتشكل المواد المتراكمة على حواف مسار الخدش عندما ينتقل القلم بحمل ثابت يبلغ 2 نيوتن ويتدفق في عينة التفلون ، مما يدفع ويشوه المادة في مسار الخدش إلى الجانب.

تم فحص مسارات الخدش تحت المجهر البصري كما هو موضح في الشكل 2. تم تلخيص عرض مسار الخدش المقاس وأرقام صلابة الخدش المحسوبة (HSP) ومقارنتها في الشكل 3. عرض مسار الخدش الذي تم قياسه بواسطة المجهر يتوافق مع ذلك المقاس باستخدام NANOVEA Profiler - تعرض عينة Teflon عرضًا أوسع للخدش في درجات حرارة أعلى. يزيد عرض مسار الخدش من 281 إلى 539 ميكرومتر حيث ترتفع درجة الحرارة من RT إلى 300 درجة مئوية ، مما يؤدي إلى انخفاض HSP من 65 إلى 18 ميجا باسكال.

يمكن قياس صلابة الخدش في درجات الحرارة المرتفعة بدقة عالية وقابلية التكرار باستخدام NANOVEA T50 Tribometer. إنه يوفر حلاً بديلاً من قياسات الصلابة الأخرى ويجعل NANOVEA Tribometer نظامًا أكثر اكتمالاً لإجراء تقييمات شبه ميكانيكية شاملة لدرجات الحرارة العالية.

شكل ١: ملامح مسار الخدش بعد اختبارات صلابة الخدش في درجات حرارة مختلفة.

الشكل 2: مسارات سكراتش تحت المجهر بعد القياسات في درجات حرارة مختلفة.

الشكل 3: تطور عرض مسار الخدش وصلابة الخدش مقابل درجة الحرارة.

خاتمة

في هذه الدراسة ، نعرض كيف يقيس NANOVEA Tribometer صلابة الخدش في درجات حرارة مرتفعة بما يتوافق مع ASTM G171-03. يوفر اختبار صلابة الخدش عند حمل ثابت حلاً بديلاً بسيطًا لمقارنة صلابة المواد باستخدام مقياس الاحتكاك. إن القدرة على إجراء قياسات صلابة الخدش في درجات حرارة مرتفعة تجعل NANOVEA Tribometer أداة مثالية لتقييم الخواص الميكانيكية للمركبات ذات درجة الحرارة العالية للمواد.

يوفر NANOVEA Tribometer أيضًا اختبار تآكل واحتكاك دقيق وقابل للتكرار باستخدام أوضاع دوارة وخطية متوافقة مع ISO و ASTM ، مع تآكل اختياري بدرجة حرارة عالية ، ووحدات تزييت وتآكل تريبو متوفرة في نظام واحد متكامل مسبقًا. يتوفر ملف التعريف الاختياري ثلاثي الأبعاد غير المتصل للتصوير ثلاثي الأبعاد عالي الدقة لمسارات التآكل بالإضافة إلى قياسات السطح الأخرى مثل الخشونة.

1 Wredenberg ، فريدريك ؛ بل لارسون (2009). "اختبار خدش المعادن والبوليمرات: التجارب والأعداد". ارتداء 266 (1-2): 76
2 ASTM G171-03 (2009) ، "طريقة الاختبار القياسية لصلابة خدش المواد باستخدام قلم ماسي"

الآن ، لنتحدث عن طلبك

قياس التآكل في الموقع عند درجة حرارة عالية

في الموقع ، ارتدي القياس في درجات حرارة عالية

استخدام ثلاثي الأبعاد

داخل الموقع ارتدِ القياس ثلاثي الأبعاد في الفضاء

أُعدت بواسطة

دوانجي لي ، دكتوراه

مقدمة

المحول التفاضلي الخطي المتغير (LVDT) هو نوع من المحولات الكهربائية القوية المستخدمة لقياس الإزاحة الخطية. لقد تم استخدامه على نطاق واسع في مجموعة متنوعة من التطبيقات الصناعية ، بما في ذلك توربينات الطاقة ، والمكونات الهيدروليكية ، والأتمتة ، والطائرات ، والأقمار الصناعية ، والمفاعلات النووية ، وغيرها الكثير.

في هذه الدراسة، نعرض الوظائف الإضافية لـ LVDT ووحدات درجة الحرارة المرتفعة في NANOVEA ثلاثي الأبعاد والتي تسمح بقياس تغيير عمق مسار التآكل للعينة المختبرة أثناء عملية التآكل في درجات حرارة مرتفعة. يتيح ذلك للمستخدمين ربط المراحل المختلفة لعملية التآكل مع تطور COF، وهو أمر بالغ الأهمية في تحسين الفهم الأساسي لآلية التآكل والخصائص الاحتكاكية للمواد المستخدمة في تطبيقات درجات الحرارة المرتفعة.

هدف القياس

في هذه الدراسة. نود أن نعرض قدرة NANOVEA T50 Tribometer للمراقبة في الموقع لتطور عملية تآكل المواد في درجات حرارة مرتفعة.

تتم محاكاة عملية تآكل سيراميك سيليكات الألومينا عند درجات حرارة مختلفة بطريقة محكومة ومراقب.

نانوفيا

T50

إجراء الاختبار

تم تقييم السلوك الترابطي ، مثل معامل الاحتكاك ، COF ، ومقاومة التآكل لألواح سيراميك الألومينا بواسطة NANOVEA Tribometer. تم تسخين صفيحة سيراميك سيليكات الألومينا بواسطة فرن من درجة حرارة الغرفة ، RT ، إلى درجات حرارة مرتفعة (400 درجة مئوية و 800 درجة مئوية) ، متبوعة باختبارات التآكل عند درجات الحرارة هذه. 

للمقارنة ، تم إجراء اختبارات التآكل عند تبريد العينة من 800 درجة مئوية إلى 400 درجة مئوية ثم إلى درجة حرارة الغرفة. تم تطبيق طرف كرة AI2O3 (قطر 6 مم ، درجة 100) ضد العينات المختبرة. تمت مراقبة COF وعمق التآكل ودرجة الحرارة في الموقع.

معلمات الاختبار

من قياس دبوس على القرص

نموذج تريبيومتر LVDT

تم تقييم معدل التآكل ، K ، باستخدام الصيغة K = V / (Fxs) = A / (Fxn) ، حيث V هو الحجم البالي ، F هو الحمل الطبيعي ، s هو مسافة الانزلاق ، A هو المقطع العرضي منطقة مسار التآكل ، و n هي عدد الدورات. تم تقييم خشونة السطح وملامح مسار التآكل بواسطة NANOVEA Optical Profiler ، وتم فحص مورفولوجيا مسار التآكل باستخدام مجهر بصري.

النتائج والمناقشة

يظهر عمق COF وعمق مسار التآكل المسجل في الموقع في الشكل 1 والشكل 2 ، على التوالي. في الشكل 1 ، يشير "-I" إلى الاختبار الذي تم إجراؤه عند زيادة درجة الحرارة من RT إلى درجة حرارة مرتفعة. يمثل "-D" انخفاض درجة الحرارة من ارتفاع درجة حرارة 800 درجة مئوية.

كما هو مبين في الشكل 1 ، فإن العينات التي تم اختبارها في درجات حرارة مختلفة تظهر COF قابلة للمقارنة تبلغ 0.6 تقريبًا في جميع أنحاء القياسات. تؤدي نسبة COF المرتفعة إلى عملية تآكل متسارعة تخلق كمية كبيرة من الحطام. تمت مراقبة عمق مسار التآكل أثناء اختبارات التآكل بواسطة LVDT كما هو موضح في الشكل 2. توضح الاختبارات التي تم إجراؤها في درجة حرارة الغرفة قبل تسخين العينة وبعد تبريد العينة أن صفيحة سيراميك سيليكات الألومينا تعرض عملية تآكل تدريجية عند RT ، التآكل يزداد عمق الجنزير تدريجياً طوال اختبار التآكل إلى ~ 170 و ~ 150 ميكرومتر ، على التوالي. 

بالمقارنة ، تُظهر اختبارات التآكل في درجات حرارة مرتفعة (400 درجة مئوية و 800 درجة مئوية) سلوك تآكل مختلف - يزداد عمق مسار التآكل على الفور في بداية عملية التآكل ، ويتباطأ مع استمرار الاختبار. تبلغ أعماق مسار التآكل للاختبارات التي يتم إجراؤها عند درجات حرارة 400 درجة مئوية و 800 درجة مئوية و 400 درجة مئوية ~ 140 و ~ 350 و ~ 210 ميكرومتر ، على التوالي.

COF أثناء الاختبارات المثبتة على المكتب في درجات حرارة مختلفة

شكل 1. معامل الاحتكاك أثناء اختبارات التثبيت على القرص عند درجات حرارة مختلفة

ارتداء عمق مسار لوحة سيراميك الألومينا سيليكات في درجات حرارة مختلفة

الشكل 2. تطور عمق مسار التآكل للوحة سيراميك سيليكات الألومينا عند درجات حرارة مختلفة

تم قياس متوسط معدل التآكل وعمق مسار التآكل لألواح السيراميك سيليكات الألومينا عند درجات حرارة مختلفة باستخدام نانوفيا ملف التعريف البصري كما تم تلخيصه في الشكل 3. يتوافق عمق مسار التآكل مع ذلك المسجل باستخدام LVDT. تُظهر لوحة سيراميك سيليكات الألومينا زيادة كبيرة في معدل التآكل بحوالي 0.5 مم 3 / نيوتن متر عند 800 درجة مئوية ، مقارنة بمعدلات التآكل التي تقل عن 0.2 مم 3 / نيوتن عند درجات حرارة أقل من 400 درجة مئوية. لا تُظهر صفيحة سيليكات الألومينا خصائص ميكانيكية / ترايبولوجية مُحسَّنة بشكل كبير بعد عملية التسخين القصيرة ، حيث تمتلك معدل تآكل مشابه قبل وبعد المعالجة الحرارية.

سيراميك سيليكات الألومينا ، المعروف أيضًا باسم الحمم البركانية والعجائب ، ناعم وقابل للتشغيل الآلي قبل المعالجة بالتسخين. يمكن لعملية إطلاق طويلة في درجات حرارة مرتفعة تصل إلى 1093 درجة مئوية أن تعزز بشكل كبير صلابتها وقوتها ، وبعد ذلك يلزم تصنيع الماس. هذه الخاصية الفريدة تجعل سيراميك سيليكات الألومينا مادة مثالية للنحت.

في هذه الدراسة ، أظهرنا أن المعالجة الحرارية عند درجة حرارة أقل من تلك المطلوبة للحرق (800 درجة مئوية مقابل 1093 درجة مئوية) في وقت قصير لا تحسن الخصائص الميكانيكية والترايبولوجية لسيراميك الألومينا ، مما يجعل الحرق المناسب أمرًا ضروريًا معالجة هذه المادة قبل استخدامها في التطبيقات الحقيقية.

 
معدل التآكل وعمق مسار التآكل للعينة عند درجات حرارة مختلفة 1

الشكل 3. معدل التآكل وعمق مسار التآكل للعينة عند درجات حرارة مختلفة

خاتمة

بناءً على التحليل الترايبولوجي الشامل في هذه الدراسة ، أظهرنا أن صفيحة سيراميك الألومينا تُظهر معامل احتكاك مماثل عند درجات حرارة مختلفة من درجة حرارة الغرفة إلى 800 درجة مئوية. ومع ذلك ، فإنه يظهر زيادة كبيرة في معدل التآكل ~ 0.5 مم 3 / نيوتن متر عند 800 درجة مئوية ، مما يدل على أهمية المعالجة الحرارية المناسبة لهذا السيراميك.

NANOVEA ثلاثي المقاييس قادرة على تقييم الخصائص الترايبولوجية للمواد للتطبيقات في درجات حرارة عالية تصل إلى 1000 درجة مئوية. تسمح وظيفة COF في الموقع وقياسات عمق مسار التآكل للمستخدمين بربط المراحل المختلفة من عملية التآكل بتطور COF ، وهو أمر بالغ الأهمية في تحسين الفهم الأساسي لآلية التآكل والخصائص الترايبولوجية للمواد المستخدمة في درجات حرارة مرتفعة.

توفر أجهزة قياس الاحتكاك من NANOVEA اختبار تآكل واحتكاك دقيق وقابل للتكرار باستخدام أوضاع دوارة وخطية متوافقة مع ISO و ASTM ، مع تآكل اختياري بدرجة حرارة عالية ، ووحدات تزييت وتآكل تريبو متوفرة في نظام واحد متكامل مسبقًا. تعد مجموعة NANOVEA التي لا مثيل لها حلاً مثاليًا لتحديد النطاق الكامل للخصائص الترايبولوجية للطلاءات الرقيقة أو السميكة أو الناعمة أو القاسية والأغشية والركائز.

تتوفر ملفات التعريف الاختيارية ثلاثية الأبعاد غير الملامسة للتصوير ثلاثي الأبعاد عالي الدقة لمسارات التآكل بالإضافة إلى قياسات السطح الأخرى مثل الخشونة.

قياس ارتداء داخل الموقع

الآن ، لنتحدث عن طلبك

التآكل و COF الدوراني أو الخطي؟ (دراسة شاملة باستخدام Nanovea Tribometer)

التآكل هو عملية إزالة وتشوه المواد الموجودة على السطح نتيجة للحركة الميكانيكية للسطح المقابل. ويتأثر بمجموعة متنوعة من العوامل، بما في ذلك الانزلاق أحادي الاتجاه، والتدحرج، والسرعة، ودرجة الحرارة، وغيرها الكثير. تشمل دراسة التآكل وعلم الاحتكاك العديد من التخصصات، من الفيزياء والكيمياء إلى الهندسة الميكانيكية وعلوم المواد. تتطلب الطبيعة المعقدة للتآكل إجراء دراسات معزولة تجاه آليات أو عمليات تآكل محددة، مثل التآكل اللاصق، والتآكل الكاشط، وإجهاد السطح، والتآكل المزعج، والتآكل المتآكل. ومع ذلك، فإن "التآكل الصناعي" يتضمن عادةً آليات تآكل متعددة تحدث بالتآزر.

تعد اختبارات التآكل الترددية الخطية والدورانية (الدبوس على القرص) من الإعدادات المتوافقة مع ASTM المستخدمة على نطاق واسع لقياس سلوكيات التآكل المنزلقة للمواد. نظرًا لأن قيمة معدل التآكل لأي طريقة اختبار تآكل تستخدم غالبًا للتنبؤ بالترتيب النسبي لمجموعات المواد، فمن المهم للغاية تأكيد تكرار معدل التآكل المقاس باستخدام إعدادات اختبار مختلفة. وهذا يمكّن المستخدمين من النظر بعناية في قيمة معدل التآكل الواردة في الأدبيات، وهو أمر بالغ الأهمية في فهم الخصائص القبلية للمواد.

اقرأ المزيد

تقييم تيل الفرامل باستخدام ترايبولوجي


أهمية تقييم أداء وسادة الكسر

وسادات الفرامل عبارة عن مواد مركبة ، وهي مادة مكونة من عدة مكونات يجب أن تكون قادرة على تلبية عدد كبير من متطلبات السلامة. تتميز وسادات الفرامل المثالية بمعامل احتكاك مرتفع (COF) ، ومعدل تآكل منخفض ، وضوضاء أقل ، وتظل موثوقًا بها في بيئات مختلفة. للتأكد من أن جودة وسادات الفرامل قادرة على تلبية متطلباتهم ، يمكن استخدام اختبار الترايبولوجي لتحديد المواصفات الحرجة.


أهمية موثوقية وسادات الفرامل عالية جدًا ؛ لا ينبغي إهمال سلامة الركاب. لذلك ، من الضروري تكرار ظروف التشغيل وتحديد نقاط الفشل المحتملة.
مع النانوفيا ثلاثي الأبعاد، يتم تطبيق حمل ثابت بين دبوس أو كرة أو مادة مسطحة ومادة مضادة تتحرك باستمرار. يتم جمع الاحتكاك بين المادتين باستخدام خلية تحميل صلبة، مما يسمح بجمع خصائص المواد بأحمال وسرعات مختلفة واختبارها في بيئات ذات درجة حرارة عالية أو أكالة أو سائلة.



هدف القياس

في هذه الدراسة ، تمت دراسة معامل احتكاك وسادات الفرامل تحت بيئة درجة حرارة متزايدة باستمرار من درجة حرارة الغرفة إلى 700 درجة مئوية. تم رفع درجة الحرارة البيئية في الموقع حتى لوحظ عطل ملحوظ في وسادة الفرامل. تم إرفاق مزدوج حراري بالجانب الخلفي من الدبوس لقياس درجة الحرارة بالقرب من الواجهة المنزلقة.



إجراءات الاختبار وإجراءاته




النتائج والمناقشة

تركز هذه الدراسة بشكل أساسي على درجة الحرارة التي تبدأ عندها وسادات الفرامل بالفشل. COF التي تم الحصول عليها لا تمثل قيم الحياة الحقيقية ؛ مادة الدبوس ليست هي نفسها دوارات الفرامل. وتجدر الإشارة أيضًا إلى أن بيانات درجة الحرارة التي تم جمعها هي درجة حرارة الدبوس وليس درجة حرارة الواجهة المنزلقة

 








في بداية الاختبار (درجة حرارة الغرفة) ، أعطى COF بين دبوس SS440C ولوحة الفرامل قيمة ثابتة تبلغ تقريبًا 0.2. مع زيادة درجة الحرارة ، زادت COF بشكل مطرد وبلغت ذروتها بقيمة 0.26 بالقرب من 350 درجة مئوية. بعد 390 درجة مئوية ، يبدأ COF سريعًا في التناقص. بدأ COF في الزيادة مرة أخرى إلى 0.2 عند 450 درجة مئوية لكنه بدأ في الانخفاض إلى قيمة 0.05 بعد فترة وجيزة.


يتم تحديد درجة الحرارة التي تتعطل فيها وسادات الفرامل باستمرار عند درجات حرارة أعلى من 500 درجة مئوية. بعد درجة الحرارة هذه ، لم يعد COF قادرًا على الاحتفاظ بـ COF الأولي البالغ 0.2.



خاتمة




أظهرت وسادات الفرامل عطلًا ثابتًا عند درجة حرارة تتجاوز 500 درجة مئوية. يرتفع COF البالغ 0.2 ببطء إلى قيمة 0.26 قبل أن ينخفض إلى 0.05 في نهاية الاختبار (580 درجة مئوية). الفرق بين 0.05 و 0.2 هو عامل 4. وهذا يعني أن القوة الطبيعية عند 580 درجة مئوية يجب أن تكون أكبر بأربع مرات من درجة حرارة الغرفة لتحقيق نفس قوة التوقف!


على الرغم من عدم تضمينه في هذه الدراسة ، فإن Nanovea Tribometer قادر أيضًا على إجراء اختبار لمراقبة خاصية أخرى مهمة لوسادات الفرامل: معدل التآكل. من خلال استخدام مقاييس التشكيل الجانبي ثلاثية الأبعاد الخاصة بنا ، يمكن الحصول على حجم مسار التآكل لحساب مدى سرعة تآكل العينات. يمكن إجراء اختبار التآكل باستخدام Nanovea Tribometer في ظروف وبيئات اختبار مختلفة لمحاكاة ظروف التشغيل على أفضل وجه.

الآن ، لنتحدث عن طلبك

ارتفاع درجة الحرارة ترايبولوجي

درجة حرارة عالية للخدش صلابة باستخدام مقياس الضغط

يتم اختيار المواد بناءً على متطلبات الخدمة. بالنسبة للتطبيقات التي تنطوي على تغيرات كبيرة في درجات الحرارة وتدرجات حرارية ، فمن الأهمية بمكان فحص الخواص الميكانيكية للمواد في درجات حرارة عالية لتكون على دراية كاملة بالحدود الميكانيكية. المواد ، وخاصة البوليمرات ، عادة ما تنعم في درجات حرارة عالية. تحدث الكثير من الأعطال الميكانيكية بسبب التشوه الزاحف والتعب الحراري الذي يحدث فقط في درجات حرارة مرتفعة. لذلك ، هناك حاجة إلى تقنية موثوقة لقياس صلابة الخدش في درجات الحرارة العالية لضمان الاختيار المناسب للمواد لتطبيقات درجات الحرارة العالية.

درجة حرارة عالية للخدش صلابة باستخدام مقياس الضغط