المحفوظات الشهرية: السنة المالية
قوة الغلة والشد للصلب والألمنيوم
أهمية قوة الإنتاجية وقياس قوة الشد القصوى باستخدام المسافة البادئة
تم اختبار قوة الخضوع التقليدية وقوة الشد القصوى باستخدام آلة اختبار شد كبيرة تتطلب قوة هائلة لفصل عينات الاختبار عن بعضها. يعد تشغيل العديد من كوبونات الاختبار بشكل صحيح لمادة ما أمرًا مكلفًا ويستغرق وقتًا طويلاً حيث لا يمكن اختبار كل عينة إلا مرة واحدة. تخلق العيوب الصغيرة في العينة تباينًا ملحوظًا في نتائج الاختبار. غالبًا ما تؤدي التكوينات والمحاذاة المختلفة لأجهزة اختبار الشد في السوق إلى اختلافات جوهرية في ميكانيكا الاختبار والنتائج.
هدف القياس
في هذا التطبيق ، فإن Nanovea اختبار ميكانيكي يقيس قوة الخضوع وقوة الشد القصوى لعينات سبائك الفولاذ المقاوم للصدأ SS304 والألومنيوم Al6061. تم اختيار العينات وفقًا لقيم قوة الخضوع وقوة الشد القصوى المعترف بها عمومًا، والتي توضح مدى موثوقية طرق المسافة البادئة الخاصة بشركة Nanovea.
إجراءات الاختبار وإجراءاته
تم إجراء اختبارات قوة الغلة وقوة الشد القصوى على جهاز الفحص الميكانيكي Nanovea في تسليط دقيق وضع. تم استخدام طرف ماسي أسطواني مسطح بقطر 200 ميكرون لهذا التطبيق. تم اختيار سبائك SS304 و Al6061 لتطبيقها الصناعي الواسع وقيم قوة الخضوع المعترف بها عمومًا وقوة الشد المطلقة ، من أجل إظهار الإمكانات الكبيرة وموثوقية طريقة المسافة البادئة. تم صقل العينات ميكانيكيًا إلى تشطيب يشبه المرآة قبل الاختبار لتجنب خشونة السطح أو تأثير العيب على نتائج الاختبار. تم سرد شروط الاختبار في الجدول 1. تم إجراء أكثر من عشرة اختبارات على كل عينة لضمان تكرار قيم الاختبار.
النتائج والمناقشة
تظهر منحنيات إزاحة الحمل لعينات سبائك SS304 و Al6061 في الشكل 3 مع وجود بصمات مسافة بادئة مسطحة على عينات الاختبار المدرجة. يحسب تحليل منحنى التحميل على شكل "S" باستخدام خوارزميات خاصة طورتها Nanovea قوة الخضوع وقوة الشد القصوى. يتم حساب القيم تلقائيًا بواسطة البرنامج كما تم تلخيصها في الجدول 1. يتم سرد قيم قوة العائد وقوة الشد القصوى التي تم الحصول عليها بواسطة اختبارات الشد التقليدية للمقارنة.
خاتمة
في هذه الدراسة، عرضنا قدرة جهاز الاختبار الميكانيكي Nanovea في تقييم قوة الخضوع وقوة الشد القصوى لعينات صفائح الفولاذ المقاوم للصدأ وسبائك الألومنيوم. الإعداد التجريبي البسيط يقلل بشكل كبير من الوقت والتكلفة اللازمة لإعداد العينات المطلوبة لاختبارات الشد. يتيح حجم المسافة البادئة الصغيرة إجراء قياسات متعددة على عينة واحدة. تسمح هذه الطريقة بإجراء قياسات YS/UTS على عينات صغيرة ومناطق محلية، مما يوفر حلاً لرسم خرائط YS/UTS واكتشاف العيوب المحلية لخطوط الأنابيب أو الهيكل التلقائي.
تشتمل جميع وحدات Nano أو Micro أو Macro في جهاز اختبار Nanovea الميكانيكي على المسافة البادئة المتوافقة مع ISO وASTM، وأوضاع اختبار الخدش والتآكل، مما يوفر نطاقًا أوسع وأكثر سهولة في الاستخدام من الاختبارات المتوفرة في نظام واحد. يعد نطاق Nanovea الذي لا مثيل له حلاً مثاليًا لتحديد النطاق الكامل للخصائص الميكانيكية للطلاءات والأغشية والركائز الرقيقة أو السميكة أو الناعمة أو الصلبة، بما في ذلك الصلابة، ومعامل Young، وصلابة الكسر، والالتصاق، ومقاومة التآكل وغيرها الكثير. بالإضافة إلى ذلك، يتوفر ملف تعريف عدم الاتصال ثلاثي الأبعاد ووحدة AFM للتصوير ثلاثي الأبعاد عالي الدقة للمسافة البادئة والخدش ومسار التآكل بالإضافة إلى قياسات السطح الأخرى مثل الخشونة.
الآن ، لنتحدث عن طلبك
تحميل ديناميكي ترايبولوجي
تحميل ديناميكي ترايبولوجي
مقدمة
يحدث التآكل في كل قطاع صناعي تقريبًا ويفرض تكاليف تبلغ ~ 0.75% من الناتج المحلي الإجمالي 1. تعتبر أبحاث الترايبولوجي أمرًا حيويًا في تحسين كفاءة الإنتاج وأداء التطبيق ، فضلاً عن الحفاظ على المواد والطاقة والبيئة. يحدث الاهتزاز والتذبذب حتمًا في مجموعة واسعة من التطبيقات الترايبولوجية. يعمل الاهتزاز الخارجي المفرط على تسريع عملية التآكل ويقلل من أداء الخدمة مما يؤدي إلى أعطال كارثية للأجزاء الميكانيكية.
تطبق مقاييس الحمل الميتة التقليدية أحمالًا عادية حسب أوزان الكتلة. لا تقصر تقنية التحميل هذه خيارات التحميل على حمل ثابت فحسب ، بل إنها تخلق أيضًا اهتزازات شديدة لا يمكن التحكم فيها عند الأحمال والسرعات العالية مما يؤدي إلى تقييمات محدودة وغير متسقة لسلوك التآكل. من المستحسن إجراء تقييم موثوق لتأثير التذبذب المتحكم فيه على سلوك تآكل المواد في البحث والتطوير ومراقبة الجودة في التطبيقات الصناعية المختلفة.
حمولة عالية رائدة من Nanovea تريبومتر يتمتع بقدرة تحميل قصوى تبلغ 2000 نيوتن مع نظام تحكم ديناميكي في الحمل. يمكّن نظام تحميل الهواء المضغوط الهوائي المتقدم المستخدمين من تقييم السلوك الاحتكاكي للمادة تحت الأحمال العادية العالية مع ميزة تخميد الاهتزازات غير المرغوب فيها التي تنشأ أثناء عملية التآكل. لذلك، يتم قياس الحمل مباشرة دون الحاجة إلى النوابض العازلة المستخدمة في التصميمات القديمة. تطبق وحدة التحميل المتأرجحة بمغناطيس كهربائي متوازي تذبذبًا يتم التحكم فيه جيدًا بالسعة المطلوبة حتى 20 نيوتن وتردد يصل إلى 150 هرتز.
يتم قياس الاحتكاك بدقة عالية مباشرة من القوة الجانبية المطبقة على الحامل العلوي. تتم مراقبة الإزاحة في الموقع، مما يوفر نظرة ثاقبة لتطور سلوك التآكل لعينات الاختبار. يمكن أيضًا إجراء اختبار التآكل تحت تحميل التذبذب المتحكم فيه في بيئات التآكل ودرجة الحرارة المرتفعة والرطوبة والتشحيم لمحاكاة ظروف العمل الحقيقية للتطبيقات الاحتكاكية. متكاملة عالية السرعة مقياس عدم الاتصال يقوم تلقائيًا بقياس شكل مسار التآكل وحجم التآكل في بضع ثوانٍ.
هدف القياس
في هذه الدراسة ، نعرض قدرة Nanovea T2000 Dynamic Load Tribometer في دراسة السلوك التراثي لعينات الطلاء والمعادن المختلفة في ظل ظروف تحميل متذبذبة محكومة.
إجراء الاختبار
تم تقييم السلوك الترابيولوجي ، على سبيل المثال معامل الاحتكاك ، COF ، ومقاومة التآكل لطلاء مقاوم للتآكل بسمك 300 ميكرومتر ومقارنته بواسطة Nanovea T2000 Tribometer بمقياس ترايب للحمل الميت التقليدي باستخدام دبوس على إعداد القرص باتباع ASTM G992.
تم تقييم العينات المطلية بالنحاس والتين المنفصلة مقابل كرة Al₂0₃ مقاس 6 مم تحت تذبذب متحكم فيه بواسطة وضع احتكاك التحميل الديناميكي لمقياس Tribometer Nanovea T2000.
تم تلخيص معلمات الاختبار في الجدول 1.
يقوم مقياس التآكل المدمج ثلاثي الأبعاد المزود بمستشعر خط بمسح مسار التآكل تلقائيًا بعد الاختبارات ، مما يوفر قياس حجم التآكل الأكثر دقة في ثوانٍ.
النتائج والمناقشة
نظام التحميل الهوائي مقابل نظام الحمولة الميتة
تتم مقارنة السلوك الترايبولوجي للطلاء المقاوم للاهتراء باستخدام Nanovea T2000 Tribometer مع مقياس الضغط التقليدي للحمل الميت (DL). يظهر تطور COF للطلاء في الشكل 2. نلاحظ أن الطلاء يعرض قيمة COF قابلة للمقارنة تبلغ 0.6 ~ أثناء اختبار التآكل. ومع ذلك ، تشير الأشكال الجانبية العشرين للمقطع العرضي في مواقع مختلفة من مسار التآكل في الشكل 3 إلى أن الطلاء تعرض لتآكل أكثر شدة في ظل نظام الحمل الميت.
تم إنشاء اهتزازات شديدة من خلال عملية التآكل لنظام الحمولة الميتة عند التحميل والسرعة العالية. يؤدي الضغط المركّز الهائل على وجه التلامس جنبًا إلى جنب مع سرعة الانزلاق العالية إلى خلق وزن كبير واهتزاز هيكل يؤدي إلى تآكل متسارع. يطبق مقياس تربومتر الحمل الميت التقليدي الحمل باستخدام أوزان الكتلة. هذه الطريقة موثوقة في أحمال التلامس المنخفضة في ظروف التآكل الخفيف ؛ ومع ذلك ، في ظل ظروف التآكل الشديدة في الأحمال والسرعات العالية ، يؤدي الاهتزاز الكبير إلى ارتداد الأوزان بشكل متكرر ، مما يؤدي إلى مسار تآكل غير متساوٍ مما يتسبب في تقييم ترايبولوجي غير موثوق به. معدل التآكل المحسوب هو 8.0 ± 2.4 × 10-4 مم 3 / نيوتن متر ، مما يدل على معدل تآكل مرتفع وانحراف معياري كبير.
صُمم مقياس الاحتكاك Nanovea T2000 بنظام تحكم ديناميكي في التحميل لتخميد التذبذبات. يطبق الحمل العادي بهواء مضغوط مما يقلل الاهتزاز غير المرغوب فيه الناتج أثناء عملية التآكل. بالإضافة إلى ذلك ، يضمن التحكم النشط في تحميل الحلقة المغلقة تطبيق حمل ثابت طوال اختبار التآكل ويتبع القلم تغيير عمق مسار التآكل. يتم قياس ملف مسار تآكل أكثر اتساقًا بشكل ملحوظ كما هو موضح في الشكل 3 أ ، مما يؤدي إلى معدل تآكل منخفض يبلغ 3.4 ± 0.5 × 10-4 مم 3 / نيوتن متر.
يؤكد تحليل مسار التآكل الموضح في الشكل 4 أن اختبار التآكل الذي تم إجراؤه بواسطة نظام تحميل الهواء المضغوط الهوائي لمقياس Nanovea T2000 يخلق مسار تآكل أكثر سلاسة واتساقًا مقارنةً بمقياس الحمل الميت التقليدي. بالإضافة إلى ذلك ، يقيس مقياس الانحراف Nanovea T2000 إزاحة القلم أثناء عملية التآكل مما يوفر مزيدًا من المعلومات حول تقدم سلوك التآكل في الموقع.
التذبذب المتحكم فيه عند اهتراء عينة النحاس
تمكّن وحدة المغناطيس الكهربائي ذات التحميل المتذبذب المتوازي في Nanovea T2000 Tribometer المستخدمين من التحقيق في تأثير السعة الخاضعة للتحكم وتذبذبات التردد على سلوك تآكل المواد. يتم تسجيل COF لعينات النحاس في الموقع كما هو موضح في الشكل 6. تُظهر عينة النحاس COF ثابتًا بمقدار 0.3 تقريبًا أثناء القياس الأول 330 ثورة ، مما يدل على تشكيل اتصال ثابت في الواجهة ومسار تآكل سلس نسبيًا . مع استمرار اختبار التآكل ، يشير تباين COF إلى حدوث تغيير في آلية التآكل. بالمقارنة ، تُظهر اختبارات التآكل تحت 5 N تذبذب يتم التحكم في السعة عند 50 N سلوك تآكل مختلف: يزيد COF على الفور في بداية عملية التآكل ، ويظهر تباينًا كبيرًا خلال اختبار التآكل. يشير هذا السلوك لـ COF إلى أن التذبذب المفروض في الحمل الطبيعي يلعب دورًا في حالة الانزلاق غير المستقرة عند جهة الاتصال.
يقارن الشكل 7 شكل مسار التآكل المقاس بواسطة مقياس التشكيل البصري المتكامل غير المتصل. يمكن ملاحظة أن عينة النحاس تحت سعة تذبذب مضبوطة تبلغ 5 نيوتن تظهر مسار تآكل أكبر بكثير بحجم 1.35 × 109 ميكرومتر 3 ، مقارنة بـ 5.03 × 108 ميكرومتر في ظل عدم وجود تذبذب مفروض. يعمل التذبذب المتحكم فيه على تسريع معدل التآكل بشكل كبير بعامل ~ 2.7 ، مما يُظهر التأثير الحاسم للتذبذب على سلوك التآكل.
التذبذب المتحكم فيه عند اهتراء طلاء TiN
يظهر في الشكل 8. COF ومسارات التآكل لعينة طلاء TiN. يُظهر طلاء TiN سلوكيات تآكل مختلفة بشكل كبير تحت التذبذب كما يتضح من تطور COF أثناء الاختبارات. يُظهر طلاء TiN ثابت COF بمقدار 0.3 ~ بعد فترة التشغيل في بداية اختبار التآكل ، بسبب التلامس الانزلاقي المستقر عند السطح البيني بين طلاء TiN وكرة Al₂O. ومع ذلك ، عندما يبدأ طلاء TiN بالفشل ، تخترق كرة Al₂O من خلال الطلاء وتنزلق ضد الركيزة الفولاذية الجديدة تحتها. يتم إنشاء كمية كبيرة من حطام طلاء TiN الصلب في مسار التآكل في نفس الوقت ، مما يؤدي إلى تآكل انزلاقي ثابت بجسمين إلى تآكل تآكل ثلاثي الأجسام. يؤدي مثل هذا التغيير في خصائص الزوجين الماديين إلى زيادة الاختلافات في تطور COF. يعمل التذبذب المفروض 5 N و 10 N على تسريع فشل طلاء TiN من حوالي 400 دورة إلى أقل من 100 دورة. تتفق مسارات التآكل الأكبر على عينات طلاء TiN بعد اختبارات التآكل تحت التذبذب المتحكم فيه مع مثل هذا التغيير في COF.
يتمتع نظام التحميل الهوائي المتقدم لمقياس Nanovea T2000 بميزة جوهرية كمثبط اهتزاز سريع بشكل طبيعي مقارنة بأنظمة الأحمال الميتة التقليدية. هذه الميزة التكنولوجية للأنظمة الهوائية صحيحة مقارنة بالأنظمة التي يتم التحكم فيها بالحمل والتي تستخدم مجموعة من المحركات المؤازرة والينابيع لتطبيق الحمل. تضمن هذه التقنية تقييم التآكل الموثوق به والتحكم فيه بشكل أفضل عند الأحمال العالية كما هو موضح في هذه الدراسة. بالإضافة إلى ذلك ، يمكن لنظام تحميل الحلقة المغلقة النشطة تغيير الحمل العادي إلى القيمة المطلوبة أثناء اختبارات التآكل لمحاكاة تطبيقات الحياة الواقعية التي تظهر في أنظمة الفرامل.
بدلاً من التأثير من ظروف الاهتزاز غير المتحكم فيها أثناء الاختبارات ، أظهرنا أن Nanovea T2000 Dynamic-Load Tribometer يمكّن المستخدمين من التقييم الكمي للسلوكيات الترايبولوجية للمواد في ظل ظروف تذبذب محكومة مختلفة. تلعب الاهتزازات دورًا مهمًا في سلوك التآكل لعينات طلاء المعدن والسيراميك.
توفر وحدة التحميل المتذبذب الكهرومغناطيسي المتوازي اهتزازات يتم التحكم فيها بدقة عند السعات والترددات المحددة ، مما يسمح للمستخدمين بمحاكاة عملية التآكل في ظل ظروف الحياة الواقعية عندما تكون الاهتزازات البيئية غالبًا عاملاً مهمًا. في حالة وجود تذبذبات مفروضة أثناء التآكل ، تُظهر عينات طلاء Cu و TiN زيادة كبيرة في معدل التآكل. يعد تطور معامل الاحتكاك وإزاحة القلم المقاس في الموقع مؤشرات مهمة لأداء المادة أثناء التطبيقات الترايبولوجية. يوفر مقياس التشكيل الجانبي غير المتصل ثلاثي الأبعاد أداة لقياس حجم التآكل بدقة وتحليل الشكل التفصيلي لمسارات التآكل في ثوانٍ ، مما يوفر مزيدًا من التبصر في الفهم الأساسي لآلية التآكل.
تم تجهيز T2000 بمحرك عزم دوران عالي الجودة وعالي الضبط ذاتيًا مع سرعة داخلية 20 بت ومشفّر موضع خارجي 16 بت. إنه يتيح لمقياس الترايبوميتر توفير نطاق لا مثيل له من سرعات الدوران من 0.01 إلى 5000 دورة في الدقيقة والتي يمكن أن تتغير في القفزات التدريجية أو بمعدلات مستمرة. على عكس الأنظمة التي تستخدم مستشعر عزم الدوران الموجود في الأسفل ، يستخدم Nanovea Tribometer أعلى خلية تحميل عالية الدقة لقياس قوى الاحتكاك بدقة وبشكل منفصل.
تقدم Nanovea Tribometer اختبارات تآكل واحتكاك دقيقة وقابلة للتكرار باستخدام أوضاع دوارة وخطية متوافقة مع ISO و ASTM (بما في ذلك اختبارات 4 كرات ، وغسالة دفع ، واختبارات كتلة على الحلقة) ، مع تآكل اختياري عالي درجة الحرارة ، وتزييت ، ووحدات تآكل تريبو متوفرة في واحد مسبق. -نظام متكامل. تعد مجموعة Nanovea T2000 التي لا مثيل لها حلاً مثاليًا لتحديد النطاق الكامل للخصائص الترايبولوجية للطلاء الرقيق أو السميك ، واللين أو الصلب ، والأغشية ، والركائز.
الآن ، لنتحدث عن طلبك
طلاء تحليل قشر البرتقال باستخدام مقياس ثلاثي الأبعاد
طلاء تحليل قشر البرتقال باستخدام مقياس ثلاثي الأبعاد
مقدمة
يؤثر حجم وتكرار الهياكل السطحية على الركائز على جودة الطلاء اللامع. يمكن أن يتطور نسيج قشر البرتقال ، الذي سمي على اسم مظهره ، من تأثير الركيزة وتقنية تطبيق الطلاء. عادة ما يتم قياس مشاكل النسيج من خلال التموج وطول الموجة والتأثير البصري الذي تحدثه على الطلاء اللامع. تؤدي القوام الأصغر إلى تقليل اللمعان بينما تؤدي القوام الأكبر إلى ظهور تموجات مرئية على السطح المطلي. إن فهم تطور هذه القوام وعلاقته بالركائز والتقنيات أمر بالغ الأهمية لمراقبة الجودة.
أهمية قياس الملامح لقياس النسيج
على عكس الأدوات التقليدية ثنائية الأبعاد المستخدمة لقياس النسيج اللامع ، يوفر القياس ثلاثي الأبعاد غير الملامس بسرعة صورة ثلاثية الأبعاد تُستخدم لفهم خصائص السطح مع القدرة الإضافية على استكشاف مجالات الاهتمام بسرعة. بدون السرعة والمراجعة ثلاثية الأبعاد ، ستعتمد بيئة مراقبة الجودة فقط على المعلومات ثنائية الأبعاد التي توفر القليل من القدرة على التنبؤ بالسطح بأكمله. يتيح فهم القوام بالأبعاد الثلاثية أفضل اختيار لتدابير المعالجة والتحكم. يعتمد ضمان مراقبة الجودة لمثل هذه المعلمات بشكل كبير على فحص قابل للقياس الكمي وقابل للتكرار وموثوق. نانوفيا 3D عدم الاتصال بروفایلومتر استخدم تقنية (كنفوكل) اللونية للحصول على قدرة فريدة لقياس الزوايا الحادة التي تم العثور عليها أثناء القياس السريع. تنجح مقاييس ملف تعريف نانوفيا حيث تفشل التقنيات الأخرى في توفير بيانات موثوقة بسبب ملامسة المسبار أو اختلاف السطح أو الزاوية أو الانعكاسية.
هدف القياس
في هذا التطبيق ، يقيس Nanovea HS2000L ملمس قشر البرتقال للطلاء اللامع. هناك معلمات سطحية لا حصر لها يتم حسابها تلقائيًا من مسح السطح ثلاثي الأبعاد. نقوم هنا بتحليل سطح ثلاثي الأبعاد ممسوح ضوئيًا من خلال تحديد خصائص نسيج قشر برتقال الطلاء.
مقياس Nanovea HS2000L الخواص والارتفاع لطلاء قشر البرتقال. حدد نسيج قشر البرتقال اتجاه النمط العشوائي بـ 94.4%. تحدد معلمات الارتفاع النسيج بفارق ارتفاع يبلغ 24.84 ميكرون.
منحنى نسبة الاتجاه في الشكل 4 هو تمثيل رسومي لتوزيع العمق. هذه ميزة تفاعلية داخل البرنامج تتيح للمستخدم عرض التوزيعات والنسب المئوية على أعماق متفاوتة. يعطي المظهر الجانبي المستخرج في الشكل 5 قيم خشونة مفيدة لنسيج قشر البرتقال. يُظهر استخراج الذروة فوق عتبة 144 ميكرون نسيج قشر البرتقال. يتم تعديل هذه المعلمات بسهولة لمناطق أو معلمات أخرى ذات أهمية.
خاتمة
في هذا التطبيق ، يميز مقياس التشكيل الجانبي عدم التلامس Nanovea HS2000L 3D بدقة كلاً من التفاصيل الطبوغرافية والنانومترية لنسيج قشر البرتقال الدهان على الطلاء اللامع. يتم تحديد مجالات الاهتمام من قياسات الأسطح ثلاثية الأبعاد وتحليلها بسرعة باستخدام العديد من القياسات المفيدة (البعد ، نسيج النهاية الخشنة ، طبوغرافيا شكل الشكل ، تسطيح صفحة الالتواء ، مساحة الحجم ، ارتفاع الخطوة ، إلخ.). توفر المقاطع العرضية ثنائية الأبعاد المختارة بسرعة مجموعة كاملة من موارد قياس السطح على نسيج لامع. يمكن تحليل مجالات الاهتمام الخاصة بشكل أكبر باستخدام وحدة AFM المتكاملة. تتراوح سرعة Nanovea 3D Profilometer من <1 مم / ثانية إلى 500 مم / ثانية لملاءمتها في تطبيقات البحث لاحتياجات الفحص عالي السرعة. تحتوي مقاييس ملف التعريف Nanovea 3D على مجموعة واسعة من التكوينات لتناسب تطبيقك.
الآن ، لنتحدث عن طلبك
تصنيفات
- ملحوظات التطبيقات
- حظر على Ring Tribology
- تريبولوجي التآكل
- اختبار الاحتكاك | معامل الاحتكاك
- اختبار ميكانيكي بدرجة حرارة عالية
- ارتفاع درجة الحرارة ترايبولوجي
- الرطوبة والغازات
- اختبار الرطوبة الميكانيكية
- المسافة البادئة | الزحف والاسترخاء
- المسافة البادئة | كسر صلابة
- المسافة البادئة | الصلابة والمرونة
- المسافة البادئة | الخسارة والتخزين
- المسافة البادئة | الإجهاد مقابل الإجهاد
- المسافة البادئة | قوة الغلة والتعب
- الفحوصات المخبرية
- علم الترايبولوجي الخطي
- الاختبار الميكانيكي السائل
- الترايبولوجي السائل
- ترايبولوجي ذو درجة حرارة منخفضة
- الاختبار الميكانيكي
- بيان صحفي
- قياس الملامح | التسطيح والصفاء
- قياس الملامح | الهندسة والشكل
- قياس الملامح | الخشونة والانتهاء
- قياس الملامح | ارتفاع الخطوة وسمكها
- قياس الملامح | الملمس والحبوب
- قياس الملامح | الحجم والمساحة
- اختبار قياس الملامح
- الحلقة على Ring Tribology
- الترايبولوجي الدوراني
- اختبار الخدش | فشل لاصق
- اختبار الخدش | فشل متماسك
- اختبار الخدش | ارتداء متعدد التمريرات
- اختبار الخدش | صلابة الخدش
- خدش اختبار الترايبولوجي
- عرض تجاري
- اختبار ترايبولوجي
- غير مصنف
الأرشيف
- سبتمبر 2023
- أغسطس 2023
- يونيو 2023
- مايو 2023
- يوليو 2022
- مايو 2022
- أبريل 2022
- يناير 2022
- ديسمبر 2021
- نوفمبر 2021
- أكتوبر 2021
- سبتمبر 2021
- أغسطس 2021
- يوليو 2021
- يونيو 2021
- مايو 2021
- مارس 2021
- فبراير 2021
- ديسمبر 2020
- نوفمبر 2020
- أكتوبر 2020
- سبتمبر 2020
- يوليو 2020
- مايو 2020
- أبريل 2020
- مارس 2020
- فبراير 2020
- يناير 2020
- نوفمبر 2019
- أكتوبر 2019
- سبتمبر 2019
- أغسطس 2019
- يوليو 2019
- يونيو 2019
- مايو 2019
- أبريل 2019
- مارس 2019
- يناير 2019
- ديسمبر 2018
- نوفمبر 2018
- أكتوبر 2018
- سبتمبر 2018
- يوليو 2018
- يونيو 2018
- مايو 2018
- أبريل 2018
- مارس 2018
- فبراير 2018
- نوفمبر 2017
- أكتوبر 2017
- سبتمبر 2017
- أغسطس 2017
- يونيو 2017
- مايو 2017
- أبريل 2017
- مارس 2017
- فبراير 2017
- يناير 2017
- نوفمبر 2016
- أكتوبر 2016
- أغسطس 2016
- يوليو 2016
- يونيو 2016
- مايو 2016
- أبريل 2016
- مارس 2016
- فبراير 2016
- يناير 2016
- ديسمبر 2015
- نوفمبر 2015
- أكتوبر 2015
- سبتمبر 2015
- أغسطس 2015
- يوليو 2015
- يونيو 2015
- مايو 2015
- أبريل 2015
- مارس 2015
- فبراير 2015
- يناير 2015
- نوفمبر 2014
- أكتوبر 2014
- سبتمبر 2014
- أغسطس 2014
- يوليو 2014
- يونيو 2014
- مايو 2014
- أبريل 2014
- مارس 2014
- فبراير 2014
- يناير 2014
- ديسمبر 2013
- نوفمبر 2013
- أكتوبر 2013
- سبتمبر 2013
- أغسطس 2013
- يوليو 2013
- يونيو 2013
- مايو 2013
- أبريل 2013
- مارس 2013
- فبراير 2013
- يناير 2013
- ديسمبر 2012
- نوفمبر 2012
- أكتوبر 2012
- سبتمبر 2012
- أغسطس 2012
- يوليو 2012
- يونيو 2012
- مايو 2012
- أبريل 2012
- مارس 2012
- فبراير 2012
- يناير 2012
- ديسمبر 2011
- نوفمبر 2011
- أكتوبر 2011
- سبتمبر 2011
- أغسطس 2011
- يوليو 2011
- يونيو 2011
- مايو 2011
- نوفمبر 2010
- يناير 2010
- أبريل 2009
- مارس 2009
- يناير 2009
- ديسمبر 2008
- أكتوبر 2008
- أغسطس 2007
- يوليو 2006
- مارس 2006
- يناير 2005
- أبريل 2004