EEUU/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTÁCTENOS

Categoría: Pruebas de tribología

 

Comparación del desgaste por abrasión en la tela vaquera

Introducción

La forma y la función de un tejido vienen determinadas por su calidad y durabilidad. El uso diario de los tejidos provoca el desgaste del material, por ejemplo, el amontonamiento, las pelusas y la decoloración. Una calidad deficiente de los tejidos utilizados en la ropa puede provocar a menudo la insatisfacción del consumidor y el deterioro de la marca.

Intentar cuantificar las propiedades mecánicas de los tejidos puede plantear muchos problemas. La estructura del hilo e incluso la fábrica en la que se ha producido pueden dar lugar a una mala reproducibilidad de los resultados de las pruebas. Esto dificulta la comparación de los resultados de las pruebas de diferentes laboratorios. Medir el rendimiento del desgaste de los tejidos es fundamental para los fabricantes, distribuidores y minoristas de la cadena de producción textil. Una medición de la resistencia al desgaste bien controlada y reproducible es crucial para garantizar un control de calidad fiable del tejido.

Haga clic para leer la nota de aplicación completa.

¿Desgaste rotativo o lineal y COF? (Un estudio exhaustivo con el tribómetro Nanovea)

El desgaste es el proceso de eliminación y deformación del material sobre una superficie como resultado de la acción mecánica de la superficie opuesta. Está influenciado por una variedad de factores, incluido el deslizamiento unidireccional, el rodamiento, la velocidad, la temperatura y muchos otros. El estudio del desgaste, la tribología, abarca muchas disciplinas, desde la física y la química hasta la ingeniería mecánica y la ciencia de los materiales. La naturaleza compleja del desgaste requiere estudios aislados sobre mecanismos o procesos de desgaste específicos, como el desgaste adhesivo, el desgaste abrasivo, la fatiga superficial, el desgaste por fricción y el desgaste erosivo. Sin embargo, el “desgaste industrial” comúnmente implica múltiples mecanismos de desgaste que ocurren en sinergia.

Las pruebas de desgaste lineal alternativo y rotativo (pasador sobre disco) son dos configuraciones ampliamente utilizadas que cumplen con la norma ASTM para medir el comportamiento del desgaste por deslizamiento de los materiales. Dado que el valor de la tasa de desgaste de cualquier método de prueba de desgaste se usa a menudo para predecir la clasificación relativa de combinaciones de materiales, es extremadamente importante confirmar la repetibilidad de la tasa de desgaste medida usando diferentes configuraciones de prueba. Esto permite a los usuarios considerar cuidadosamente el valor de la tasa de desgaste informado en la literatura, lo cual es fundamental para comprender las características tribológicas de los materiales.

Más información

Prueba de desgaste de la madera con el tribómetro Nanovea

Importancia de comparar el desgaste del acabado de la madera y el COF

La madera se ha utilizado durante miles de años como material de construcción para hogares, muebles y suelos. Tiene una combinación de belleza natural y durabilidad, lo que lo convierte en un candidato ideal para pisos. A diferencia de las alfombras, los pisos de madera mantienen su color durante mucho tiempo y se pueden limpiar y mantener fácilmente; sin embargo, al ser un material natural, la mayoría de los pisos de madera requieren la aplicación de un acabado superficial para proteger la madera de diversos tipos de daños, como raspaduras y astillándose con el tiempo. En este estudio, una Nanovea Tribómetro se utilizó para medir la tasa de desgaste y el coeficiente de fricción (COF) para comprender mejor el rendimiento comparativo de tres acabados de madera.

El comportamiento de servicio de una especie de madera utilizada para suelos suele estar relacionado con su resistencia al desgaste. El cambio en la estructura celular y de fibra individual de las diferentes especies de madera contribuye a sus diferentes comportamientos mecánicos y tribológicos. Las pruebas de servicio reales de la madera como material para suelos son caras, difíciles de duplicar y requieren largos periodos de tiempo de prueba. Por ello, resulta valioso desarrollar una prueba de desgaste sencilla que pueda producir resultados fiables, reproducibles y directos.

Objetivo de medición

En este estudio, simulamos y comparamos los comportamientos de desgaste de tres tipos de madera para mostrar la capacidad del Tribómetro Nanovea en la evaluación de las propiedades tribológicas de la madera de forma controlada y monitorizada.

Discusión

Descripción de la muestra: La madera dura de abedul antiguo tiene un acabado de 7 capas de óxido de aluminio, que proporciona protección contra el desgaste diario. Courtship Grey Oak, & Santos Mahogany son dos tipos de suelos laminados que varían en el acabado de la superficie y el brillo. El Courtship Grey Oak tiene un color gris pizarra, un acabado EIR y poco brillo. Por otro lado, el Santos Mahogany es de color burdeos oscuro, preacabado y de alto brillo, lo que permite ocultar más fácilmente los arañazos y defectos de la superficie.

La evolución del COF durante las pruebas de desgaste de las tres muestras de suelos de madera se representa en la Fig. 1. Las muestras de madera dura de abedul antiguo, roble gris de cortejo y caoba de Santos mostraron un comportamiento diferente del COF.

Se puede observar en el gráfico anterior que la madera dura de abedul antiguo fue la única muestra que demostró un COF constante durante toda la prueba. El brusco aumento del COF del roble gris de cortejo y su posterior disminución gradual podrían indicar que la rugosidad de la superficie de la muestra contribuyó en gran medida a su comportamiento del COF. A medida que la muestra se desgasta, la rugosidad de la superficie disminuye y se vuelve más homogénea, lo que explica la disminución del COF a medida que la superficie de la muestra se vuelve más suave debido al desgaste mecánico. El COF de la caoba de Santos muestra un aumento gradual y suave del COF al principio de la prueba y luego pasa bruscamente a una tendencia de COF entrecortada. Esto podría indicar que, una vez que el revestimiento del laminado comenzó a desgastarse, la bola de acero (contramaterial) entró en contacto con el sustrato de madera, que se desgastó de forma más rápida y turbulenta, creando el comportamiento más ruidoso del COF hacia el final de la prueba.

 

Madera dura de abedul antigua:

Cortejo de roble gris:

Santos Caoba

La tabla 2 resume los resultados de los escaneos de las huellas de desgaste y el análisis de todas las muestras de suelos de madera después de realizar las pruebas de desgaste. La información detallada y las imágenes de cada muestra pueden verse en las Figuras 2-7. Basándonos en la comparación del índice de desgaste entre las tres muestras, podemos deducir que la Caoba Santos resultó ser menos resistente al desgaste mecánico que las otras dos muestras. La madera dura de abedul antigua y el roble gris de cortejo tuvieron tasas de desgaste muy similares, aunque su comportamiento de desgaste durante las pruebas difiere significativamente. La madera dura de abedul antigua tuvo una tendencia al desgaste gradual y más uniforme, mientras que el roble gris corteza mostró una huella de desgaste poco profunda y picada debido a la textura y el acabado de la superficie preexistente.

Conclusión:

En este estudio, mostramos la capacidad del Tribómetro de Nanovea para evaluar el coeficiente de fricción y la resistencia al desgaste de tres tipos de madera, la madera dura de abedul antigua, el roble gris de cortejo y la caoba de Santos, de forma controlada y monitorizada. Las propiedades mecánicas superiores de la madera dura de abedul antigua conducen a su mejor resistencia al desgaste. La textura y la homogeneidad de la superficie de la madera desempeñan un papel importante en el comportamiento al desgaste. La textura de la superficie del Roble Gris Cortejo, como los huecos o grietas entre las fibras celulares de la madera, pueden convertirse en los puntos débiles donde se inicia y propaga el desgaste.

AHORA, HABLEMOS DE SU SOLICITUD

Evaluación de las pastillas de freno con la tribología


La importancia de evaluar el rendimiento de las almohadillas de freno

Las pastillas de freno son compuestos, un material formado por múltiples ingredientes, que debe ser capaz de satisfacer un gran número de requisitos de seguridad. Las pastillas de freno ideales tienen un alto coeficiente de fricción (COF), un bajo índice de desgaste, un ruido mínimo y siguen siendo fiables en entornos variables. Para garantizar que la calidad de las pastillas de freno sea capaz de satisfacer sus requisitos, se pueden utilizar los ensayos tribológicos para identificar las especificaciones críticas.


La importancia de la fiabilidad de las pastillas de freno es muy alta; la seguridad de los pasajeros no debe descuidarse nunca. Por ello, es fundamental reproducir las condiciones de funcionamiento e identificar los posibles puntos de fallo.
Con la Nanovea Tribómetro, se aplica una carga constante entre un pasador, una bola o un material plano y un contramaterial en constante movimiento. La fricción entre los dos materiales se recoge con una celda de carga rígida, lo que permite recopilar las propiedades del material a diferentes cargas y velocidades y se prueba en entornos líquidos, corrosivos o de alta temperatura.



Objetivo de medición

En este estudio, se estudió el coeficiente de fricción de las pastillas de freno bajo un entorno de temperatura continuamente creciente desde la temperatura ambiente hasta los 700°C. La temperatura ambiental se elevó in situ hasta que se observó un fallo notable de la pastilla de freno. Se colocó un termopar en la parte posterior de la pastilla para medir la temperatura cerca de la interfaz de deslizamiento.



Procedimiento de prueba y procedimientos




Resultados y discusión

Este estudio se centra principalmente en la temperatura a la que empiezan a fallar las pastillas de freno. Los COF obtenidos no representan valores reales; el material de las patillas no es el mismo que el de los rotores de freno. También hay que tener en cuenta que los datos de temperatura recogidos son los de la clavija y no los de la interfaz de deslizamiento

 








Al inicio de la prueba (temperatura ambiente), el COF entre el pasador SS440C y la pastilla de freno dio un valor constante de aproximadamente 0,2. A medida que aumenta la temperatura, el COF se incrementa de forma constante y alcanza un valor máximo de 0,26 cerca de los 350°C. Por encima de 390°C, el COF empieza a disminuir rápidamente. El COF empezó a aumentar de nuevo hasta 0,2 a 450°C, pero empieza a disminuir hasta un valor de 0,05 poco después.


La temperatura a la que las pastillas de freno fallaron sistemáticamente se identificó a temperaturas superiores a 500°C. Por encima de esta temperatura, el COF ya no era capaz de mantener el COF inicial de 0,2.



Conclusión:




Las pastillas de freno han mostrado un fallo constante a una temperatura superior a los 500°C. Su COF de 0,2 sube lentamente hasta un valor de 0,26 antes de bajar a 0,05 al final de la prueba (580°C). La diferencia entre 0,05 y 0,2 es un factor de 4. Esto significa que la fuerza normal a 580°C debe ser cuatro veces mayor que a temperatura ambiente para conseguir la misma fuerza de frenado.


Aunque no se incluye en este estudio, el tribómetro Nanovea también puede realizar pruebas para observar otra propiedad importante de las pastillas de freno: la tasa de desgaste. Utilizando nuestros perfilómetros 3D sin contacto, se puede obtener el volumen de la huella de desgaste para calcular la rapidez con la que se desgastan las muestras. Las pruebas de desgaste pueden realizarse con el tribómetro Nanovea en diferentes condiciones y entornos de prueba para simular mejor las condiciones de funcionamiento.

AHORA, HABLEMOS DE SU SOLICITUD

Desgaste por abrasión de textiles mediante tribómetro

La medición de la resistencia a la abrasión de los tejidos es un gran reto. Son muchos los factores que intervienen durante el ensayo, entre ellos las propiedades mecánicas de las fibras, la estructura de los hilos y la trama de los tejidos. Esto puede dar lugar a una escasa reproducibilidad de los resultados de las pruebas y dificultar la comparación de los valores comunicados por distintos laboratorios. El rendimiento del desgaste de los tejidos es fundamental para los fabricantes, distribuidores y minoristas de la cadena de producción textil. Una prueba bien controlada, cuantificable y reproducible Tribómetro La medición de la resistencia al desgaste es crucial para garantizar un control de calidad fiable de la producción de tejidos.

Desgaste por abrasión de textiles mediante tribómetro

Rendimiento de la rigidez de las cerdas del cepillo mediante el tribómetro

Los pinceles se encuentran entre las herramientas más básicas y utilizadas del mundo. Pueden utilizarse para eliminar material (cepillo de dientes, cepillo arqueológico, cepillo de amoladora de banco), aplicar material (cepillo de pintura, cepillo de maquillaje, cepillo de dorado), peinar filamentos o añadir un dibujo. Debido a las fuerzas mecánicas y abrasivas que se ejercen sobre ellos, los cepillos deben ser sustituidos constantemente tras un uso moderado. Por ejemplo, los cabezales de los cepillos de dientes deben sustituirse cada tres o cuatro meses debido a que se deshilachan como consecuencia del uso repetido. Si los filamentos de las fibras del cepillo de dientes son demasiado rígidos, se corre el riesgo de desgastar el diente real en lugar de la placa blanda. Hacer las fibras del cepillo de dientes demasiado blandas hace que el cepillo pierda su forma más rápidamente. Es necesario comprender el cambio de curvatura del cepillo, así como el desgaste y el cambio general de la forma de los filamentos en diferentes condiciones de carga para diseñar cepillos que cumplan mejor su aplicación.

Rendimiento de la rigidez de las cerdas del cepillo mediante el tribómetro

Tribología a baja temperatura

Tribología a baja temperatura

Se necesita una medición fiable de la tribología a baja temperatura, del coeficiente de fricción estático y dinámico, COF, así como del comportamiento del desgaste, para comprender mejor el rendimiento tribológico de los materiales para aplicaciones bajo cero. Proporciona una herramienta útil para correlacionar la propiedad de fricción con la influencia de diversos factores, como las reacciones en la interfaz, las características de la superficie entrelazada, la cohesión de las películas superficiales e incluso las uniones estáticas sólidas microscópicas entre superficies a bajas temperaturas.

Tribología del caucho a baja temperatura

Tribología de alta temperatura

Dureza de los arañazos a alta temperatura mediante un tribómetro

Los materiales se seleccionan en función de los requisitos de servicio. Para las aplicaciones que implican cambios de temperatura significativos y gradientes térmicos, es fundamental investigar las propiedades mecánicas de los materiales a altas temperaturas para ser plenamente conscientes de los límites mecánicos. Los materiales, especialmente los polímeros, suelen ablandarse a altas temperaturas. Muchos de los fallos mecánicos se deben a la deformación por fluencia y a la fatiga térmica que sólo tienen lugar a temperaturas elevadas. Por lo tanto, es necesario disponer de una técnica fiable para medir la dureza al rayado a altas temperaturas, con el fin de garantizar una selección adecuada de los materiales para aplicaciones a altas temperaturas.

Dureza de los arañazos a alta temperatura mediante un tribómetro

 

Medición de la dureza de los arañazos con un tribómetro

En este estudio, el Nanovea Tribómetro se utiliza para medir la dureza al rayado de diferentes metales. El
La capacidad de realizar mediciones de dureza al rayado con alta precisión y reproducibilidad hace que
Nanovea Tribometer un sistema más completo para las evaluaciones tribológicas y mecánicas.

Medición de la dureza de los arañazos con un tribómetro

Propiedades mecánicas y tribológicas de la fibra de carbono

Combinado con la prueba de desgaste por Tribómetro y el análisis de la superficie mediante el perfilómetro óptico 3D, nos
mostrar la versatilidad y precisión de los instrumentos Nanovea en los ensayos de materiales compuestos
con propiedades mecánicas direccionales.

Propiedades mecánicas y tribológicas de la fibra de carbono