EEUU/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTÁCTENOS

Categoría: Pruebas de tribología

 

Pruebas de desgaste por rozamiento Tribología

Evaluación del desgaste por rozamiento

EVALUACIÓN DEL DESGASTE POR ROZAMIENTO

Evaluación del desgaste por rozamiento en la aviación

El autor:

Duanjie Li, Doctor en Filosofía

Revisado por

Jocelyn Esparza

Evaluación del desgaste por rozamiento en minería y metalurgia

INTRODUCCIÓN

El rozamiento es "un proceso especial de desgaste que se produce en la zona de contacto entre dos materiales sometidos a carga y sometidos a un diminuto movimiento relativo por vibración o alguna otra fuerza". Cuando las máquinas están en funcionamiento, las vibraciones se producen inevitablemente en las uniones atornilladas o con pasadores, entre componentes que no están destinados a moverse, y en los acoplamientos y cojinetes oscilantes. La amplitud de este movimiento de deslizamiento relativo suele ser del orden de micrómetros a milímetros. Estos movimientos repetitivos de baja amplitud provocan un grave desgaste mecánico localizado y la transferencia de material en la superficie, lo que puede reducir la eficacia de la producción, el rendimiento de la máquina o incluso dañarla.

Importancia de lo cuantitativo
Evaluación del desgaste por rozamiento

El desgaste por fricción a menudo implica varios mecanismos de desgaste complejos que tienen lugar en la superficie de contacto, incluida la abrasión de dos cuerpos, la adhesión y/o el desgaste por fatiga por fricción. Para comprender el mecanismo de desgaste por fricción y seleccionar el mejor material para la protección contra el desgaste por fricción, se necesita una evaluación confiable y cuantitativa del desgaste por fricción. El comportamiento del desgaste por fricción está influenciado significativamente por el entorno de trabajo, como la amplitud del desplazamiento, la carga normal, la corrosión, la temperatura, la humedad y la lubricación. Un versátil tribómetro que puedan simular las diferentes condiciones de trabajo realistas serán ideales para la evaluación del desgaste por fricción.

Steven R. Lampman, Manual ASM: Volumen 19: Fatiga y Fractura
http://www.machinerylubrication.com/Read/693/fretting-wear

OBJETIVO DE MEDICIÓN

En este estudio, evaluamos los comportamientos de desgaste por rozamiento de una muestra de acero inoxidable SS304 a diferentes velocidades de oscilación y temperaturas para mostrar la capacidad de NANOVEA T50 Tribómetro en la simulación del proceso de desgaste por rozamiento del metal de forma bien controlada y monitorizada.

NANOVEA

T50

CONDICIONES DE PRUEBA

La resistencia al desgaste por rozamiento de una muestra de acero inoxidable SS304 se evaluó mediante NANOVEA Tribómetro con módulo de desgaste lineal recíproco. Se utilizó una bola de WC (6 mm de diámetro) como contramaterial. La pista de desgaste se examinó utilizando un NANOVEA Perfilador 3D sin contacto. 

La prueba de rozamiento se realizó a temperatura ambiente (RT) y a 200 °C para estudiar el efecto de la alta temperatura en la resistencia al desgaste por rozamiento de la muestra de SS304. Una placa calefactora situada en el escenario de la muestra calentó la muestra durante el ensayo de rozamiento a 200 °C. La tasa de desgaste, Kse evaluó mediante la fórmula K=V/(F×s), donde V es el volumen desgastado, F es la carga normal, y s es la distancia de deslizamiento.

Tenga en cuenta que en este estudio se ha utilizado como ejemplo una bola de WC como material de contención. Cualquier material sólido con diferentes formas y acabados superficiales puede aplicarse utilizando un accesorio personalizado para simular la situación de aplicación real.

PARÁMETROS DE LA PRUEBA

de las mediciones de desgaste

RESULTADOS Y DISCUSIÓN

El perfil de la huella de desgaste en 3D permite determinar directamente y con precisión la pérdida de volumen de la huella de desgaste calculada por el NANOVEA Software de análisis de montañas. 

La prueba de desgaste alternativo a una velocidad baja de 100 rpm y a temperatura ambiente muestra una pequeña huella de desgaste de 0,014 mm³. En comparación, la prueba de desgaste por rozamiento realizada a una velocidad elevada de 1.000 rpm crea una huella de desgaste sustancialmente mayor con un volumen de 0,12 mm³. Este proceso de desgaste acelerado puede atribuirse al elevado calor y a las intensas vibraciones generadas durante el ensayo de desgaste por fricción, que promueven la oxidación de los restos metálicos y dan lugar a una grave abrasión de tres cuerpos. El ensayo de desgaste por fricción a una temperatura elevada de 200 °C forma una huella de desgaste mayor de 0,27 mm³.

La prueba de desgaste por rozamiento a 1000 rpm tiene una tasa de desgaste de 1,5×10-4 mm³/Nm, que es casi nueve veces mayor que en una prueba de desgaste alternativo a 100 rpm. La prueba de desgaste por fricción a una temperatura elevada acelera aún más la tasa de desgaste hasta 3,4×10-4 mm³/Nm. Una diferencia tan significativa en la resistencia al desgaste medida a diferentes velocidades y temperaturas muestra la importancia de las simulaciones adecuadas del desgaste por rozamiento para aplicaciones realistas.

El comportamiento del desgaste puede cambiar drásticamente cuando se introducen pequeños cambios en las condiciones de prueba en el tribosistema. La versatilidad del NANOVEA El tribómetro permite medir el desgaste en diversas condiciones, como alta temperatura, lubricación, corrosión y otras. El control preciso de la velocidad y la posición mediante el motor avanzado permite a los usuarios realizar la prueba de desgaste a velocidades que van de 0,001 a 5000 rpm, lo que lo convierte en una herramienta ideal para que los laboratorios de investigación/prueba investiguen el desgaste por rozamiento en diferentes condiciones tribológicas.

Pistas de desgaste por rozamiento en diversas condiciones

bajo el microscopio óptico

Huellas de desgaste por rozamiento en diversas condiciones bajo el microscopio óptico

PERFILES 3D WEAR TRACKs

proporcionar una mayor comprensión de los fundamentos
del mecanismo de desgaste por rozamiento

Perfiles de pista de desgaste en 3d - trasteo

RESUMEN DE RESULTADOS DE LAS PISTAS DE DESGASTE

medido con diferentes parámetros de prueba

CONCLUSIÓN

En este estudio, mostramos la capacidad del NANOVEA Tribómetro en la evaluación del comportamiento de desgaste por rozamiento de una muestra de acero inoxidable SS304 de forma bien controlada y cuantitativa. 

La velocidad y la temperatura del ensayo desempeñan un papel fundamental en la resistencia al desgaste por frotamiento de los materiales. El elevado calor y las intensas vibraciones durante el trasteo dieron lugar a un desgaste sustancialmente acelerado de la muestra de SS304 en cerca de nueve veces. La elevada temperatura de 200 °C aumentó la tasa de desgaste a 3,4×10-4 mm3/Nm. 

La versatilidad del NANOVEA El tribómetro es una herramienta ideal para medir el desgaste por rozamiento en diversas condiciones, como alta temperatura, lubricación, corrosión y otras.

NANOVEA Los tribómetros ofrecen pruebas de desgaste y fricción precisas y repetibles mediante modos rotativos y lineales conformes a las normas ISO y ASTM, con módulos opcionales de desgaste a alta temperatura, lubricación y tribo-corrosión disponibles en un sistema preintegrado. Nuestra incomparable gama es una solución ideal para determinar toda la gama de propiedades tribológicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros.

AHORA, HABLEMOS DE SU SOLICITUD

Rodamientos de bolas: estudio de resistencia al desgaste por fuerzas elevadas



INTRODUCCIÓN

Un rodamiento de bolas utiliza bolas para reducir la fricción rotacional y soportar cargas radiales y axiales. Las bolas que ruedan entre las pistas del rodamiento producen un coeficiente de fricción (COF) mucho menor en comparación con dos superficies planas que se deslizan una contra otra. Los rodamientos de bolas suelen estar expuestos a elevados niveles de tensión de contacto, desgaste y condiciones ambientales extremas, como las altas temperaturas. Por lo tanto, la resistencia al desgaste de las bolas bajo altas cargas y condiciones ambientales extremas es fundamental para prolongar la vida útil del rodamiento de bolas y reducir el coste y el tiempo de las reparaciones y sustituciones.
Los rodamientos de bolas se encuentran en casi todas las aplicaciones que implican piezas móviles. Se utilizan habitualmente en las industrias del transporte, como la aeroespacial y la automovilística, así como en la industria del juguete, que fabrica artículos como fidget spinner y monopatines.

EVALUACIÓN DEL DESGASTE DE LOS RODAMIENTOS A ALTAS CARGAS

Los rodamientos de bolas se pueden fabricar a partir de una extensa lista de materiales. Los materiales más utilizados varían entre metales como el acero inoxidable y el acero al cromo o cerámicas como el carburo de tungsteno (WC) y el nitruro de silicio (Si3n4). Para garantizar que los rodamientos de bolas fabricados posean la resistencia al desgaste requerida ideal para las condiciones de la aplicación dada, son necesarias evaluaciones tribológicas confiables bajo cargas elevadas. Las pruebas tribológicas ayudan a cuantificar y contrastar los comportamientos de desgaste de diferentes rodamientos de bolas de forma controlada y monitoreada para seleccionar el mejor candidato para la aplicación específica.

OBJETIVO DE MEDICIÓN

En este estudio, mostramos un Nanovea Tribómetro como la herramienta ideal para comparar la resistencia al desgaste de diferentes rodamientos de bolas bajo cargas elevadas.

Figura 1: Montaje de la prueba de rodamiento.

PROCEDIMIENTO DE PRUEBA

El coeficiente de fricción, COF, y la resistencia al desgaste de los rodamientos de bolas fabricados con diferentes materiales se evaluaron con un tribómetro Nanovea. Se utilizó papel de lija de grano P100 como contramaterial. Las cicatrices de desgaste de los rodamientos se examinaron con un Nanovea Perfilador 3D sin contacto una vez concluidas las pruebas de desgaste. Los parámetros de la prueba se resumen en la Tabla 1. La tasa de desgaste, Kse evaluó mediante la fórmula K=V/(F×s), donde V es el volumen desgastado, F es la carga normal y s es la distancia de deslizamiento. Las cicatrices de desgaste de las bolas se evaluaron mediante un Nanovea Perfilador 3D sin contacto para garantizar una medición precisa del volumen de desgaste.
La función de posicionamiento radial motorizado automatizado permite que el tribómetro disminuya el radio de la pista de desgaste durante la duración de una prueba. Este modo de prueba se denomina prueba en espiral y garantiza que el rodamiento de bolas se deslice siempre sobre una nueva superficie del papel de lija (figura 2). Mejora significativamente la repetibilidad de la prueba de resistencia al desgaste de la bola. El avanzado codificador de 20 bits para el control interno de la velocidad y el codificador de 16 bits para el control externo de la posición proporcionan información precisa sobre la velocidad y la posición en tiempo real, lo que permite un ajuste continuo de la velocidad de rotación para lograr una velocidad de deslizamiento lineal constante en el contacto.
Tenga en cuenta que el papel de lija de grano P100 se utilizó para simplificar el comportamiento de desgaste entre varios materiales de bolas en este estudio y puede sustituirse por cualquier otra superficie de material. Se puede sustituir por cualquier material sólido para simular el comportamiento de una amplia gama de acoplamientos de materiales en condiciones reales de aplicación, como en líquido o lubricante.

Figura 2: Ilustración de las pasadas en espiral del rodamiento de bolas sobre el papel de lija.
Tabla 1: Parámetros de ensayo de las mediciones de desgaste.

 

RESULTADOS Y DISCUSIÓN

La tasa de desgaste es un factor vital para determinar la vida útil del rodamiento de bolas, mientras que un COF bajo es deseable para mejorar el rendimiento y la eficiencia del rodamiento. La figura 3 compara la evolución del COF de diferentes rodamientos de bolas contra el papel de lija durante las pruebas. La bola de acero al Cr muestra un COF mayor de ~0,4 durante la prueba de desgaste, en comparación con ~0,32 y ~0,28 para los rodamientos de bolas SS440 y Al2O3. Por otro lado, la bola de WC muestra un COF constante de ~0,2 durante toda la prueba de desgaste. Se puede observar una variación del COF a lo largo de cada prueba, que se atribuye a las vibraciones causadas por el movimiento de deslizamiento de las bolas contra la superficie rugosa del papel de lija.

 

Figura 3: Evolución del COF durante las pruebas de desgaste.

En la Figura 4 y la Figura 5 se comparan las cicatrices de desgaste de los rodamientos de bolas después de haberlas medido con un microscopio óptico y con el perfilador óptico sin contacto Nanovea, respectivamente, y en la Tabla 2 se resumen los resultados del análisis de la pista de desgaste. El perfilador Nanovea 3D determina con precisión el volumen de desgaste de los rodamientos de bolas, lo que permite calcular y comparar las tasas de desgaste de los diferentes rodamientos de bolas. Se puede observar que las bolas de acero al Cr y SS440 presentan cicatrices de desgaste aplanadas mucho más grandes en comparación con las bolas de cerámica, es decir, Al2O3 y WC después de las pruebas de desgaste. Las bolas de acero al Cr y SS440 tienen índices de desgaste comparables de 3,7×10-3 y 3,2×10-3 m3/N m, respectivamente. En comparación, la bola de Al2O3 muestra una mayor resistencia al desgaste, con un índice de desgaste de 7,2×10-4 m3/N m. La bola de WC apenas presenta rasguños menores en la zona de la pista de desgaste poco profunda, lo que resulta en un índice de desgaste significativamente reducido de 3,3×10-6 mm3/N m.

Figura 4: Cicatrices de desgaste de los rodamientos después de las pruebas.

Figura 5: Morfología 3D de las cicatrices de desgaste en los rodamientos.

Tabla 2: Análisis de las cicatrices de desgaste de los rodamientos.

La figura 6 muestra imágenes al microscopio de las huellas de desgaste producidas en el papel de lija por los cuatro rodamientos de bolas. Es evidente que la bola de WC produjo la pista de desgaste más severa (eliminando casi todas las partículas de arena en su camino) y posee la mejor resistencia al desgaste. En comparación, las bolas de acero al Cr y SS440 dejaron una gran cantidad de restos metálicos en la huella de desgaste del papel de lija.
Estas observaciones demuestran aún más la importancia de las ventajas de una prueba en espiral. Garantiza que el rodamiento de bolas se deslice siempre sobre una nueva superficie del papel de lija, lo que mejora significativamente la repetibilidad de una prueba de resistencia al desgaste.

Figura 6: Huellas de desgaste en el papel de lija contra diferentes rodamientos de bolas.

CONCLUSIÓN

La resistencia al desgaste de los rodamientos de bolas bajo alta presión desempeña un papel fundamental en su rendimiento de servicio. Los rodamientos cerámicos poseen una resistencia al desgaste significativamente mayor en condiciones de alta presión y reducen el tiempo y el coste debido a la reparación o sustitución de los rodamientos. En este estudio, el rodamiento de bolas de WC presenta una resistencia al desgaste sustancialmente mayor en comparación con los rodamientos de acero, lo que lo convierte en un candidato ideal para aplicaciones de rodamientos en las que se produce un fuerte desgaste.
El tribómetro Nanovea está diseñado con capacidades de alto par para cargas de hasta 2000 N y un motor preciso y controlado para velocidades de rotación de 0,01 a 15.000 rpm. Ofrece pruebas de desgaste y fricción repetibles utilizando modos rotativos y lineales que cumplen con las normas ISO y ASTM, con módulos opcionales de desgaste y lubricación a alta temperatura disponibles en un sistema preintegrado. Esta gama inigualable permite a los usuarios simular diferentes entornos de trabajo severos de los rodamientos de bolas, incluyendo alta tensión, desgaste y alta temperatura, etc. También actúa como una herramienta ideal para evaluar cuantitativamente los comportamientos tribológicos de materiales superiores resistentes al desgaste bajo altas cargas.
Un perfilador sin contacto Nanovea 3D proporciona mediciones precisas del volumen de desgaste y actúa como una herramienta para analizar la morfología detallada de las huellas de desgaste, proporcionando conocimientos adicionales en la comprensión fundamental de los mecanismos de desgaste.

Preparado por
Duanjie Li, PhD, Jonathan Thomas y Pierre Leroux

Prueba de desgaste del bloque sobre el anillo

IMPORTANCIA DE LA EVALUACIÓN DEL DESGASTE DEL BLOQUE SOBRE EL ANILLO

El desgaste por deslizamiento es la pérdida progresiva de material que resulta del deslizamiento de dos materiales entre sí en la zona de contacto bajo carga. Se produce inevitablemente en una gran variedad de industrias en las que funcionan máquinas y motores, como la automoción, la industria aeroespacial, el petróleo y el gas y muchas otras. Este movimiento de deslizamiento provoca un grave desgaste mecánico y la transferencia de material en la superficie, lo que puede provocar una reducción de la eficacia de la producción, del rendimiento de la máquina o incluso dañarla.
 

 

El desgaste por deslizamiento a menudo implica mecanismos de desgaste complejos que tienen lugar en la superficie de contacto, como desgaste por adhesión, abrasión de dos cuerpos, abrasión de tres cuerpos y desgaste por fatiga. El comportamiento de desgaste de los materiales está significativamente influenciado por el entorno de trabajo, como la carga normal, la velocidad, la corrosión y la lubricación. Un versátil tribómetro que puedan simular las diferentes condiciones de trabajo realistas serán ideales para la evaluación del desgaste.
La prueba Block-on-Ring (ASTM G77) es una técnica ampliamente utilizada que evalúa el comportamiento de desgaste por deslizamiento de materiales en diferentes condiciones simuladas y permite una clasificación confiable de pares de materiales para aplicaciones tribológicas específicas.
 
 

 

OBJETIVO DE MEDICIÓN

En esta aplicación, el Probador Mecánico Nanovea mide el YS y el UTS de muestras de aleación metálica de acero inoxidable SS304 y aluminio Al6061. Las muestras se eligieron por sus valores de YS y UTS comúnmente reconocidos, lo que demuestra la fiabilidad de los métodos de indentación de Nanovea.

 

El tribómetro de Nanovea evaluó el comportamiento de desgaste por deslizamiento de un bloque H-30 sobre un anillo S-10 utilizando el módulo Block-on-Ring. El bloque H-30 está hecho de acero para herramientas 01 de dureza 30HRC, mientras que el anillo S-10 es de acero tipo 4620 con una dureza superficial de 58 a 63 HRC y un diámetro de anillo de ~34,98 mm. Se realizaron pruebas de bloque sobre anillo en ambientes secos y lubricados para investigar el efecto sobre el comportamiento del desgaste. Las pruebas de lubricación se realizaron en aceite mineral pesado USP. La pista de desgaste se examinó utilizando Nanovea. Perfilómetro 3D sin contacto. Los parámetros de prueba se resumen en la Tabla 1. La tasa de desgaste (K) se evaluó utilizando la fórmula K=V/(F×s), donde V es el volumen desgastado, F es la carga normal, s es la distancia de deslizamiento.

 

 

RESULTADOS Y DISCUSIÓN

La Figura 2 compara el coeficiente de fricción (COF) de las pruebas Block-on-Ring en ambientes secos y lubricados. El bloque tiene significativamente más fricción en un ambiente seco que en un ambiente lubricado. COF
fluctúa durante el período de rodaje en las primeras 50 revoluciones y alcanza un COF constante de ~0,8 durante el resto de la prueba de desgaste de 200 revoluciones. En comparación, la prueba Block-on-Ring realizada con lubricación con aceite mineral pesado USP muestra un COF bajo constante de 0,09 durante la prueba de desgaste de 500.000 revoluciones. El lubricante reduce significativamente el COF entre las superficies aproximadamente 90 veces.

 

Las figuras 3 y 4 muestran las imágenes ópticas y los perfiles 2D de la sección transversal de las cicatrices de desgaste en los bloques después de las pruebas de desgaste en seco y con lubricación. Los volúmenes de las huellas de desgaste y las tasas de desgaste se enumeran en la Tabla 2. El bloque de acero después de la prueba de desgaste en seco a una velocidad de rotación menor de 72 rpm durante 200 revoluciones presenta un gran volumen de cicatriz de desgaste de 9,45 mm˙. En comparación, la prueba de desgaste realizada a una velocidad más alta de 197 rpm durante 500.000 revoluciones en el lubricante de aceite mineral crea un volumen de huella de desgaste sustancialmente menor de 0,03 mm˙.

 


Las imágenes de la ÿgura 3 muestran que se produce un desgaste severo durante las pruebas en seco en comparación con el desgaste leve de la prueba de desgaste lubricado. El alto calor y las intensas vibraciones generadas durante la prueba de desgaste en seco promueven la oxidación de los restos metálicos, lo que da lugar a una grave abrasión de tres cuerpos. En la prueba lubricada, el aceite mineral reduce la fricción y enfría la cara de contacto, además de transportar los residuos abrasivos creados durante el desgaste. Esto conduce a una reducción significativa de la tasa de desgaste en un factor de ~8×10ˆ. Una diferencia tan sustancial en la resistencia al desgaste en entornos diferentes muestra la importancia de una simulación adecuada del desgaste por deslizamiento en condiciones de servicio realistas.

 


El comportamiento del desgaste puede cambiar drásticamente cuando se introducen pequeños cambios en las condiciones de prueba. La versatilidad del tribómetro de Nanovea permite medir el desgaste en condiciones de alta temperatura, lubricación y tribocorrosión. El control preciso de la velocidad y la posición mediante el motor avanzado permite realizar pruebas de desgaste a velocidades que van de 0,001 a 5000 rpm, lo que lo convierte en una herramienta ideal para que los laboratorios de investigación/prueba investiguen el desgaste en di˛rentes condiciones tribológicas.

 

El estado de la superficie de las muestras se examinó con el proÿlómetro óptico sin contacto de Nanovea. La figura 5 muestra la morfología superficial de los anillos después de los ensayos de desgaste. Se ha eliminado la forma del cilindro para presentar mejor la morfología superficial y la rugosidad creada por el proceso de desgaste por deslizamiento. El proceso de abrasión de tres cuerpos durante el ensayo de desgaste en seco de 200 revoluciones produjo una rugosidad superficial significativa. El bloque y el anillo después de la prueba de desgaste en seco presentan una rugosidad Ra de 14,1 y 18,1 µm, respectivamente, en comparación con 5,7 y 9,1 µm para la prueba de desgaste lubricado a largo plazo de 500.000 revoluciones a una velocidad superior. Esta prueba demuestra la importancia de una lubricación adecuada del contacto entre el anillo del pistón y el cilindro. Un desgaste severo daña rápidamente la superficie de contacto sin lubricación y conduce a un deterioro irreversible de la calidad de servicio e incluso a la rotura del motor.

 

 

CONCLUSIÓN

En este estudio mostramos cómo se utiliza el tribómetro de Nanovea para evaluar el comportamiento de desgaste por deslizamiento de un par de metal de acero utilizando el módulo Block-on-Ring siguiendo la norma ASTM G77. El lubricante juega un papel crítico en las propiedades de desgaste del par de materiales. El aceite mineral reduce la tasa de desgaste del bloque H-30 en un factor de ~8×10ˆ y el COF en ~90 veces. La versatilidad del tribómetro de Nanovea lo convierte en una herramienta ideal para medir el comportamiento del desgaste en diversas condiciones de lubricación, alta temperatura y tribocorrosión.

El tribómetro de Nanovea ofrece pruebas de desgaste y fricción precisas y repetibles utilizando modos rotativos y lineales que cumplen con ISO y ASTM, con módulos opcionales de tribocorrosión, lubricación y desgaste a alta temperatura disponibles en un sistema preintegrado. La incomparable gama de Nanovea es una solución ideal para determinar la gama completa de propiedades tribológicas de recubrimientos, películas y sustratos finos o gruesos, blandos o duros.

AHORA, HABLEMOS DE SU SOLICITUD

Evaluación del desgaste y el rayado del alambre de cobre con tratamiento superficial

Importancia de la evaluación del desgaste y los arañazos en el alambre de cobre

El cobre tiene una larga historia de uso en el cableado eléctrico desde la invención del electroimán y el telégrafo. Los cables de cobre se aplican en una amplia gama de equipos electrónicos como paneles, contadores, ordenadores, máquinas comerciales y electrodomésticos gracias a su resistencia a la corrosión, su soldabilidad y su rendimiento a temperaturas elevadas de hasta 150°C. Aproximadamente la mitad de todo el cobre extraído se utiliza para la fabricación de alambres y cables eléctricos.

La calidad de la superficie del alambre de cobre es fundamental para el rendimiento y la vida útil de la aplicación. Los microdefectos en los alambres pueden provocar un desgaste excesivo, el inicio y la propagación de grietas, una disminución de la conductividad y una soldabilidad inadecuada. Un tratamiento adecuado de la superficie de los alambres de cobre elimina los defectos superficiales generados durante el trefilado, mejorando la resistencia a la corrosión, los arañazos y el desgaste. Muchas aplicaciones aeroespaciales con alambres de cobre requieren un comportamiento controlado para evitar fallos inesperados del equipo. Se necesitan mediciones cuantificables y fiables para evaluar adecuadamente la resistencia al desgaste y al rayado de la superficie del alambre de cobre.

 
 

 

Objetivo de medición

En esta aplicación simulamos un proceso de desgaste controlado de diferentes tratamientos superficiales de alambre de cobre. Prueba del rasguño Mide la carga requerida para causar falla en la capa superficial tratada. Este estudio muestra la Nanovea Tribómetro y Probador Mecánico como herramientas ideales para la evaluación y control de calidad de cables eléctricos.

 

 

Procedimiento de prueba y procedimientos

El tribómetro Nanovea evaluó el coeficiente de fricción (COF) y la resistencia al desgaste de dos tratamientos superficiales diferentes en alambres de cobre (alambre A y alambre B) utilizando un módulo de desgaste alternativo lineal. El contramaterial utilizado en esta aplicación es una bola de Al₂O₃ (6 mm de diámetro). La pista de desgaste se examinó utilizando Nanovea. Perfilómetro 3D sin contacto. Los parámetros de prueba se resumen en la Tabla 1.

En este estudio se utilizó como ejemplo una bola lisa de Al₂O₃ como contramaterial. Cualquier material sólido con diferente forma y acabado superficial puede aplicarse utilizando un accesorio personalizado para simular la situación de aplicación real.

 

 

El probador mecánico de Nanovea, equipado con un palpador de diamante Rockwell C (100 μm de radio), realizó ensayos de rayado con carga progresiva en los hilos recubiertos utilizando el modo de micro rayado. Los parámetros del ensayo de rayado y la geometría de la punta se muestran en la Tabla 2.
 

 

 

 

Resultados y discusión

Desgaste del cable de cobre:

La figura 2 muestra la evolución del COF de los hilos de cobre durante las pruebas de desgaste. El alambre A muestra un COF estable de ~0,4 durante toda la prueba de desgaste, mientras que el alambre B presenta un COF de ~0,35 en las primeras 100 revoluciones y aumenta progresivamente hasta ~0,4.

 

La figura 3 compara las huellas de desgaste de los hilos de cobre tras las pruebas. El perfilómetro 3D sin contacto de Nanovea ofreció un análisis superior de la morfología detallada de las huellas de desgaste. Permite determinar de forma directa y precisa el volumen de las huellas de desgaste, proporcionando una comprensión fundamental del mecanismo de desgaste. La superficie del alambre B presenta daños significativos en las huellas de desgaste tras una prueba de desgaste de 600 revoluciones. La vista 3D del perfilómetro muestra la capa tratada de la superficie del alambre B eliminada por completo, lo que aceleró sustancialmente el proceso de desgaste. Esto ha dejado una huella de desgaste aplanada en el alambre B donde el sustrato de cobre está expuesto. Esto puede acortar considerablemente la vida útil de los equipos eléctricos en los que se utiliza el cable B. En comparación, el alambre A presenta un desgaste relativamente leve que se manifiesta en una huella de desgaste poco profunda en la superficie. La capa tratada en la superficie del cable A no se eliminó como la del cable B en las mismas condiciones.

Resistencia al rayado de la superficie del cable de cobre:

La figura 4 muestra las huellas de arañazos en los cables después de las pruebas. La capa protectora del cable A muestra una muy buena resistencia al rayado. En comparación, la capa protectora del alambre B falló con una carga de ~1,0 N. Una diferencia tan significativa en la resistencia al rayado de estos alambres contribuye a su rendimiento al desgaste, donde el alambre A posee una resistencia al desgaste sustancialmente mayor. La evolución de la fuerza normal, el COF y la profundidad durante las pruebas de rayado que se muestran en la Fig. 5 proporciona más información sobre el fallo del revestimiento durante las pruebas.

Conclusión:

En este estudio controlado mostramos el tribómetro de Nanovea, que realiza una evaluación cuantitativa de la resistencia al desgaste de los alambres de cobre tratados superficialmente, y el comprobador mecánico de Nanovea, que proporciona una evaluación fiable de la resistencia al rayado de los alambres de cobre. El tratamiento superficial del alambre desempeña un papel fundamental en las propiedades tribo-mecánicas durante su vida útil. El tratamiento adecuado de la superficie del cable A mejoró significativamente la resistencia al desgaste y a los arañazos, lo que es fundamental para el rendimiento y la vida útil de los cables eléctricos en entornos difíciles.

El tribómetro de Nanovea ofrece pruebas precisas y repetibles de desgaste y fricción mediante modos rotativos y lineales conformes con las normas ISO y ASTM, con módulos opcionales de desgaste a alta temperatura, lubricación y tribo-corrosión disponibles en un sistema preintegrado. La incomparable gama de Nanovea es una solución ideal para determinar toda la gama de propiedades tribológicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros.

AHORA, HABLEMOS DE SU SOLICITUD

Tribología de carga dinámica

Tribología de carga dinámica

Introducción

El desgaste tiene lugar en prácticamente todos los sectores industriales e impone unos costes de ~0,75% del PIB1. La investigación tribológica es vital para mejorar la eficacia de la producción y el rendimiento de las aplicaciones, así como para conservar el material, la energía y el medio ambiente. La vibración y la oscilación son inevitables en una amplia gama de aplicaciones tribológicas. Una vibración externa excesiva acelera el proceso de desgaste y reduce el rendimiento de servicio, lo que provoca fallos catastróficos en las piezas mecánicas.

Los tribómetros convencionales de carga muerta aplican cargas normales mediante pesos de masa. Esta técnica de carga no sólo limita las opciones de carga a una carga constante, sino que también crea intensas vibraciones incontroladas a altas cargas y velocidades, lo que conduce a evaluaciones limitadas e inconsistentes del comportamiento de desgaste. Una evaluación fiable del efecto de la oscilación controlada en el comportamiento del desgaste de los materiales es deseable para la I+D y el control de calidad en diferentes aplicaciones industriales.

La innovadora alta carga de Nanovea tribómetro Tiene una capacidad de carga máxima de 2000 N con un sistema de control de carga dinámico. El avanzado sistema neumático de carga de aire comprimido permite a los usuarios evaluar el comportamiento tribológico de un material bajo cargas normales elevadas con la ventaja de amortiguar las vibraciones no deseadas creadas durante el proceso de desgaste. Por lo tanto, la carga se mide directamente sin necesidad de los resortes amortiguadores utilizados en diseños más antiguos. Un módulo de carga oscilante de electroimán paralelo aplica una oscilación bien controlada de amplitud deseada de hasta 20 N y frecuencia de hasta 150 Hz.

La fricción se mide con alta precisión directamente desde la fuerza lateral aplicada al soporte superior. El desplazamiento se controla in situ, lo que permite conocer la evolución del comportamiento de desgaste de las muestras de ensayo. La prueba de desgaste bajo carga de oscilación controlada también se puede realizar en entornos de corrosión, alta temperatura, humedad y lubricación para simular las condiciones de trabajo reales para las aplicaciones tribológicas. Una alta velocidad integrada perfilómetro sin contacto Mide automáticamente la morfología de la pista de desgaste y el volumen de desgaste en unos segundos.

Objetivo de medición

En este estudio, mostramos la capacidad del Tribómetro de Carga Dinámica Nanovea T2000 en el estudio del comportamiento tribológico de diferentes muestras de recubrimiento y metal bajo condiciones de carga de oscilación controlada.

 

Procedimiento de prueba

El comportamiento tribológico, por ejemplo, el coeficiente de fricción, COF, y la resistencia al desgaste de un revestimiento resistente al desgaste de 300 µm de grosor se evaluó y comparó mediante el tribómetro Nanovea T2000 con un tribómetro de carga muerta convencional utilizando una configuración de pasador sobre disco siguiendo la norma ASTM G992.

Se evaluaron muestras recubiertas de Cu y TiN separadas frente a una bola de Al₂0₃ de 6 mm bajo oscilación controlada mediante el modo de tribología de carga dinámica del tribómetro Nanovea T2000.

Los parámetros de la prueba se resumen en el cuadro 1.

El perfilómetro 3D integrado, equipado con un sensor de líneas, escanea automáticamente la pista de desgaste después de las pruebas, proporcionando la medición más precisa del volumen de desgaste en segundos.

Resultados y discusión

 

Sistema de carga neumática vs. Sistema de carga muerta

 

El comportamiento tribológico de un recubrimiento resistente al desgaste utilizando el tribómetro Nanovea T2000 se compara con un tribómetro convencional de carga muerta (DL). La evolución del COF del recubrimiento se muestra en la Fig. 2. Observamos que el recubrimiento presenta un valor de COF comparable de ~0,6 durante la prueba de desgaste. Sin embargo, los 20 perfiles de sección transversal en diferentes lugares de la pista de desgaste en la Fig. 3 indican que el recubrimiento experimentó un desgaste mucho más severo bajo el sistema de carga muerta.

El proceso de desgaste del sistema de carga muerta a alta carga y velocidad generó intensas vibraciones. La presión masiva concentrada en la cara de contacto, combinada con una alta velocidad de deslizamiento, crea una vibración sustancial del peso y de la estructura que conduce a un desgaste acelerado. El tribómetro de carga muerta convencional aplica la carga mediante pesos de masa. Este método es fiable con cargas de contacto más bajas y en condiciones de desgaste leve; sin embargo, en condiciones de desgaste agresivo con cargas y velocidades más altas, la importante vibración hace que los pesos reboten repetidamente, lo que da lugar a una pista de desgaste irregular que provoca una evaluación tribológica poco fiable. La tasa de desgaste calculada es de 8,0±2,4 x 10-4 mm3/N m, mostrando una alta tasa de desgaste y una gran desviación estándar.

El tribómetro Nanovea T2000 está diseñado con un sistema de carga de control dinámico para amortiguar las oscilaciones. Aplica la carga normal con aire comprimido, lo que minimiza las vibraciones no deseadas creadas durante el proceso de desgaste. Además, el control activo de la carga en bucle cerrado garantiza la aplicación de una carga constante durante toda la prueba de desgaste y el palpador sigue el cambio de profundidad de la pista de desgaste. Se mide un perfil de pista de desgaste significativamente más consistente, como se muestra en la Fig. 3a, lo que da como resultado una baja tasa de desgaste de 3,4±0,5 x 10-4 mm3/N m.

El análisis de la pista de desgaste que se muestra en la Fig. 4 confirma que la prueba de desgaste realizada por el sistema de carga neumática de aire comprimido del tribómetro Nanovea T2000 crea una pista de desgaste más suave y consistente en comparación con el tribómetro convencional de carga muerta. Además, el tribómetro Nanovea T2000 mide el desplazamiento del palpador durante el proceso de desgaste, lo que permite conocer mejor el progreso del comportamiento del desgaste in situ.

 

 

Oscilación controlada sobre el desgaste de la muestra de Cu

El módulo del electroimán de carga oscilante en paralelo del tribómetro Nanovea T2000 permite a los usuarios investigar el efecto de las oscilaciones de amplitud y frecuencia controladas en el comportamiento de desgaste de los materiales. El COF de las muestras de Cu se registra in situ como se muestra en la Fig. 6. La muestra de Cu muestra un COF constante de ~0,3 durante la primera medición de 330 revoluciones, lo que significa la formación de un contacto estable en la interfaz y una pista de desgaste relativamente suave. A medida que la prueba de desgaste continúa, la variación del COF indica un cambio en el mecanismo de desgaste. En comparación, las pruebas de desgaste bajo una oscilación de amplitud controlada de 5 N a 50 N muestran un comportamiento de desgaste diferente: el COF aumenta rápidamente al principio del proceso de desgaste, y muestra una variación significativa a lo largo de la prueba de desgaste. Este comportamiento del COF indica que la oscilación impuesta en la carga normal desempeña un papel en el estado de deslizamiento inestable en el contacto.

La Fig. 7 compara la morfología de la huella de desgaste medida por el perfilómetro óptico integrado sin contacto. Puede observarse que la muestra de Cu sometida a una amplitud de oscilación controlada de 5 N presenta una huella de desgaste mucho mayor, con un volumen de 1,35 x 109 µm3, en comparación con los 5,03 x 108 µm3 sin oscilación impuesta. La oscilación controlada acelera significativamente la tasa de desgaste en un factor de ~2,7, mostrando el efecto crítico de la oscilación en el comportamiento del desgaste.

 

Oscilación controlada en el desgaste del revestimiento de TiN

El COF y las huellas de desgaste de la muestra de revestimiento de TiN se muestran en la Fig. 8. El recubrimiento de TiN presenta comportamientos de desgaste significativamente diferentes bajo oscilación, como indica la evolución del COF durante las pruebas. El recubrimiento de TiN muestra un COF constante de ~0,3 tras el periodo de rodaje al principio de la prueba de desgaste, debido al contacto de deslizamiento estable en la interfaz entre el recubrimiento de TiN y la bola de Al₂O₃. Sin embargo, cuando el recubrimiento de TiN empieza a fallar, la bola de Al₂O₃ penetra a través del recubrimiento y se desliza contra el sustrato de acero fresco que hay debajo. Al mismo tiempo, se genera una cantidad importante de restos de revestimiento de TiN duro en la pista de desgaste, lo que convierte un desgaste por deslizamiento estable de dos cuerpos en un desgaste por abrasión de tres cuerpos. Este cambio de las características de la pareja de materiales conduce a un aumento de las variaciones en la evolución del COF. La oscilación impuesta de 5 N y 10 N acelera el fallo del revestimiento de TiN de ~400 revoluciones a menos de 100 revoluciones. Las mayores huellas de desgaste en las muestras de revestimiento de TiN después de las pruebas de desgaste bajo la oscilación controlada concuerdan con dicho cambio en el COF.

Conclusión:

El avanzado sistema de carga neumática del tribómetro Nanovea T2000 posee una ventaja intrínseca como amortiguador de vibraciones naturalmente rápido en comparación con los sistemas tradicionales de carga muerta. Esta ventaja tecnológica de los sistemas neumáticos es cierta en comparación con los sistemas de carga controlada que utilizan una combinación de servomotores y muelles para aplicar la carga. Esta tecnología garantiza una evaluación del desgaste fiable y mejor controlada con cargas elevadas, como se demuestra en este estudio. Además, el sistema de carga activa en bucle cerrado puede cambiar la carga normal a un valor deseado durante las pruebas de desgaste para simular las aplicaciones reales que se ven en los sistemas de freno.

En lugar de tener la influencia de las condiciones de vibración no controladas durante las pruebas, hemos demostrado que el tribómetro de carga dinámica Nanovea T2000 permite a los usuarios evaluar cuantitativamente los comportamientos tribológicos de los materiales bajo diferentes condiciones de oscilación controlada. Las vibraciones desempeñan un papel importante en el comportamiento del desgaste de las muestras de revestimiento metálico y cerámico.

El módulo de carga oscilante de electroimanes paralelos proporciona oscilaciones controladas con precisión a amplitudes y frecuencias establecidas, lo que permite a los usuarios simular el proceso de desgaste en condiciones reales, cuando las vibraciones ambientales suelen ser un factor importante. En presencia de las oscilaciones impuestas durante el desgaste, tanto las muestras de revestimiento de Cu como las de TiN muestran un aumento sustancial de la tasa de desgaste. La evolución del coeficiente de fricción y el desplazamiento del palpador medidos in situ son indicadores importantes del rendimiento del material durante las aplicaciones tribológicas. El perfilómetro 3D sin contacto integrado ofrece una herramienta para medir con precisión el volumen de desgaste y analizar la morfología detallada de las huellas de desgaste en segundos, proporcionando más información sobre la comprensión fundamental del mecanismo de desgaste.

El T2000 está equipado con un motor autoajustable de alta calidad y alto par con una velocidad interna de 20 bits y un codificador de posición externo de 16 bits. Esto permite que el tribómetro proporcione una gama inigualable de velocidades de rotación, desde 0,01 hasta 5000 rpm, que pueden cambiar en saltos escalonados o a ritmos continuos. A diferencia de los sistemas que utilizan un sensor de par situado en la parte inferior, el tribómetro Nanovea utiliza una célula de carga de alta precisión situada en la parte superior para medir con precisión y por separado las fuerzas de fricción.

Los tribómetros Nanovea ofrecen pruebas de desgaste y fricción precisas y repetibles utilizando modos rotativos y lineales que cumplen con las normas ISO y ASTM (incluyendo pruebas de 4 bolas, arandela de empuje y bloque sobre anillo), con módulos opcionales de desgaste a alta temperatura, lubricación y tribo-corrosión disponibles en un sistema preintegrado. La gama inigualable de Nanovea T2000 es una solución ideal para determinar toda la gama de propiedades tribológicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros.

AHORA, HABLEMOS DE SU SOLICITUD

Efecto de la humedad en la tribología del revestimiento de DLC

Importancia de la evaluación del desgaste del DLC en la humedad

Los recubrimientos de carbono tipo diamante (DLC) poseen propiedades tribológicas mejoradas, concretamente una excelente resistencia al desgaste y un coeficiente de fricción (COF) muy bajo. Los recubrimientos DLC imparten características de diamante cuando se depositan sobre diferentes materiales. Las propiedades tribomecánicas favorables hacen que los recubrimientos DLC sean preferibles en diversas aplicaciones industriales, como piezas aeroespaciales, hojas de afeitar, herramientas de corte de metales, cojinetes, motores de motocicletas e implantes médicos.

Los recubrimientos DLC exhiben un COF muy bajo (por debajo de 0,1) frente a bolas de acero en condiciones secas y de alto vacío.12. Sin embargo, los revestimientos de DLC son sensibles a los cambios de las condiciones ambientales, en particular a la humedad relativa (RH)3. Los entornos con alta humedad y concentración de oxígeno pueden provocar un aumento significativo del COF4. La evaluación confiable del desgaste en humedad controlada simula condiciones ambientales realistas de los recubrimientos DLC para aplicaciones tribológicas. Los usuarios seleccionan los mejores recubrimientos DLC para aplicaciones específicas con una comparación adecuada
de los comportamientos de desgaste del DLC expuestos a diferentes humedades.



Objetivo de medición

Este estudio muestra la Nanovea Tribómetro equipado con un controlador de humedad es la herramienta ideal para investigar el comportamiento de desgaste de los recubrimientos DLC con diversas humedades relativas.

 

 



Procedimiento de prueba

La resistencia a la fricción y al desgaste de los recubrimientos DLC se evaluó mediante el tribómetro Nanovea. Los parámetros de prueba se resumen en la Tabla 1. Un controlador de humedad conectado a la cámara tribo controló con precisión la humedad relativa (RH) con una precisión de ±1%. Después de las pruebas, se examinaron las huellas de desgaste en los recubrimientos de DLC y las cicatrices de desgaste en las bolas de SiN mediante un microscopio óptico.

Nota: Se puede aplicar cualquier material de bola sólida para simular el rendimiento de acoplamientos de diferentes materiales en condiciones ambientales como lubricantes o altas temperaturas.







Resultados y discusión

Los recubrimientos de DLC son excelentes para las aplicaciones tribológicas debido a su baja fricción y a su mayor resistencia al desgaste. La fricción del recubrimiento de DLC muestra un comportamiento dependiente de la humedad que se muestra en la Figura 2. El recubrimiento de DLC muestra un COF muy bajo de ~0,05 durante toda la prueba de desgaste en condiciones relativamente secas (10% RH). El recubrimiento de DLC muestra un COF constante de ~0,1 durante la prueba a medida que la HR aumenta hasta 30%. La fase inicial de rodaje del COF se observa en las primeras 2000 revoluciones cuando la HR se eleva por encima de 50%. El revestimiento de DLC muestra un COF máximo de ~0,20, ~0,26 y ~0,33 en RH de 50, 70 y 90%, respectivamente. Tras el periodo de rodaje, el COF del revestimiento de DLC se mantiene constante en ~0,11, 0,13 y 0,20 en RH de 50, 70 y 90%, respectivamente.

 



En la figura 3 se comparan las cicatrices de desgaste de las bolas de SiN y en la figura 4 se comparan las huellas de desgaste del recubrimiento de DLC después de las pruebas de desgaste. El diámetro de la cicatriz de desgaste era menor cuando el recubrimiento de DLC se exponía a un entorno con poca humedad. La capa de DLC de transferencia se acumula en la superficie de la bola de SiN durante el proceso de deslizamiento repetitivo en la superficie de contacto. En esta etapa, el recubrimiento de DLC se desliza contra su propia capa de transferencia que actúa como un lubricante eficaz para facilitar el movimiento relativo y frenar la pérdida de masa adicional causada por la deformación por cizallamiento. Se observa una película de transferencia en la cicatriz de desgaste de la bola de SiN en entornos de baja HR (por ejemplo, 10% y 30%), lo que da lugar a un proceso de desgaste desacelerado en la bola. Este proceso de desgaste se refleja en la morfología de la pista de desgaste del recubrimiento de DLC, como se muestra en la figura 4. El recubrimiento de DLC muestra una pista de desgaste más pequeña en ambientes secos, debido a la formación de una película de transferencia de DLC estable en la interfaz de contacto que reduce significativamente la fricción y la tasa de desgaste.


 


Conclusión:




La humedad juega un papel vital en el rendimiento tribológico de los recubrimientos DLC. El recubrimiento DLC posee una resistencia al desgaste significativamente mejorada y una baja fricción superior en condiciones secas debido a la formación de una capa de grafito estable transferida a la contraparte deslizante (una bola de SiN en este estudio). El recubrimiento DLC se desliza contra su propia capa de transferencia, que actúa como un lubricante eficaz para facilitar el movimiento relativo y frenar una mayor pérdida de masa causada por la deformación por cizallamiento. No se observa una película en la bola de SiN al aumentar la humedad relativa, lo que lleva a una mayor tasa de desgaste en la bola de SiN y el recubrimiento de DLC.

El tribómetro Nanovea ofrece pruebas repetibles de desgaste y fricción utilizando modos rotativos y lineales que cumplen con ISO y ASTM, con módulos de humedad opcionales disponibles en un sistema preintegrado. Permite a los usuarios simular el entorno de trabajo con diferente humedad, proporcionando a los usuarios una herramienta ideal para evaluar cuantitativamente el comportamiento tribológico de los materiales en diferentes condiciones de trabajo.



Más información sobre el tribómetro Nanovea y el servicio de laboratorio

1 C. Donnet, Surf. Coat. Technol. 100-101 (1998) 180.

2 K. Miyoshi, B. Pohlchuck, K.W. Street, J.S. Zabinski, J.H. Sanders, A.A. Voevodin, R.L.C. Wu, Wear 225-229 (1999) 65.

3 R. Gilmore, R. Hauert, Surf. Coat. Technol. 133-134 (2000) 437.

4 R. Memming, H.J. Tolle, P.E. Wierenga, Thin Solid Coatings 143 (1986) 31


AHORA, HABLEMOS DE SU SOLICITUD

Evaluación de la fricción a velocidades extremadamente bajas

 

Importancia de la evaluación de la fricción a bajas velocidades

La fricción es la fuerza que resiste el movimiento relativo de las superficies sólidas que se deslizan una contra otra. Cuando se produce el movimiento relativo de estas dos superficies en contacto, la fricción en la interfaz convierte la energía cinética en calor. Este proceso también puede provocar el desgaste del material y, por tanto, la degradación del rendimiento de las piezas en uso.
Con una gran relación de estiramiento, alta resiliencia, así como grandes propiedades de impermeabilidad y resistencia al desgaste, el caucho se aplica ampliamente en una variedad de aplicaciones y productos en los que la fricción desempeña un papel importante, como los neumáticos de los automóviles, las escobillas del limpiaparabrisas. las suelas de los zapatos y muchos otros. Dependiendo de la naturaleza y los requisitos de estas aplicaciones, se desea una fricción alta o baja contra diferentes materiales. En consecuencia, resulta fundamental una medición controlada y fiable de la fricción del caucho contra diversas superficies.



Objetivo de medición

El coeficiente de fricción (COF) del caucho contra diferentes materiales se mide de forma controlada y monitorizada mediante el Nanovea Tribómetro. En este estudio, nos gustaría mostrar la capacidad del Nanovea Tribometer para medir el COF de diferentes materiales a velocidades extremadamente bajas.




Resultados y discusión

El coeficiente de fricción (COF) de las bolas de caucho (6 mm de diámetro, RubberMill) sobre tres materiales (acero inoxidable SS 316, Cu 110 y acrílico opcional) se evaluó mediante el tribómetro Nanovea. Las muestras metálicas probadas se pulieron mecánicamente hasta conseguir un acabado superficial similar al de un espejo antes de la medición. La ligera deformación de la bola de goma bajo la carga normal aplicada creó un área de contacto, que también ayuda a reducir el impacto de las asperezas o la falta de homogeneidad del acabado de la superficie de la muestra en las mediciones del COF. Los parámetros de la prueba se resumen en la Tabla 1.


 

El COF de una pelota de goma contra diferentes materiales a cuatro velocidades distintas se muestra en la Figura 2, y en la figura 3 se resumen y comparan los COF medios calculados automáticamente por el software. Resulta interesante que las muestras metálicas (SS 316 y Cu 110) muestran un aumento significativo de los COF a medida que la velocidad de rotación aumenta desde un valor muy bajo de 0,01 rpm hasta 5 rpm -el valor del COF de la pareja caucho/SS 316 aumenta de 0,29 a 0,8, y de 0,65 a 1,1 para la pareja caucho/Cu 110. Este hallazgo coincide con los resultados comunicados por varios laboratorios. Como propone Grosch4 La fricción del caucho viene determinada principalmente por dos mecanismos: (1) la adhesión entre el caucho y el otro material, y (2) las pérdidas de energía debidas a la deformación del caucho causada por las asperezas de la superficie. Schallamach5 observaron ondas de desprendimiento del caucho del contramaterial a través de la interfaz entre las esferas de caucho blando y una superficie dura. La fuerza que ejerce el caucho para desprenderse de la superficie del sustrato y la velocidad de las ondas de desprendimiento pueden explicar la diferente fricción a diferentes velocidades durante la prueba.

En comparación, la pareja de material de caucho/acrílico presenta un alto COF a diferentes velocidades de rotación. El valor del COF aumenta ligeramente de ~ 1,02 a ~ 1,09 a medida que la velocidad de rotación aumenta de 0,01 rpm a 5 rpm. Este elevado COF se atribuye posiblemente a una mayor unión química local en la cara de contacto formada durante las pruebas.



 
 

 

 




Conclusión:



En este estudio, mostramos que a velocidades extremadamente bajas, el caucho muestra un comportamiento de fricción peculiar: su fricción contra una superficie dura aumenta con el incremento de la velocidad del movimiento relativo. El caucho muestra una fricción diferente cuando se desliza sobre diferentes materiales. El Tribómetro Nanovea puede evaluar las propiedades de fricción de los materiales de forma controlada y monitorizada a diferentes velocidades, lo que permite a los usuarios mejorar la comprensión fundamental del mecanismo de fricción de los materiales y seleccionar la mejor pareja de materiales para las aplicaciones de ingeniería tribológica previstas.

El tribómetro Nanovea ofrece pruebas de desgaste y fricción precisas y repetibles mediante modos rotativos y lineales conformes a las normas ISO y ASTM, con módulos opcionales de desgaste a alta temperatura, lubricación y tribo-corrosión disponibles en un sistema preintegrado. Es capaz de controlar la etapa rotativa a velocidades extremadamente bajas, de hasta 0,01 rpm, y supervisar la evolución de la fricción in situ. La gama inigualable de Nanovea es una solución ideal para determinar toda la gama de propiedades tribológicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros.

AHORA, HABLEMOS DE SU SOLICITUD

Tribología de los polímeros

Introducción

Los polímeros se han utilizado ampliamente en una gran variedad de aplicaciones y se han convertido en una parte indispensable de la vida cotidiana. Los polímeros naturales, como el ámbar, la seda y el caucho natural, han desempeñado un papel esencial en la historia de la humanidad. El proceso de fabricación de los polímeros sintéticos puede optimizarse para conseguir propiedades físicas únicas como la tenacidad, la viscoelasticidad, la autolubricación y muchas otras.

Importancia del desgaste y la fricción de los polímeros

Los polímeros se utilizan habitualmente en aplicaciones tribológicas, como neumáticos, rodamientos y cintas transportadoras.
Se producen diferentes mecanismos de desgaste en función de las propiedades mecánicas del polímero, las condiciones de contacto y las propiedades de los residuos o de la película de transferencia que se forma durante el proceso de desgaste. Para garantizar que los polímeros poseen una resistencia al desgaste suficiente en las condiciones de servicio, es necesario realizar una evaluación tribológica fiable y cuantificable. La evaluación tribológica nos permite comparar cuantitativamente los comportamientos de desgaste de diferentes polímeros de forma controlada y monitorizada para seleccionar el material candidato para la aplicación objetivo.

El tribómetro Nanovea ofrece pruebas repetibles de desgaste y fricción mediante modos rotativos y lineales conformes a las normas ISO y ASTM, con módulos opcionales de desgaste y lubricación a alta temperatura disponibles en un sistema preintegrado. Esta gama inigualable permite a los usuarios simular los diferentes entornos de trabajo de los polímeros, incluyendo la tensión concentrada, el desgaste y la alta temperatura, etc.

OBJETIVO DE MEDICIÓN

En este estudio, demostramos que Nanovea Tribómetro Es una herramienta ideal para comparar la fricción y la resistencia al desgaste de diferentes polímeros de una manera cuantitativa y bien controlada.

PROCEDIMIENTO DE PRUEBA

El coeficiente de fricción (COF) y la resistencia al desgaste de diferentes polímeros comunes fueron evaluados mediante el tribómetro Nanovea. Como material contador se utilizó una bola de Al2O3 (pasador, muestra estática). Las pistas de desgaste de los polímeros (muestras dinámicas giratorias) se midieron utilizando un perfilómetro 3D sin contacto y microscopio óptico una vez concluidas las pruebas. Cabe señalar que, como opción, se puede utilizar un sensor endoscópico sin contacto para medir la profundidad a la que penetra el pasador en la muestra dinámica durante una prueba de desgaste. Los parámetros de prueba se resumen en la Tabla 1. La tasa de desgaste, K, se evaluó utilizando la fórmula K=Vl(Fxs), donde V es el volumen desgastado, F es la carga normal y s es la distancia de deslizamiento.

Hay que tener en cuenta que en este estudio se utilizaron bolas de Al2O3 como contramaterial. Se puede sustituir por cualquier material sólido para simular mejor el comportamiento de dos muestras en condiciones reales de aplicación.

RESULTADOS Y DISCUSIÓN

La tasa de desgaste es un factor vital para determinar la vida útil de los materiales, mientras que la fricción desempeña un papel crítico durante las aplicaciones tribológicas. La figura 2 compara la evolución del COF de diferentes polímeros frente a la bola de Al2O3 durante las pruebas de desgaste. El COF funciona como un indicador de cuándo se producen los fallos y el proceso de desgaste entra en una nueva etapa. Entre los polímeros ensayados, el HDPE mantiene el COF constante más bajo, de ~0,15, durante toda la prueba de desgaste. El COF suave implica que se forma un tribo-contacto estable.

En la Figura 3 y la Figura 4 se comparan las huellas de desgaste de las muestras de polímero después de la prueba medida por el microscopio óptico. El perfilómetro 3D sin contacto in situ determina con precisión el volumen de desgaste de las muestras de polímero, lo que permite calcular con exactitud índices de desgaste de 0,0029, 0,0020 y 0,0032m3/N m, respectivamente. En comparación, la muestra de CPVC muestra la tasa de desgaste más alta, de 0,1121m3/N m. En la huella de desgaste del CPVC aparecen profundas cicatrices de desgaste paralelas.

CONCLUSIÓN

La resistencia al desgaste de los polímeros desempeña un papel fundamental en su rendimiento de servicio. En este estudio, mostramos que el tribómetro Nanovea evalúa el coeficiente de fricción y la tasa de desgaste de diferentes polímeros en un
de manera bien controlada y cuantitativa. El HDPE muestra el COF más bajo de ~0,15 entre los polímeros probados. Las muestras de HDPE, Nylon 66 y Polipropileno poseen bajas tasas de desgaste de 0,0029, 0,0020 y 0,0032 m3/N m, respectivamente. La combinación de baja fricción y gran resistencia al desgaste hace del HDPE un buen candidato para las aplicaciones tribológicas de los polímeros.

El perfilómetro 3D sin contacto in situ permite medir con precisión el volumen de desgaste y ofrece una herramienta para analizar la morfología detallada de las huellas de desgaste, proporcionando más información sobre la comprensión fundamental de los mecanismos de desgaste

AHORA, HABLEMOS DE SU SOLICITUD

Medición continua de la curva Stribeck con el tribómetro Pin-on-Disk

Introducción:

Cuando se aplica la lubricación para reducir el desgaste/fricción de las superficies en movimiento, el contacto de lubricación en la interfaz puede pasar por varios regímenes, como la lubricación límite, la mixta y la hidrodinámica. El espesor de la película de fluido desempeña un papel importante en este proceso, determinado principalmente por la viscosidad del fluido, la carga aplicada en la interfaz y la velocidad relativa entre las dos superficies. La forma en que los regímenes de lubricación reaccionan al rozamiento se muestra en lo que se denomina curva de Stribeck [1-4].

En este estudio demostramos por primera vez la capacidad de medir una curva de Stribeck continua. Usando la Nanovea Tribómetro Control avanzado de velocidad continuo, de 15000 a 0,01 rpm, en 10 minutos el software proporciona directamente una curva Stribeck completa. La configuración inicial simple solo requiere que los usuarios seleccionen el modo de rampa exponencial e ingresen las velocidades inicial y final, en lugar de tener que realizar múltiples pruebas o programar un procedimiento paso a paso a diferentes velocidades que requieren unir datos para las mediciones de curvas de Stribeck convencionales. Este avance proporciona datos precisos durante la evaluación del régimen de lubricante y reduce sustancialmente el tiempo y el costo. La prueba muestra un gran potencial para ser utilizada en diferentes aplicaciones de ingeniería industrial.

 

Haga clic para leer más.

Comparación de gotas oculares lubricantes con el tribómetro Nanovea T50

La importancia de probar las soluciones de gotas para los ojos

Los colirios se utilizan para aliviar los síntomas causados por una serie de problemas oculares. Por ejemplo, pueden utilizarse para tratar pequeñas irritaciones oculares (por ejemplo, sequedad y enrojecimiento), retrasar la aparición del glaucoma o tratar infecciones. Los colirios que se venden sin receta médica se utilizan principalmente para tratar la sequedad. Su eficacia para lubricar el ojo puede compararse y medirse con una prueba de coeficiente de fricción.
 
La sequedad ocular puede deberse a un amplio abanico de factores, por ejemplo, la fatiga ocular causada por el ordenador o la exposición a condiciones climáticas extremas. Unas buenas gotas lubricantes ayudan a mantener y complementar la humedad de la superficie externa de los ojos. De este modo, se alivian las molestias, el ardor o la irritación y el enrojecimiento asociados a la sequedad ocular. Al medir el coeficiente de fricción (COF) de una solución de gotas oculares, se puede determinar su eficacia lubricante y su comparación con otras soluciones.

Objetivo de medición

En este estudio, se midió el coeficiente de fricción (COF) de tres soluciones lubricantes de gotas para los ojos, utilizando la configuración pin-on-disk en el tribómetro Nanovea T50.

Procedimiento de prueba y procedimientos

Se aplicó una clavija esférica de 6 mm de diámetro hecha de alúmina a un portaobjetos de vidrio con cada solución de gotas oculares actuando como lubricante entre las dos superficies. Los parámetros de la prueba utilizados para todos los experimentos se resumen en la Tabla 1 a continuación.

Resultados y discusión

Los valores máximos, mínimos y medios del coeficiente de fricción de las tres soluciones de colirio probadas se tabulan en la Tabla 2. Los gráficos de COF v. Revoluciones para cada solución de colirio se representan en las figuras 2-4. El COF durante cada prueba se mantuvo relativamente constante durante la mayor parte de la duración total de la prueba. La muestra A tuvo el COF medio más bajo, lo que indica que tiene las mejores propiedades de lubricación.

 

Conclusión:

En este estudio mostramos la capacidad del tribómetro Nanovea T50 para medir el coeficiente de fricción de tres soluciones de colirio. Basándonos en estos valores, mostramos que la muestra A tenía un menor coeficiente de fricción y, por tanto, presenta una mejor lubricación en comparación con las otras dos muestras.

Nanovea Los Tribómetros ofrece pruebas de desgaste y fricción precisas y repetibles utilizando módulos lineales y rotativos que cumplen con ISO y ASTM. También proporciona módulos opcionales de tribocorrosión, lubricación y desgaste a alta temperatura disponibles en un sistema preintegrado. Esta versatilidad permite a los usuarios simular mejor el entorno de aplicación real y mejorar la comprensión fundamental del mecanismo de desgaste y las características tribológicas de diversos materiales.

AHORA, HABLEMOS DE SU SOLICITUD