الولايات المتحدة الأمريكية / العالمية: 9292-461-949-1+
أوروبا: 794-3052-011-39+
تراسل معنا

التصنيف: المسافة البادئة | الخسارة والتخزين

 

التحليل الميكانيكي الديناميكي للفلين باستخدام Nanoindentation

التحليل الميكانيكي الديناميكي

من الفلين باستخدام NANOINDENTATION

أُعدت بواسطة

فرانك ليو

مقدمة

التحليل الميكانيكي الديناميكي (DMA) هو تقنية قوية تستخدم لفحص الخواص الميكانيكية للمواد. في هذا التطبيق ، نركز على تحليل الفلين ، وهو مادة مستخدمة على نطاق واسع في عمليات ختم النبيذ والشيخوخة. يُظهر الفلين ، الذي تم الحصول عليه من لحاء شجرة البلوط Quercus suber ، هياكل خلوية متميزة توفر خصائص ميكانيكية تشبه البوليمرات الاصطناعية. في أحد المحاور ، يحتوي الفلين على هيكل قرص العسل. تم بناء المحورين الآخرين في مناشير متعددة مستطيلة الشكل. وهذا يعطي الفلين خواص ميكانيكية مختلفة حسب الاتجاه الذي يجري اختباره.

أهمية اختبار التحليل الميكانيكي الديناميكي (DMA) في تقييم الخصائص الميكانيكية للفلين

تعتمد جودة الفلين بشكل كبير على خواصها الميكانيكية والفيزيائية ، والتي تعتبر حاسمة في فعاليتها في ختم النبيذ. تشمل العوامل الرئيسية التي تحدد جودة الفلين: المرونة والعزل والمرونة وعدم نفاذية الغاز والسوائل. من خلال استخدام اختبار التحليل الميكانيكي الديناميكي (DMA) ، يمكننا تقييم خصائص المرونة والمرونة للفلين ، مما يوفر طريقة موثوقة للتقييم.

جهاز الاختبار الميكانيكي NANOVEA PB1000 في nanoindentation يتيح الوضع توصيف هذه الخصائص ، وبالتحديد معامل يونغ ، ومعامل التخزين ، ومعامل الفقد ، ودلتا tan (tan (δ)). يسمح اختبار التحليل الميكانيكي الديناميكي (DMA) أيضًا بجمع البيانات القيمة عن تحول الطور والصلابة والإجهاد والانفعال في مادة الفلين. من خلال هذه التحليلات الشاملة ، نكتسب رؤى أعمق في السلوك الميكانيكي للفلين ومدى ملاءمتها لتطبيقات ختم النبيذ.

هدف القياس

في هذه الدراسة ، قم بإجراء التحليل الميكانيكي الديناميكي (DMA) على أربعة سدادات من الفلين باستخدام NANOVEA PB1000 Mechanical Tester في وضع Nanoindentation. يتم تصنيف جودة سدادات الفلين على النحو التالي: 1 - فلور ، 2 - أولاً ، 3 - كولماتيد ، 4 - مطاط صناعي. تم إجراء اختبارات المسافة البادئة للتحليل الميكانيكي الديناميكي (DMA) في كلا الاتجاهين المحوري والقطري لكل سدادة من الفلين. من خلال تحليل الاستجابة الميكانيكية لسدادات الفلين ، كنا نهدف إلى اكتساب رؤى حول سلوكهم الديناميكي وتقييم أدائهم في ظل توجهات مختلفة.

نانوفيا

PB1000

معلمات الاختبار

ماكس فورس75 مليون
معدل التحميل150 ملي نيوتن / دقيقة
معدل التفريغ150 ملي نيوتن / دقيقة
توسيع5 ملي نيوتن
تكرار1 هرتز
زحف60 ثانية

نوع إندينتر

كرة

51200 فولاذ

قطر 3 مم

نتائج

في الجداول والرسوم البيانية أدناه ، تتم مقارنة معامل Young ، ومعامل التخزين ، ومعامل الفقد ، ودلتا tan بين كل عينة واتجاه.

معامل يونج: Sti نيس. تشير القيم العالية إلى sti ، القيم المنخفضة تشير إلى وجود قابلة للإعجاب.

معامل التخزين: استجابة مرنة الطاقة المخزنة في المادة.

معامل الخسارة: استجابة لزجة الطاقة المفقودة بسبب الحرارة.

تان (δ): التبليل. تشير القيم العالية إلى مزيد من التخميد.

التوجه المحوري

سدادةمعامل يونجمعامل التخزينوحدة الخسارةتان
#(مبا)(مبا)(مبا)(δ)
122.567522.272093.6249470.162964
218.5466418.271533.1623490.17409
323.7538123.472673.6178190.154592
423.697223.580642.3470080.099539



التوجيه الشعاعي

سدادةمعامل يونجمعامل التخزينوحدة الخسارةتان
#(مبا)(مبا)(مبا)(δ)
124.7886324.565423.3082240.134865
226.6661426.317394.2862160.163006
344.0786743.614266.3659790.146033
428.0475127.941482.4359780.087173

معامل يونج

معامل التخزين

وحدة الخسارة

تان دلتا

بين سدادات الفلين ، لا يختلف معامل Young كثيرًا عند اختباره في الاتجاه المحوري. أظهر Stopper #2 و #3 فقط فرقًا واضحًا في معامل Young بين الاتجاه الشعاعي والاتجاه المحوري. نتيجة لذلك ، سيكون معامل التخزين ومعامل الخسارة أيضًا أعلى في الاتجاه الشعاعي منه في الاتجاه المحوري. يظهر سدادة #4 خصائص مماثلة مع سدادات الفلين الطبيعية ، باستثناء معامل الخسارة. هذا مثير للاهتمام لأنه يعني أن الفلين الطبيعي له خاصية لزوجة أكثر من مادة المطاط الصناعي.

خاتمة

النانو اختبار ميكانيكي في وضع Nano Scratch Tester، يمكنك محاكاة العديد من حالات الفشل الواقعية لطلاءات الطلاء والطلاءات الصلبة. من خلال تطبيق أحمال متزايدة بطريقة يتم التحكم فيها ومراقبتها عن كثب، يسمح الجهاز بتحديد مكان فشل الأحمال. ويمكن بعد ذلك استخدام هذا كوسيلة لتحديد القيم الكمية لمقاومة الخدش. من المعروف أن الطلاء الذي تم اختباره، دون التعرض للعوامل الجوية، به صدع أول عند حوالي 22 ملي نيوتن. مع قيم أقرب إلى 5 ملي نيوتن، فمن الواضح أن دورة 7 سنوات قد أدت إلى تدهور الطلاء.

يسمح التعويض عن ملف التعريف الأصلي بالحصول على عمق مصحح أثناء الخدش وأيضًا قياس العمق المتبقي بعد الخدش. هذا يعطي معلومات إضافية عن البلاستيك مقابل السلوك المرن للطلاء تحت الحمل المتزايد. يمكن أن يكون كل من التكسير والمعلومات الخاصة بالتشوه مفيدًا بشكل كبير لتحسين الطبقة الصلبة. تظهر الانحرافات المعيارية الصغيرة جدًا أيضًا إمكانية استنساخ تقنية الأداة التي يمكن أن تساعد الشركات المصنعة على تحسين جودة الطلاء / الطلاء الصلب ودراسة تأثيرات التجوية.

التحليل الميكانيكي الديناميكي (DMA) مسح التردد على البوليمر

اكتساح تردد DMA

على البوليمر باستخدام تحديد النانو

أُعدت بواسطة

دوانجي لي ، دكتوراه

مقدمة

أهمية اختبار التحليل الميكانيكي الديناميكي التردد

غالبًا ما يؤدي التردد المتغير للإجهاد إلى اختلافات في المعامل المعقد، وهي خاصية ميكانيكية مهمة للبوليمرات. على سبيل المثال، تتعرض الإطارات لتشوهات دورية عالية أثناء سير المركبات على الطريق. يتغير تردد الضغط والتشوه مع تسارع السيارة إلى سرعات أعلى. مثل هذا التغيير يمكن أن يؤدي إلى اختلاف في خصائص اللزوجة المرنة للإطار، وهي عوامل مهمة في أداء السيارة. هناك حاجة إلى اختبار موثوق وقابل للتكرار للسلوك اللزج المرن للبوليمرات عند ترددات مختلفة. وحدة النانو في NANOVEA اختبار ميكانيكي يولد حملًا جيبيًا بواسطة مشغل بيزو عالي الدقة ويقيس بشكل مباشر تطور القوة والإزاحة باستخدام خلية تحميل فائقة الحساسية ومكثف. إن الجمع بين الإعداد السهل والدقة العالية يجعله أداة مثالية لمسح تردد التحليل الميكانيكي الديناميكي.

تُظهر المواد اللزجة المرنة خصائص لزجة ومرنة عند تعرضها للتشوه. تساهم السلاسل الجزيئية الطويلة في مواد البوليمر في خواصها المرنة اللزجة الفريدة ، أي مزيج من خصائص كل من المواد الصلبة المرنة والسوائل النيوتونية. يلعب كل من الإجهاد ودرجة الحرارة والتكرار وعوامل أخرى أدوارًا في خصائص المرونة اللزجة. التحليل الميكانيكي الديناميكي ، المعروف أيضًا باسم التحليل الميكانيكي الديناميكي (DMA) ، يدرس سلوك المرونة اللزجة والمعامل المعقد للمادة عن طريق تطبيق إجهاد جيبي وقياس تغير الانفعال.

هدف القياس

في هذا التطبيق، نقوم بدراسة خصائص اللزوجة المرنة لعينة إطار مصقول عند ترددات DMA مختلفة باستخدام أقوى جهاز اختبار ميكانيكي، NANOVEA PB1000، في nanoindentation وضع.

نانوفيا

PB1000

شروط الاختبار

الترددات (هرتز):

0.1, 1.5, 10, 20

وقت الخلط في كل تكرار.

50 ثانية

تذبذب الجهد

0.1 فولت

تحميل الجهد

1 فولت

نوع إندينتر

كروي

الماس | 100 ميكرومتر

النتائج والمناقشة

يسمح اكتساح تردد التحليل الميكانيكي الديناميكي عند الحد الأقصى للحمل بقياس سريع وبسيط لخصائص اللزوجة المرنة للعينة عند ترددات تحميل مختلفة في اختبار واحد. يمكن استخدام انزياح الطور واتساع موجات الحمل والإزاحة عند ترددات مختلفة لحساب مجموعة متنوعة من الخصائص الأساسية المطاطية اللزجة للمواد ، بما في ذلك معامل التخزين, معامل الخسارة و تان (δ) على النحو الملخص في الرسوم البيانية التالية. 

تتوافق ترددات 1 و 5 و 10 و 20 هرتز في هذه الدراسة مع سرعات تبلغ حوالي 7 و 33 و 67 و 134 كيلومترًا في الساعة. مع زيادة تردد الاختبار من 0.1 إلى 20 هرتز ، يمكن ملاحظة أن كلا من معامل التخزين ومعامل الخسارة يزدادان تدريجياً. ينخفض تان (δ) من ~ 0.27 إلى 0.18 مع زيادة التردد من 0.1 إلى 1 هرتز ، ثم يزداد تدريجياً إلى ~ 0.55 عند الوصول إلى التردد 20 هرتز. يسمح مسح تردد التحليل الميكانيكي الديناميكي (DMA) بقياس اتجاهات معامل التخزين ومعامل الفقد والتان (δ) ، والتي توفر معلومات حول حركة المونومرات والربط المتبادل وكذلك التزجج للبوليمرات. من خلال رفع درجة الحرارة باستخدام لوحة التسخين أثناء اكتساح التردد ، يمكن الحصول على صورة أكثر اكتمالاً لطبيعة الحركة الجزيئية في ظل ظروف اختبار مختلفة.

تطور الحمل والعمق

من SWEEP تردد DMA الكامل

LOAD & DEPTH مقابل الوقت بترددات مختلفة

معامل التخزين

بترددات مختلفة

وحدة الخسارة

بترددات مختلفة

تان (δ)

بترددات مختلفة

خاتمة

في هذه الدراسة ، عرضنا قدرة جهاز NANOVEA الميكانيكي في إجراء اختبار اكتساح التردد للتحليل الميكانيكي الديناميكي على عينة من الإطارات. يقيس هذا الاختبار خصائص اللزوجة المرنة للإطار عند ترددات مختلفة من الإجهاد. يُظهر الإطار زيادة في معامل التخزين والفقد مع زيادة تردد التحميل من 0.1 إلى 20 هرتز. يوفر معلومات مفيدة عن سلوكيات اللزوجة المرنة للإطار الذي يعمل بسرعات مختلفة ، وهو أمر ضروري في تحسين أداء الإطارات لركوب أكثر سلاسة وأمانًا. يمكن إجراء اختبار مسح التردد DMA في درجات حرارة مختلفة لتقليد بيئة العمل الواقعية للإطار في ظل ظروف جوية مختلفة.

في وحدة النانو لجهاز اختبار NANOVEA الميكانيكي ، يكون تطبيق الحمل مع الضغط السريع مستقلاً عن قياس الحمل الذي يتم بواسطة مقياس ضغط منفصل عالي الحساسية. يعطي هذا ميزة واضحة أثناء التحليل الميكانيكي الديناميكي حيث يتم قياس المرحلة بين العمق والحمل مباشرة من البيانات التي تم جمعها من المستشعر. حساب المرحلة مباشر ولا يحتاج إلى نمذجة رياضية تضيف عدم دقة إلى معامل الخسارة والتخزين الناتج. هذا ليس هو الحال بالنسبة لنظام قائم على الملف.

في الختام ، يقيس التحليل الميكانيكي الديناميكي (DMA) معامل الخسارة والتخزين والمعامل المعقد و Tan () كدالة لعمق التلامس والوقت والتردد. تسمح مرحلة التسخين الاختيارية بتحديد درجة حرارة انتقال طور المواد أثناء التحليل الميكانيكي الديناميكي (DMA). توفر أجهزة اختبار NANOVEA الميكانيكية وحدات Nano و Micro متعددة الوظائف لا مثيل لها على منصة واحدة. تشتمل كل من وحدات Nano و Micro على جهاز اختبار الخدش واختبار الصلابة وأوضاع اختبار التآكل ، مما يوفر أوسع نطاق من الاختبارات وأكثرها سهولة في الاستخدام متاحًا على وحدة واحدة.

الانتقال الدقيق إلى الزجاج المترجم باستخدام التحليل الميكانيكي الديناميكي (DMA) بمسافة نانوية

الانتقال الدقيق إلى الزجاج المترجم باستخدام التحليل الميكانيكي الديناميكي (DMA) بمسافة نانوية

يتعلم أكثر
 
تخيل سيناريو حيث يتم تسخين عينة سائبة بشكل موحد بمعدل ثابت. عندما تسخن المادة السائبة وتقترب من نقطة الانصهار ، فإنها ستبدأ في فقدان صلابتها. إذا تم إجراء المسافات البادئة الدورية (اختبارات الصلابة) بنفس القوة المستهدفة ، فيجب أن يزداد عمق كل مسافة بادئة باستمرار لأن العينة تصبح أكثر ليونة (انظر الشكل 1). يستمر هذا حتى تبدأ العينة في الذوبان. في هذه المرحلة ، ستلاحظ زيادة كبيرة في العمق لكل مسافة بادئة. باستخدام هذا المفهوم ، يمكن ملاحظة تغير الطور في مادة ما باستخدام التذبذبات الديناميكية بسعة قوة ثابتة وقياس إزاحتها ، أي التحليل الميكانيكي الديناميكي (DMA).   اقرأ عن الانتقال الدقيق المترجم للزجاج!

قياس استرخاء الإجهاد باستخدام Nanoindentation

يتعلم أكثر

الآن ، لنتحدث عن طلبك

تحليل اللزوجة المطاطية

تحليل اللزوجة المطاطية

يتعلم أكثر

 

تتعرض الإطارات لتشوهات عالية دورية عندما تسير المركبات على الطريق. عند التعرض لظروف الطريق القاسية ، تتعرض فترة خدمة الإطارات للخطر بسبب العديد من العوامل ، مثل تآكل الخيط ، والحرارة الناتجة عن الاحتكاك ، وتقادم المطاط ، وغيرها.

نتيجة لذلك ، عادةً ما تحتوي الإطارات على هياكل طبقات مركبة مصنوعة من المطاط المملوء بالكربون ، وأسلاك النايلون ، والأسلاك الفولاذية ، وما إلى ذلك. لا يقتصر على الخيط المقاوم للتآكل وطبقة المطاط الوسادة وطبقة القاعدة المطاطية الصلبة.

يعد الاختبار الموثوق والقابل للتكرار للسلوك اللزج للمطاط أمرًا بالغ الأهمية في مراقبة الجودة والبحث والتطوير للإطارات الجديدة، بالإضافة إلى تقييم العمر الافتراضي للإطارات القديمة. التحليل الميكانيكي الديناميكي (DMA) أثناء nanoindentation هي تقنية لتوصيف اللزوجة المرنة. عند تطبيق الإجهاد التذبذبي المتحكم فيه، يتم قياس الإجهاد الناتج، مما يسمح للمستخدمين بتحديد المعامل المعقد للمواد التي تم اختبارها.

التحليل الميكانيكي الديناميكي باستخدام Nanoindentation

تعتمد جودة الفلين بشكل كبير على خصائصها الميكانيكية والفيزيائية. يمكن تحديد قدرتها على ختم النبيذ على أنها عوامل مهمة: المرونة ، والعزل ، والمرونة ، وعدم نفاذية الغاز والسوائل. من خلال إجراء اختبار التحليل الميكانيكي الديناميكي (DMA) ، يمكن قياس خصائص المرونة والمرونة بطريقة قابلة للقياس الكمي. وتتميز هذه الخصائص بامتصاص نانوفيا الميكانيكي نانويندينتايون في شكل معامل يونج ، ومعامل التخزين ، ومعامل الخسارة ، ودلتا tan (tan (δ)). البيانات الأخرى التي يمكن جمعها من اختبار التحليل الميكانيكي الديناميكي (DMA) هي انزياح الطور ، والصلابة ، والضغط ، وشد المادة.

التحليل الميكانيكي الديناميكي باستخدام Nanoindentation