EEUU/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTÁCTENOS

Categoría: Pruebas de fricción | Coeficiente de fricción

 

Evaluación de arañazos y desgaste de los revestimientos industriales

REVESTIMIENTO INDUSTRIAL

EVALUACIÓN DE ARAÑAZOS Y DESGASTE MEDIANTE UN TRIBÓMETRO

Preparado por

DUANJIE LI, PhD & ANDREA HERRMANN

INTRODUCCIÓN

La pintura de uretano acrílico es un tipo de revestimiento protector de secado rápido muy utilizado en diversas aplicaciones industriales, como la pintura para suelos, la pintura para automóviles y otras. Cuando se utiliza como pintura para suelos, puede servir para zonas con mucho tráfico de personas y ruedas de goma, como pasarelas, bordillos y aparcamientos.

IMPORTANCIA DE LAS PRUEBAS DE RAYADO Y DESGASTE PARA EL CONTROL DE CALIDAD

Tradicionalmente, los ensayos de abrasión Taber se llevaban a cabo para evaluar la resistencia al desgaste de la pintura de uretano acrílico para suelos según la norma ASTM D4060. Sin embargo, como se menciona en la norma, "Para algunos materiales, los ensayos de abrasión que utilizan el abrasador Taber pueden estar sujetos a variaciones debido a los cambios en las características abrasivas de la rueda durante el ensayo".1 Esto puede dar lugar a una mala reproducibilidad de los resultados del ensayo y crear dificultades a la hora de comparar los valores comunicados por diferentes laboratorios. Además, en los ensayos de abrasión Taber, la resistencia a la abrasión se calcula como la pérdida de peso en un número determinado de ciclos de abrasión. Sin embargo, las pinturas de uretano acrílico para suelos tienen un espesor de película seca recomendado de 37,5-50 μm2.

El agresivo proceso de abrasión de Taber Abraser puede desgastar rápidamente el revestimiento de uretano acrílico y crear pérdidas de masa en el sustrato, lo que provoca errores sustanciales en el cálculo de la pérdida de peso de la pintura. La implantación de partículas abrasivas en la pintura durante el ensayo de abrasión también contribuye a los errores. Por lo tanto, una medición cuantificable y fiable bien controlada es crucial para garantizar una evaluación reproducible del desgaste de la pintura. Además, la Prueba de raspado permite a los usuarios detectar fallos prematuros de adhesivo/adhesivo en aplicaciones reales.

OBJETIVO DE MEDICIÓN

En este estudio, mostramos que NANOVEA Los Tribómetros y Probadores Mecánicos Son ideales para la evaluación y control de calidad de recubrimientos industriales.

El proceso de desgaste de las pinturas de uretano acrílico para suelos con diferentes capas de acabado se simula de forma controlada y monitorizada utilizando el Tribómetro NANOVEA. El ensayo de microrrayado se utiliza para medir la carga necesaria para provocar un fallo cohesivo o adhesivo en la pintura.

NANOVEA T100

El Tribómetro Neumático Compacto

NANOVEA PB1000

El comprobador mecánico de plataforma grande

PROCEDIMIENTO DE PRUEBA

Este estudio evalúa cuatro revestimientos acrílicos de base acuosa disponibles en el mercado que tienen la misma imprimación (capa base) y diferentes capas de acabado de la misma fórmula con una pequeña alternancia en las mezclas de aditivos con el fin de mejorar la durabilidad. Estos cuatro revestimientos se identifican como muestras A, B, C y D.

PRUEBA DE DESGASTE

Se aplicó el tribómetro NANOVEA para evaluar el comportamiento tribológico, por ejemplo, coeficiente de fricción, COF y resistencia al desgaste. Se aplicó una punta de bola SS440 (6 mm de diámetro, Grado 100) contra las pinturas probadas. El COF se registró in situ. La tasa de desgaste, K, se evaluó utilizando la fórmula K=V/(F×s)=A/(F×n), donde V es el volumen desgastado, F es la carga normal, s es la distancia de deslizamiento, A es el área de la sección transversal de la pista de desgaste, y n es el número de revoluciones. NANOVEA evaluó la rugosidad de la superficie y los perfiles de desgaste de la pista. Perfilómetro óptico, y la morfología de la pista de desgaste se examinó utilizando un microscopio óptico.

PARÁMETROS DE LA PRUEBA DE DESGASTE

FUERZA NORMAL

20 N

VELOCIDAD

15 m/min

DURACIÓN DE LA PRUEBA

100, 150, 300 y 800 ciclos

PRUEBA DE RASPADO

El probador mecánico NANOVEA equipado con un palpador de diamante Rockwell C (200 μm de radio) se utilizó para realizar ensayos de rayado de carga progresiva en las muestras de pintura utilizando el modo de micro rayado. Se utilizaron dos cargas finales: 5 N de carga final para investigar la deslaminación de la pintura de la imprimación, y 35 N para investigar la deslaminación de la imprimación de los sustratos metálicos. Se repitieron tres pruebas en las mismas condiciones de ensayo en cada muestra para garantizar la reproducibilidad de los resultados.

Se generaron automáticamente imágenes panorámicas de toda la longitud de los arañazos y el software del sistema correlacionó sus ubicaciones críticas de fallo con las cargas aplicadas. Esta función del software facilita a los usuarios realizar el análisis de las pistas de rayado en cualquier momento, en lugar de tener que determinar la carga crítica bajo el microscopio inmediatamente después de los ensayos de rayado.

PARÁMETROS DE LA PRUEBA DE RASCADO

TIPO DE CARGAProgresiva
CARGA INICIAL0,01 mN
CARGA FINAL5 N / 35 N
TASA DE CARGA10 / 70 N/min
LONGITUD DEL RASPADO3 mm
VELOCIDAD DE RASGADO, dx/dt6,0 mm/min
GEOMETRÍA DEL PENETRADORCono de 120º
MATERIAL INDENTADO (punta)Diamante
RADIO DE LA PUNTA DEL PENETRADOR200 μm

RESULTADOS DE LAS PRUEBAS DE DESGASTE

Se realizaron cuatro ensayos de desgaste pin-on-disk a diferentes números de revoluciones (100, 150, 300 y 800 ciclos) en cada muestra para controlar la evolución del desgaste. La morfología de la superficie de las muestras se midió con un perfilador sin contacto NANOVEA 3D para cuantificar la rugosidad de la superficie antes de realizar las pruebas de desgaste. Todas las muestras tenían una rugosidad superficial comparable de aproximadamente 1 μm como se muestra en la FIGURA 1. El COF se registró in situ durante las pruebas de desgaste como se muestra en la FIGURA 2. En la FIGURA 4 se presenta la evolución de las huellas de desgaste después de 100, 150, 300 y 800 ciclos, y en la FIGURA 3 se resume la tasa media de desgaste de las distintas muestras en diferentes etapas del proceso de desgaste.

 

En comparación con un valor de COF de ~0,07 para las otras tres muestras, la Muestra A presenta un COF mucho más alto de ~0,15 al principio, que aumenta gradualmente y se estabiliza en ~0,3 después de 300 ciclos de desgaste. Un COF tan alto acelera el proceso de desgaste y crea una cantidad considerable de restos de pintura, como se indica en la FIGURA 4: la capa superior de la muestra A ha empezado a eliminarse en las primeras 100 revoluciones. Como se muestra en la FIGURA 3, la Muestra A presenta la mayor tasa de desgaste de ~5 μm2/N en los primeros 300 ciclos, que disminuye ligeramente a ~3,5 μm2/N debido a la mejor resistencia al desgaste del sustrato metálico. La capa superior de la muestra C comienza a fallar después de 150 ciclos de desgaste, como se muestra en la FIGURA 4, lo que también se indica por el aumento del COF en la FIGURA 2.

 

En comparación, la muestra B y la muestra D muestran mejores propiedades tribológicas. La muestra B mantiene un COF bajo durante toda la prueba - el COF aumenta ligeramente de~0,05 a ~0,1. Este efecto lubricante mejora sustancialmente su resistencia al desgaste: la capa superior sigue proporcionando una protección superior a la imprimación inferior después de 800 ciclos de desgaste. La tasa de desgaste media más baja, de sólo ~0,77 μm2/N, se mide para la muestra B a los 800 ciclos. La capa superior de la Muestra D comienza a deslaminar después de 375 ciclos, como se refleja en el aumento abrupto del COF en la FIGURA 2. La tasa de desgaste media de la muestra D es de ~1,1 μm2/N a 800 ciclos.

 

En comparación con las mediciones de abrasión Taber convencionales, el Tribómetro NANOVEA proporciona evaluaciones de desgaste bien controladas, cuantificables y fiables, que garantizan evaluaciones reproducibles y el control de calidad de las pinturas comerciales para suelos y automóviles. Además, la capacidad de las mediciones de COF in situ permite a los usuarios correlacionar las diferentes etapas de un proceso de desgaste con la evolución del COF, lo cual es crítico para mejorar la comprensión fundamental del mecanismo de desgaste y las características tribológicas de varios recubrimientos de pintura.

FIGURA 1: Morfología 3D y rugosidad de las muestras de pintura.

FIGURA 2: COF durante las pruebas pin-on-disk.

FIGURA 3: Evolución de la tasa de desgaste de diferentes pinturas.

FIGURA 4: Evolución de las huellas de desgaste durante las pruebas de pasador sobre disco.

RESULTADOS DE LAS PRUEBAS DE DESGASTE

La FIGURA 5 muestra el gráfico de la fuerza normal, la fuerza de fricción y la profundidad real en función de la longitud del arañazo para la muestra A como ejemplo. Se puede instalar un módulo opcional de emisión acústica para obtener más información. A medida que la carga normal aumenta linealmente, la punta de indentación se hunde gradualmente en la muestra ensayada, como se refleja en el aumento progresivo de la profundidad real. La variación de las pendientes de las curvas de fuerza de fricción y profundidad real puede utilizarse como una de las implicaciones de que empiezan a producirse fallos en el revestimiento.

FIGURA 5: Fuerza normal, fuerza de fricción y profundidad real en función de la longitud de rayado para ensayo de rayado de la muestra A con una carga máxima de 5 N.

La FIGURA 6 y la FIGURA 7 muestran los arañazos completos de las cuatro muestras de pintura ensayadas con una carga máxima de 5 N y 35 N, respectivamente. La muestra D requirió una carga mayor de 50 N para deslaminar la imprimación. Los ensayos de rayado con una carga final de 5 N (FIGURA 6) evalúan el fallo cohesivo/adhesivo de la pintura superior, mientras que los de 35 N (FIGURA 7) evalúan la deslaminación de la imprimación. Las flechas en las micrografías indican el punto en el que la pintura superior o la imprimación empiezan a desprenderse completamente de la imprimación o del sustrato. La carga en este punto, llamada Carga Crítica, Lc, se utiliza para comparar las propiedades cohesivas o adhesivas de la pintura como se resume en la Tabla 1.

 

Es evidente que la pintura de la muestra D tiene la mejor adhesión interfacial - mostrando los valores más altos de Lc de 4,04 N en la delaminación de la pintura y 36,61 N en la delaminación de la imprimación. La muestra B muestra la segunda mejor resistencia al rayado. A partir del análisis de los arañazos, mostramos que la optimización de la fórmula de la pintura es fundamental para los comportamientos mecánicos, o más específicamente, la resistencia al rayado y la propiedad de adhesión de las pinturas acrílicas para suelos.

Tabla 1: Resumen de las cargas críticas.

FIGURA 6: Micrografías del rayado completo con una carga máxima de 5 N.

FIGURA 7: Micrografías del rayado completo con una carga máxima de 35 N.

CONCLUSIÓN

En comparación con las mediciones de abrasión Taber convencionales, el NANOVEA Mechanical Tester y el Tribometer son herramientas superiores para la evaluación y el control de calidad de los revestimientos comerciales para suelos y automóviles. El NANOVEA Mechanical Tester en modo de rascado puede detectar problemas de adhesión/cohesión en un sistema de revestimiento. El Tribómetro NANOVEA proporciona un análisis tribológico cuantificable y repetible bien controlado sobre la resistencia al desgaste y el coeficiente de fricción de las pinturas.

 

Basándonos en los exhaustivos análisis tribológicos y mecánicos de los recubrimientos acrílicos de base acuosa para suelos probados en este estudio, demostramos que la muestra B posee el menor índice de COF y de desgaste y la segunda mejor resistencia al rayado, mientras que la muestra D presenta la mejor resistencia al rayado y la segunda mejor resistencia al desgaste. Esta valoración nos permite evaluar y seleccionar el mejor candidato en función de las necesidades en diferentes entornos de aplicación.

 

Los módulos Nano y Micro del Comprobador Mecánico NANOVEA incluyen todos los modos de indentación, rayado y desgaste que cumplen con las normas ISO y ASTM, proporcionando la más amplia gama de pruebas disponibles para la evaluación de la pintura en un solo módulo. El Tribómetro NANOVEA ofrece pruebas de desgaste y fricción precisas y repetibles utilizando modos rotativos y lineales que cumplen con las normas ISO y ASTM, con módulos opcionales de desgaste a alta temperatura, lubricación y tribo-corrosión disponibles en un sistema preintegrado. La gama inigualable de NANOVEA es una solución ideal para determinar toda la gama de propiedades mecánicas/tribológicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros, incluyendo la dureza, el módulo de Young, la tenacidad a la fractura, la adhesión, la resistencia al desgaste y muchas otras. Hay disponibles perfiladores ópticos sin contacto NANOVEA opcionales para obtener imágenes en 3D de alta resolución de arañazos y huellas de desgaste, además de otras mediciones de superficies como la rugosidad.

AHORA, HABLEMOS DE SU SOLICITUD

Prueba de rayado del revestimiento de nitruro de titanio

ENSAYO DE RAYADO DEL REVESTIMIENTO DE NITRURO DE TITANIO

INSPECCIÓN DE CONTROL DE CALIDAD

Preparado por

DUANJIE LI, PhD

INTRODUCCIÓN

La combinación de alta dureza, excelente resistencia al desgaste, resistencia a la corrosión e inercia hace que el nitruro de titanio (TiN) sea un revestimiento protector ideal para los componentes metálicos de diversas industrias. Por ejemplo, la retención de los bordes y la resistencia a la corrosión de un revestimiento de TiN pueden aumentar considerablemente la eficacia del trabajo y prolongar la vida útil de las máquinas herramienta, como las cuchillas de afeitar, los cortadores de metal, los moldes de inyección y las sierras. Su gran dureza, inercia y no toxicidad hacen del TiN un gran candidato para aplicaciones en dispositivos médicos, como implantes e instrumentos quirúrgicos.

IMPORTANCIA DE LAS PRUEBAS DE ROTURA DEL RECUBRIMIENTO DE TiN

La tensión residual en los revestimientos protectores de PVD/CVD desempeña un papel fundamental en el rendimiento y la integridad mecánica del componente revestido. La tensión residual proviene de varias fuentes principales, como la tensión de crecimiento, los gradientes térmicos, las limitaciones geométricas y la tensión de servicio¹. El desajuste de la expansión térmica entre el revestimiento y el sustrato creado durante la deposición del revestimiento a temperaturas elevadas da lugar a una elevada tensión residual térmica. Además, las herramientas con revestimiento de TiN se utilizan a menudo bajo tensiones concentradas muy elevadas, por ejemplo, en brocas y cojinetes. Es fundamental desarrollar un proceso de control de calidad fiable para inspeccionar cuantitativamente la resistencia cohesiva y adhesiva de los revestimientos funcionales de protección.

[1] V. Teixeira, Vacuum 64 (2002) 393-399.

OBJETIVO DE MEDICIÓN

En este estudio, mostramos que NANOVEA Probadores Mecánicos en modo Scratch son ideales para evaluar la fuerza cohesiva/adhesiva de recubrimientos protectores de TiN de manera controlada y cuantitativa.

NANOVEA

PB1000

CONDICIONES DE PRUEBA

Para realizar el recubrimiento se utilizó el Comprobador Mecánico NANOVEA PB1000 pruebas de resistencia al rayado en tres revestimientos de TiN utilizando los mismos parámetros de ensayo que se resumen a continuación:

MODO DE CARGA: Lineal progresivo

CARGA INICIAL

0.02 N

CARGA FINAL

10 N

TASA DE CARGA

20 N/min

LONGITUD DEL RASPADO

5 mm

TIPO DE INDENTADOR

Sphero-Conical

Diamante, 20 μm de radio

RESULTADOS Y DISCUSIÓN

La FIGURA 1 muestra la evolución registrada de la profundidad de penetración, el coeficiente de fricción (COF) y la emisión acústica durante el ensayo. En la FIGURA 2 se muestran las huellas completas de micro arañazos en las muestras de TiN. Los comportamientos de fallo a diferentes cargas críticas se muestran en la FIGURA 3, donde la carga crítica Lc1 se define como la carga a la que se produce el primer signo de grieta cohesiva en la pista de rayado, Lc2 es la carga después de la cual se producen fallos de espalación repetidos, y Lc3 es la carga a la que el recubrimiento se desprende completamente del sustrato. Los valores de la carga crítica (Lc) para los revestimientos de TiN se resumen en la FIGURA 4.

La evolución de la profundidad de penetración, del COF y de la emisión acústica permite conocer el mecanismo de fallo del recubrimiento en diferentes etapas, que están representadas por las cargas críticas en este estudio. Se puede observar que la muestra A y la muestra B presentan un comportamiento comparable durante el ensayo de rayado. El palpador penetra progresivamente en la muestra hasta una profundidad de ~0,06 mm y el COF aumenta gradualmente hasta ~0,3 a medida que la carga normal aumenta linealmente al principio del ensayo de rayado del revestimiento. Cuando se alcanza el Lc1 de ~3,3 N, se produce el primer signo de fallo por astillamiento. Esto también se refleja en los primeros picos grandes en el gráfico de la profundidad de penetración, el COF y la emisión acústica. A medida que la carga sigue aumentando hasta Lc2 de ~3,8 N, se producen nuevas fluctuaciones de la profundidad de penetración, el COF y la emisión acústica. Podemos observar un fallo de espalación continuo presente en ambos lados de la pista de rayado. En Lc3, el revestimiento se desprende completamente del sustrato metálico bajo la alta presión aplicada por el palpador, dejando el sustrato expuesto y desprotegido.

En comparación, la Muestra C presenta cargas críticas más bajas en las diferentes etapas de los ensayos de rayado del revestimiento, lo que también se refleja en la evolución de la profundidad de penetración, el coeficiente de fricción (COF) y la emisión acústica durante el ensayo de rayado del revestimiento. La muestra C posee una capa intermedia de adhesión con menor dureza y mayor tensión en la interfaz entre el revestimiento superior de TiN y el sustrato metálico en comparación con la muestra A y la muestra B.

Este estudio demuestra la importancia del soporte adecuado del sustrato y de la arquitectura del recubrimiento para la calidad del sistema de recubrimiento. Una capa intermedia más fuerte puede resistir mejor la deformación bajo una alta carga externa y la tensión de concentración, y así mejorar la fuerza cohesiva y adhesiva del sistema de recubrimiento/sustrato.

FIGURA 1: Evolución de la profundidad de penetración, del COF y de la emisión acústica de las muestras de TiN.

FIGURA 2: Rastro completo de arañazos de los revestimientos de TiN después de las pruebas.

FIGURA 3: Fallos del recubrimiento de TiN bajo diferentes cargas críticas, Lc.

FIGURA 4: Resumen de los valores de carga crítica (Lc) para los revestimientos de TiN.

CONCLUSIÓN

En este estudio, demostramos que el comprobador mecánico NANOVEA PB1000 realiza ensayos de rayado fiables y precisos en muestras recubiertas de TiN de forma controlada y estrechamente supervisada. Las mediciones de arañazos permiten a los usuarios identificar rápidamente la carga crítica a la que se producen los típicos fallos del revestimiento cohesivo y adhesivo. Nuestros instrumentos son herramientas superiores de control de calidad que pueden inspeccionar y comparar cuantitativamente la calidad intrínseca de un revestimiento y la integridad interfacial de un sistema de revestimiento/sustrato. Un revestimiento con una capa intermedia adecuada puede resistir una gran deformación bajo una alta carga externa y tensión de concentración, y mejorar la fuerza cohesiva y adhesiva de un sistema de revestimiento/sustrato.

Los módulos Nano y Micro de un comprobador mecánico NANOVEA incluyen todos los modos de indentación, rayado y desgaste que cumplen con las normas ISO y ASTM, proporcionando la gama más amplia y fácil de usar de pruebas disponibles en un solo sistema. La gama inigualable de NANOVEA es una solución ideal para determinar toda la gama de propiedades mecánicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros, incluyendo la dureza, el módulo de Young, la tenacidad a la fractura, la adhesión, la resistencia al desgaste y muchas otras.

AHORA, HABLEMOS DE SU SOLICITUD

Evaluación de la fricción a velocidades extremadamente bajas

 

Importancia de la evaluación de la fricción a bajas velocidades

La fricción es la fuerza que resiste el movimiento relativo de las superficies sólidas que se deslizan una contra otra. Cuando se produce el movimiento relativo de estas dos superficies en contacto, la fricción en la interfaz convierte la energía cinética en calor. Este proceso también puede provocar el desgaste del material y, por tanto, la degradación del rendimiento de las piezas en uso.
Con una gran relación de estiramiento, alta resiliencia, así como grandes propiedades de impermeabilidad y resistencia al desgaste, el caucho se aplica ampliamente en una variedad de aplicaciones y productos en los que la fricción desempeña un papel importante, como los neumáticos de los automóviles, las escobillas del limpiaparabrisas. las suelas de los zapatos y muchos otros. Dependiendo de la naturaleza y los requisitos de estas aplicaciones, se desea una fricción alta o baja contra diferentes materiales. En consecuencia, resulta fundamental una medición controlada y fiable de la fricción del caucho contra diversas superficies.



Objetivo de medición

El coeficiente de fricción (COF) del caucho contra diferentes materiales se mide de forma controlada y monitorizada mediante el Nanovea Tribómetro. En este estudio, nos gustaría mostrar la capacidad del Nanovea Tribometer para medir el COF de diferentes materiales a velocidades extremadamente bajas.




Resultados y discusión

El coeficiente de fricción (COF) de las bolas de caucho (6 mm de diámetro, RubberMill) sobre tres materiales (acero inoxidable SS 316, Cu 110 y acrílico opcional) se evaluó mediante el tribómetro Nanovea. Las muestras metálicas probadas se pulieron mecánicamente hasta conseguir un acabado superficial similar al de un espejo antes de la medición. La ligera deformación de la bola de goma bajo la carga normal aplicada creó un área de contacto, que también ayuda a reducir el impacto de las asperezas o la falta de homogeneidad del acabado de la superficie de la muestra en las mediciones del COF. Los parámetros de la prueba se resumen en la Tabla 1.


 

El COF de una pelota de goma contra diferentes materiales a cuatro velocidades distintas se muestra en la Figura 2, y en la figura 3 se resumen y comparan los COF medios calculados automáticamente por el software. Resulta interesante que las muestras metálicas (SS 316 y Cu 110) muestran un aumento significativo de los COF a medida que la velocidad de rotación aumenta desde un valor muy bajo de 0,01 rpm hasta 5 rpm -el valor del COF de la pareja caucho/SS 316 aumenta de 0,29 a 0,8, y de 0,65 a 1,1 para la pareja caucho/Cu 110. Este hallazgo coincide con los resultados comunicados por varios laboratorios. Como propone Grosch4 La fricción del caucho viene determinada principalmente por dos mecanismos: (1) la adhesión entre el caucho y el otro material, y (2) las pérdidas de energía debidas a la deformación del caucho causada por las asperezas de la superficie. Schallamach5 observaron ondas de desprendimiento del caucho del contramaterial a través de la interfaz entre las esferas de caucho blando y una superficie dura. La fuerza que ejerce el caucho para desprenderse de la superficie del sustrato y la velocidad de las ondas de desprendimiento pueden explicar la diferente fricción a diferentes velocidades durante la prueba.

En comparación, la pareja de material de caucho/acrílico presenta un alto COF a diferentes velocidades de rotación. El valor del COF aumenta ligeramente de ~ 1,02 a ~ 1,09 a medida que la velocidad de rotación aumenta de 0,01 rpm a 5 rpm. Este elevado COF se atribuye posiblemente a una mayor unión química local en la cara de contacto formada durante las pruebas.



 
 

 

 




Conclusión:



En este estudio, mostramos que a velocidades extremadamente bajas, el caucho muestra un comportamiento de fricción peculiar: su fricción contra una superficie dura aumenta con el incremento de la velocidad del movimiento relativo. El caucho muestra una fricción diferente cuando se desliza sobre diferentes materiales. El Tribómetro Nanovea puede evaluar las propiedades de fricción de los materiales de forma controlada y monitorizada a diferentes velocidades, lo que permite a los usuarios mejorar la comprensión fundamental del mecanismo de fricción de los materiales y seleccionar la mejor pareja de materiales para las aplicaciones de ingeniería tribológica previstas.

El tribómetro Nanovea ofrece pruebas de desgaste y fricción precisas y repetibles mediante modos rotativos y lineales conformes a las normas ISO y ASTM, con módulos opcionales de desgaste a alta temperatura, lubricación y tribo-corrosión disponibles en un sistema preintegrado. Es capaz de controlar la etapa rotativa a velocidades extremadamente bajas, de hasta 0,01 rpm, y supervisar la evolución de la fricción in situ. La gama inigualable de Nanovea es una solución ideal para determinar toda la gama de propiedades tribológicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros.

AHORA, HABLEMOS DE SU SOLICITUD

Propiedades mecánicas de los recubrimientos de obleas de carburo de silicio

Comprender las propiedades mecánicas de los recubrimientos de obleas de carburo de silicio es fundamental. El proceso de fabricación de dispositivos microelectrónicos puede tener más de 300 pasos de procesamiento diferentes y puede durar entre seis y ocho semanas. Durante este proceso, el sustrato de la oblea debe ser capaz de soportar las condiciones extremas de fabricación, ya que un fallo en cualquier paso supondría la pérdida de tiempo y dinero. Las pruebas de durezaLa resistencia a la adherencia y a los arañazos y la tasa de desgaste de la oblea deben cumplir ciertos requisitos para sobrevivir a las condiciones impuestas durante el proceso de fabricación y aplicación para asegurar que no se produzca un fallo.

Propiedades mecánicas de los recubrimientos de obleas de carburo de silicio

Medición de la fricción del revestimiento de vidrio autolimpiable

El revestimiento de vidrio autolimpiable posee una baja energía superficial que repele tanto el agua como los aceites. Este revestimiento crea una superficie de vidrio fácil de limpiar y antiadherente que la protege contra la suciedad y las manchas. El revestimiento de fácil limpieza reduce sustancialmente el uso de agua y energía en la limpieza del vidrio. No requiere detergentes químicos fuertes y tóxicos, por lo que es una opción ecológica para una amplia variedad de aplicaciones residenciales y comerciales, como espejos, cristales de ducha, ventanas y parabrisas.

Medición de la fricción del revestimiento de vidrio autolimpiable

Medición de la dureza de los arañazos con un tribómetro

En este estudio, el Nanovea Tribómetro se utiliza para medir la dureza al rayado de diferentes metales. El
La capacidad de realizar mediciones de dureza al rayado con alta precisión y reproducibilidad hace que
Nanovea Tribometer un sistema más completo para las evaluaciones tribológicas y mecánicas.

Medición de la dureza de los arañazos con un tribómetro

Bio-Tribología de los Plomos de Endocardio en la Solución de Hanks

En este estudio, simulamos y comparamos los comportamientos de nanofricción y desgaste de cables de estimulación endocárdica hechos de diferentes materiales, en Hanks Solution, utilizando Nanovea. Mecánico y Tribómetrorespectivamente.

Nano-Micro Bio-Tribología de Plomos de Endocardio en Solución de Hanks