EE.UU./GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTACTO

Categoría: Ensayos mecánicos

 

Pantalla de smartphone agrietada que ilustra la importancia de las pruebas de resistencia al rayado de los protectores de pantalla.

Pruebas de resistencia al rayado de los protectores de pantalla de los teléfonos

Pruebas de resistencia al rayado de los protectores de pantalla de los teléfonos

Preparado por

Stacey Pereira, Jocelyn Esparza y Pierre Leroux

Comprender la resistencia a los arañazos de los protectores de pantalla de los teléfonos

Los revestimientos protectores de las pantallas de los teléfonos desempeñan un papel fundamental en la resistencia a los arañazos, la fuerza de adherencia y la durabilidad a largo plazo. Con el tiempo, los arañazos, las microgrietas y la deslaminación del revestimiento pueden reducir la claridad óptica y la fiabilidad, especialmente en entornos de uso intensivo. Para evaluar la resistencia de los distintos protectores de pantalla a los daños mecánicos, los ensayos instrumentados de rayado proporcionan información cuantificable sobre los mecanismos de fallo del revestimiento, como la adherencia, la cohesión y el comportamiento de fractura.

En este estudio, Comprobador mecánico NANOVEA PB1000 se utiliza para comparar protectores de pantalla de TPU frente a los de vidrio templado sometidos a una carga progresiva controlada. Mediante la detección precisa de emisiones acústicas, identificamos las cargas críticas de fallo y caracterizamos cómo responde cada material al aumento de la tensión mecánica.

Por qué son importantes las pruebas de resistencia a los arañazos para los protectores de pantalla

Muchos usuarios dan por sentado que los protectores más gruesos o duros tienen automáticamente un mejor rendimiento, pero la durabilidad real depende de cómo se comporte el material bajo carga progresiva, deformación de la superficie y tensión localizada. Los ensayos de rayado instrumentados permiten a los ingenieros medir la adherencia del revestimiento, la fuerza cohesiva, la resistencia al desgaste de la superficie y las cargas exactas a las que se inician o propagan los fallos.

Mediante el análisis de los puntos de inicio de las grietas, el comportamiento de la delaminación y los modos de fallo, los fabricantes pueden validar el rendimiento de los protectores de pantalla para I+D, control de calidad o evaluación comparativa. Las pruebas de nanorrayaduras y microrrayaduras ofrecen información repetible y basada en datos sobre la durabilidad en el mundo real, mucho más allá de los índices de dureza tradicionales.

Objetivo de la prueba de raspado:
Medición de las cargas de fallo en los protectores de pantalla

El objetivo de este estudio es demostrar cómo el Probador Mecánico NANOVEA PB1000 realiza pruebas repetibles y estandarizadas de resistencia al rayado tanto en protectores de pantalla poliméricos como de vidrio. Al aumentar progresivamente la carga aplicada, el sistema detecta cargas críticas para el fallo cohesivo y adhesivo, captura señales de emisión acústica y correlaciona estos eventos con la profundidad del arañazo, la fuerza de fricción y la deformación de la superficie.

Esta metodología proporciona un perfil mecánico completo de cada revestimiento protector, lo que permite a los fabricantes y a los equipos de I+D evaluar las fórmulas de los materiales, la fuerza de adhesión del revestimiento, la durabilidad de la superficie y el grosor óptimo del revestimiento para mejorar el rendimiento del producto. Estas evaluaciones de rayado forman parte de la gama más amplia de productos de NANOVEA. soluciones de ensayos mecánicos utilizado para caracterizar revestimientos, películas y sustratos en entornos de I+D, control de calidad y producción.

NANOVEA Gran plataforma PB1000
Comprobador mecánico

Parámetros del ensayo de rayado y configuración del instrumento

La evaluación de la resistencia al rayado de los protectores de pantalla de TPU y vidrio templado se realizó en condiciones controladas para garantizar la repetibilidad y la detección precisa de la carga de fallo. Los siguientes parámetros definen la configuración de ensayo de rayado de carga progresiva utilizada en el NANOVEA PB1000 Mechanical Tester.

TIPO DE CARGA PROGRESIVO
CARGA INICIAL 0.1 N
CARGA FINAL 12 N
VELOCIDAD DE DESLIZAMIENTO 3,025 mm/min
DISTANCIA DE DESLIZAMIENTO 3 mm
GEOMETRÍA DEL PENETRADOR ROCKWELL (CONO DE 120°)
MATERIAL DEL PENETRADOR (PUNTA) DIAMANTE
RADIO DE LA PUNTA DEL PENETRADOR 50 µm
ATMÓSFERA AIRE
TEMPERATURA 24 °C (TEMPERATURA AMBIENTE)

TABLA 1: Parámetros de ensayo utilizados para la prueba de rayado

Muestra de protector de pantalla sometida a la prueba de rayado en el comprobador mecánico NANOVEA PB1000

Muestra de protector de pantalla montada en el Comprobador Mecánico NANOVEA PB1000 durante la medición de arañazos con carga progresiva.

Muestras de protectores de pantalla utilizadas para las pruebas de resistencia al rayado

Se seleccionaron dos materiales protectores de pantalla disponibles en el mercado para comparar las diferencias en la resistencia a los arañazos, el comportamiento ante fallos y la durabilidad mecánica. Ambas muestras se montaron firmemente en el comprobador mecánico NANOVEA PB1000 y se evaluaron en condiciones idénticas de carga progresiva para garantizar una comparación coherente e imparcial.

El protector de pantalla de TPU representa una película polimérica flexible de gran elasticidad pero menor resistencia a la abrasión, mientras que el protector de vidrio templado representa un material rígido y quebradizo diseñado para una gran dureza y una mayor protección contra impactos. Probar ambos materiales bajo el mismo perfil de carga permite evaluar claramente cómo influyen la composición, elasticidad y dureza del material en los modos de fallo por arañazos.

Protector de pantalla TPU

Cristal templado

FIGURA 1: Protectores de pantalla de TPU y vidrio templado preparados para las pruebas de resistencia a arañazos.

Resultados de las pruebas de arañazos: Modos de fallo en protectores de pantalla de TPU frente a los de vidrio templado

TIPO DE PROTECTOR DE PANTALLACARGA CRÍTICA #1 (N)CARGA CRÍTICA #2 (N)
TPUn/a2.004 ± 0.063
VIDRIO TEMPLADO3.608 ± 0.2817.44 ± 0.995

TABLA 2: Resumen de las cargas críticas para cada muestra de protector de pantalla.

Dado que los protectores de pantalla de TPU y vidrio templado tienen propiedades mecánicas fundamentalmente diferentes, cada muestra mostró modos de fallo y umbrales de carga crítica distintos durante las pruebas de rayado con carga progresiva. La tabla 2 resume las cargas críticas medidas para cada material.

La carga crítica #1 representa el primer punto observable de fallo cohesivo bajo microscopía óptica, como el inicio de la grieta o la fractura radial.

La carga crítica #2 corresponde al primer evento importante detectado a través de la monitorización de emisiones acústicas (EA), que suele representar un fallo estructural mayor o un evento de penetración.

Protector de pantalla TPU - Comportamiento de polímero flexible

El protector de pantalla de TPU sólo presentó un evento crítico significativo (Carga crítica #2). Esta carga corresponde al punto a lo largo de la pista de arañazos donde la película comenzó a levantarse, pelarse o desprenderse de la superficie de la pantalla del teléfono.

Una vez superada la carga crítica #2 (≈2,00 N), el penetrador penetró lo suficiente como para causar un arañazo visible directamente en la pantalla del teléfono durante el resto de la prueba. No se detectó ningún evento de Carga Crítica #1 por separado, en consonancia con la alta elasticidad del material y su menor resistencia cohesiva.

Protector de pantalla de vidrio templado - Comportamiento ante fallos por fragilidad

El protector de pantalla de vidrio templado mostró dos cargas críticas distintas, características de los materiales frágiles:

  • Carga crítica #1 (≈3,61 N): Se observaron fracturas radiales e inicio de grietas al microscopio, lo que indica un fallo cohesivo temprano de la capa de vidrio.

  • Carga crítica #2 (≈7,44 N): Un gran pico de EA y un fuerte aumento de la profundidad del rayado indicaron la penetración del protector con cargas más altas.

Aunque la magnitud del EA fue superior a la del TPU, no se produjeron daños en la pantalla del teléfono, lo que demuestra la capacidad del protector de vidrio templado para absorber y distribuir la carga antes de que se produzca un fallo catastrófico.

En ambos materiales, la Carga Crítica #2 correspondió al momento en que el indentador atravesó el protector de pantalla, confirmando el límite de protección de cada muestra.

Protector de pantalla TPU: Datos de la prueba de arañazos y análisis de fallos

ROZADURACARGA CRÍTICA #2 (N)
12.033
22.047
31.931
MEDIA2.003
DESVIACIÓN TÍPICA0.052

TABLA 3: Cargas críticas medidas durante las pruebas de rayado del protector de pantalla de TPU.

Gráfico que muestra la fricción, la fuerza normal, las emisiones acústicas y la profundidad frente a la longitud del arañazo para el protector de pantalla TPU probado en el probador mecánico NANOVEA.

FIGURA 2: Fuerza de fricción, carga normal, emisión acústica (EA) y profundidad del arañazo frente a la longitud del arañazo para el protector de pantalla de TPU. (B) Carga crítica #2

FIGURA 3: Imagen de microscopía óptica del protector de pantalla TPU en Critical Load #2 (aumento 5×; ancho de imagen 0,8934 mm).

FIGURA 4: Imagen completa del protector de pantalla de TPU después del rayado que muestra la huella completa del rayado tras la prueba de carga progresiva.

Protector de pantalla de vidrio templado: Datos de carga crítica y comportamiento de fractura

ROZADURA CARGA CRÍTICA #1 (N) CARGA CRÍTICA #2 (N)
1 3.923 7.366
2 3.382 6.483
3 3.519 8.468
MEDIA 3.653 6.925
DESVIACIÓN TÍPICA 0.383 0.624

CUADRO 4: Cargas críticas medidas durante las pruebas de rayado del protector de pantalla de vidrio templado.

ℹ️ Para la comparación con revestimientos de polímeros no silicatados, véase nuestro estudio sobre Pruebas de desgaste del revestimiento de PTFEque pone de relieve el comportamiento de fallo en películas poliméricas de baja fricción en condiciones similares de carga progresiva.

FIGURA 5: Fuerza de fricción, carga normal, emisión acústica (EA) y profundidad del arañazo frente a la longitud del arañazo para el protector de pantalla de vidrio templado. (A) Carga crítica #1 (B) Carga crítica #2

Imágenes de microscopía óptica que muestran las ubicaciones de fallo de Carga Crítica #1 y Carga Crítica #2 en el protector de pantalla de vidrio templado durante la prueba de rayado con un aumento de 5x utilizando el probador mecánico NANOVEA.

FIGURA 6: Imágenes de microscopía óptica que muestran los puntos de fallo de la carga crítica #1 (izquierda) y de la carga crítica #2 (derecha) con un aumento de 5× (ancho de imagen: 0,8934 mm).

FIGURA 7: Imagen de microscopía óptica posterior a la prueba de la pista de rayado de vidrio templado, destacando el inicio de la fractura (CL#1) y la zona de penetración final (CL#2) tras la prueba de carga progresiva.

Conclusión: Comparación del rendimiento frente a arañazos de los protectores de pantalla de TPU frente a los de vidrio templado

Este estudio demuestra cómo el comprobador mecánico NANOVEA PB1000 proporciona mediciones de resistencia al rayado controladas, repetibles y altamente sensibles mediante carga progresiva y detección de emisiones acústicas (AE). Al capturar con precisión los eventos de fallo cohesivo y adhesivo, el sistema permite una comparación clara de cómo se comportan los protectores de pantalla de TPU y vidrio templado bajo una creciente tensión mecánica.

Los resultados experimentales confirman que el vidrio templado presenta cargas críticas significativamente superiores a las del TPU, proporcionando una mayor resistencia al rayado, un retraso en el inicio de la fractura y una protección fiable contra la penetración del penetrador. La menor resistencia cohesiva del TPU y su deslaminación más temprana ponen de manifiesto sus limitaciones en entornos de alta tensión.

Después de identificar las cargas de fallo, las huellas de arañazos resultantes también pueden analizarse utilizando un perfilómetro óptico 3D sin contacto para medir la profundidad del surco, la deformación residual y la topografía posterior al rayado. Esto ayuda a completar el perfil mecánico de cada material.

El comprobador mecánico NANOVEA está diseñado para realizar ensayos precisos y repetibles de indentación, rayado y desgaste, y admite nano y micromódulos conformes con las normas ISO y ASTM. Su versatilidad lo convierte en la solución ideal para evaluar el perfil mecánico completo de películas finas, revestimientos, polímeros, vidrios y sustratos en I+D, producción y control de calidad.

Preguntas frecuentes
Acerca de los ensayos de resistencia al rayado

¿Qué es la prueba de resistencia al rayado?

El ensayo de resistencia al rayado evalúa cómo responde un material o revestimiento cuando un estilete de diamante aplica una carga progresivamente creciente. El ensayo identifica las cargas críticas en las que se producen fallos cohesivos o adhesivos, proporcionando una medida cuantificable de la durabilidad, la fuerza de adhesión y la resistencia a los daños superficiales.

¿Cuál es la diferencia entre fallo cohesivo y fallo adhesivo?

Se produce un fallo de cohesión en el revestimiento o el material, como agrietamiento, desgarro o fractura interna.
El fallo del adhesivo se produce cuando el revestimiento se desprende del sustrato, lo que indica una fuerza de adhesión insuficiente.

El NANOVEA PB1000 detecta ambos utilizando la monitorización sincronizada de las emisiones acústicas, el seguimiento de la profundidad del arañazo y el análisis de la fricción.

¿Por qué utilizar un comprobador mecánico en lugar de métodos manuales?

Un comprobador mecánico como el NANOVEA PB1000 proporciona mediciones precisas, repetibles y estandarizadas, garantizando datos fiables para I+D, validación de la producción y control de calidad. También ofrece funciones avanzadas, como la detección de emisiones acústicas y la supervisión de la profundidad en tiempo real, que los métodos manuales no pueden ofrecer.

Prueba de desgaste del revestimiento de PTFE

ENSAYO DE DESGASTE DEL REVESTIMIENTO DE PTFE

UTILIZANDO TRIBÓMETROS Y COMPROBADORES MECÁNICOS

ENSAYO DE DESGASTE DEL REVESTIMIENTO DE PTFE

Preparado por

DUANJIE LI, Doctor

INTRODUCCIÓN

El politetrafluoroetileno (PTFE), conocido comúnmente como teflón, es un polímero con un coeficiente de fricción (COF) excepcionalmente bajo y una excelente resistencia al desgaste, en función de las cargas aplicadas. El PTFE presenta una inercia química superior, un alto punto de fusión de 327°C (620°F) y mantiene una alta resistencia, tenacidad y autolubricación a bajas temperaturas. La excepcional resistencia al desgaste de los revestimientos de PTFE hace que sean muy solicitados en una amplia gama de aplicaciones industriales, como la automoción, la industria aeroespacial, la medicina y, sobre todo, los utensilios de cocina.

IMPORTANCIA DE LA EVALUACIÓN CUANTITATIVA DE LOS REVESTIMIENTOS DE PTFE

La combinación de un coeficiente de fricción (COF) superbajo, una excelente resistencia al desgaste y una excepcional inercia química a altas temperaturas hace del PTFE una opción ideal para los revestimientos antiadherentes de sartenes. Para mejorar aún más sus procesos mecánicos durante la I+D, así como para garantizar un control óptimo sobre la prevención de fallos y las medidas de seguridad en el proceso de control de calidad, es crucial disponer de una técnica fiable para evaluar cuantitativamente los procesos tribomecánicos de los revestimientos de PTFE. El control preciso de la fricción superficial, el desgaste y la adherencia de los revestimientos es esencial para garantizar su rendimiento previsto.

OBJETIVO DE MEDICIÓN

En esta aplicación, se simula el proceso de desgaste de un revestimiento de PTFE para una sartén antiadherente utilizando el Tribómetro NANOVEA en modo lineal alternativo.

NANOVEA T50 Compacto
Tribómetro de peso libre

Además, se utilizó el comprobador mecánico NANOVEA para realizar un ensayo de adhesión por microarañazos con el fin de determinar la carga crítica del fallo de adhesión del revestimiento de PTFE.

NANOVEA PB1000 Plataforma grande Comprobador mecánico

PROCEDIMIENTO DE PRUEBA

PRUEBA DE DESGASTE

DESGASTE LINEAL ALTERNATIVO MEDIANTE TRIBÓMETRO

El comportamiento tribológico de la muestra de revestimiento de PTFE, incluyendo el coefficient de fricción (COF) y la resistencia al desgaste, se evaluó utilizando el NANOVEA Tribómetro en modo alternativo lineal. Se utilizó una punta esférica de acero inoxidable 440 con un diámetro de 3 mm (Grado 100) contra el revestimiento. Durante la prueba de desgaste del revestimiento de PTFE se controló continuamente el COF.

 

La tasa de desgaste, K, se calculó mediante la fórmula K=V/(F×s)=A/(F×n), donde V representa el volumen desgastado, F es la carga normal, s es la distancia de deslizamiento, A es el área transversal de la pista de desgaste y n es el número de carreras. Los perfiles de desgaste se evaluaron con el programa NANOVEA Profilómetro ópticoy se examinó la morfología de la huella de desgaste con un microscopio óptico.

PARÁMETROS DE LA PRUEBA DE DESGASTE

CARGAR 30 N
DURACIÓN DE LA PRUEBA 5 minutos
TASA DE DESLIZAMIENTO 80 rpm
AMPLITUD DE VÍA 8 mm
REVOLUCIONES 300
DIÁMETRO DE LA BOLA 3 mm
MATERIAL DE LA BOLA Acero inoxidable 440
LUBRICANTE Ninguno
ATMÓSFERA Aire
TEMPERATURA 230C (RT)
HUMEDAD 43%

PROCEDIMIENTO DE PRUEBA

PRUEBA DE RAYADO

PRUEBA DE ADHERENCIA AL MICROARAÑAZO CON UN COMPROBADOR MECÁNICO

La medición de la adherencia al rayado del PTFE se realizó utilizando el NANOVEA Comprobador mecánico con un palpador de diamante de 1200 Rockwell C (200 μm de radio) en el modo Micro Scratch Tester.

Para garantizar la reproducibilidad de los resultados, se realizaron tres pruebas en condiciones idénticas.

PARÁMETROS DE LA PRUEBA DE RAYADO

TIPO DE CARGA Progresiva
CARGA INICIAL 0,01 mN
CARGA FINAL 20 mN
VELOCIDAD DE CARGA 40 mN/min
LONGITUD DEL RASPADO 3 mm
velocidad de rayado, dx/dt 6,0 mm/min
GEOMETRÍA DEL PENETRADOR 120o Rockwell C
MATERIAL INDENTADOR (punta) Diamante
RADIO DE LA PUNTA DEL PENETRADOR 200 μm

RESULTADOS Y DEBATE

DESGASTE LINEAL ALTERNATIVO MEDIANTE TRIBÓMETRO

El COF registrado in situ se muestra en la FIGURA 1. La muestra de ensayo mostró un COF de ~0,18 durante las 130 primeras revoluciones, debido a la baja pegajosidad del PTFE. Sin embargo, se produjo un aumento repentino del COF a ~1 una vez que el revestimiento se rompió, dejando al descubierto el sustrato subyacente. Tras las pruebas de movimiento alternativo lineal, se midió el perfil de desgaste con el NANOVEA Profilómetro óptico sin contactocomo se muestra en la FIGURA 2. A partir de los datos obtenidos, la tasa de desgaste correspondiente se calculó en ~2,78 × 10-3 mm3/Nm, mientras que la profundidad de la huella de desgaste se determinó en 44,94 µm.

ESTUDIO DEL DESGASTE DEL REVESTIMIENTO DE PTFE
Configuración de la prueba de desgaste del revestimiento de PTFE en el tribómetro NANOVEA T50.
TEFLÓN COF

FIGURA 1: Evolución del COF durante el ensayo de desgaste del revestimiento de PTFE.

PRUEBA DE DESGASTE DE PTFE

FIGURA 2: Profile de extracción de la pista de desgaste PTFE.

PTFE Antes del avance

COF máximo 0.217
Mín COF 0.125
COF medio 0.177

PTFE Después de la ruptura

COF máximo 0.217
Mín COF 0.125
COF medio 0.177

TABLA 1: COF antes y después de la rotura durante la prueba de desgaste.

RESULTADOS Y DEBATE

PRUEBA DE ADHERENCIA AL MICROARAÑAZO CON UN COMPROBADOR MECÁNICO

La adherencia del revestimiento de PTFE al sustrato se mide mediante ensayos de rayado con un estilete de diamante de 200 µm. La micrografía se muestra en la FIGURA 3 y FIGURA 4, la evolución del COF, y la profundidad de penetración en la FIGURA 5. Los resultados de la prueba de rayado del recubrimiento de PTFE se resumen en la TABLA 4. A medida que aumentaba la carga sobre el estilete de diamante, éste penetraba progresivamente en el revestimiento, lo que provocaba un aumento del COF. Cuando se alcanzó una carga de ~8,5 N, se produjo la ruptura del revestimiento y la exposición del sustrato bajo alta presión, lo que condujo a un COF elevado de ~0,3. El bajo St Dev mostrado en la TABLA 2 demuestra la repetibilidad del ensayo de rayado del revestimiento de PTFE realizado con el Probador Mecánico NANOVEA.

ENSAYO DE REVESTIMIENTO DE PTFE

FIGURA 3: Micrografía del rayado completo sobre PTFE (10X).

ENSAYO DE RAYADO DEL REVESTIMIENTO DE PTFE

FIGURA 4: Micrografía del rayado completo sobre PTFE (10X).

ENSAYO DE FRICCIÓN DEL REVESTIMIENTO DE PTFE

FIGURA 5: Gráfico de fricción que muestra la línea del punto crítico de fallo para el PTFE.

Rasca Punto de fallo [N] Fuerza de rozamiento [N] COF
1 0.335 0.124 0.285
2 0.337 0.207 0.310
3 0.380 0.229 0.295
Media 8.52 2.47 0.297
St dev 0.17 0.16 0.012

TABLA 2: Resumen de la carga crítica, la fuerza de fricción y el COF durante la prueba de rayado.

CONCLUSIÓN

En este estudio, realizamos una simulación del proceso de desgaste de un revestimiento de PTFE para sartenes antiadherentes utilizando el tribómetro NANOVEA T50 en modo lineal alternativo. El recubrimiento de PTFE exhibió un bajo COF de ~0,18 el recubrimiento experimentó una ruptura alrededor de las 130 revoluciones. La evaluación cuantitativa de la adhesión del revestimiento de PTFE al sustrato metálico se realizó utilizando el comprobador mecánico NANOVEA, que determinó que la carga crítica del fallo de adhesión del revestimiento era de ~8,5 N en esta prueba.

 

Los tribómetros NANOVEA ofrecen capacidades de ensayo de desgaste y fricción precisas y repetibles mediante modos rotativos y lineales conformes con las normas ISO y ASTM. Ofrecen módulos opcionales para desgaste a alta temperatura, lubricación y tribocorrosión, todo integrado en un único sistema. Esta versatilidad permite a los usuarios simular entornos de aplicación reales con mayor precisión y comprender mejor los mecanismos de desgaste y las propiedades tribológicas de distintos materiales.

 

Los comprobadores mecánicos NANOVEA cuentan con módulos Nano, Micro y Macro, cada uno de los cuales incluye modos de ensayo de indentación, rayado y desgaste conformes a las normas ISO y ASTM, proporcionando la gama más amplia y fácil de usar de capacidades de ensayo disponibles en un solo sistema.

Análisis mecánico dinámico del corcho mediante nanoindentación

ANÁLISIS MECÁNICO DINÁMICO

DEL CORCHO MEDIANTE NANOINDENTACIÓN

Preparado por

FRANK LIU

INTRODUCCIÓN

El Análisis Mecánico Dinámico (AMD) es una potente técnica utilizada para investigar las propiedades mecánicas de los materiales. En esta aplicación, nos centramos en el análisis del corcho, un material muy utilizado en los procesos de sellado y envejecimiento del vino. El corcho, obtenido de la corteza del roble Quercus suber, presenta distintas estructuras celulares que le confieren propiedades mecánicas similares a las de los polímeros sintéticos. En un eje, el corcho tiene estructura de panal. Los otros dos ejes están estructurados en múltiples prismas de forma rectangular. Esto confiere al corcho propiedades mecánicas diferentes según la orientación con la que se pruebe.

IMPORTANCIA DE LOS ENSAYOS DE ANÁLISIS MECÁNICO DINÁMICO (DMA) EN LA EVALUACIÓN DE LAS PROPIEDADES MECÁNICAS DEL CORCHO

La calidad de los tapones de corcho depende en gran medida de sus propiedades mecánicas y físicas, que son cruciales para su eficacia en el sellado del vino. Los factores clave que determinan la calidad del corcho son la flexibilidad, el aislamiento, la resistencia y la impermeabilidad a gases y líquidos. El análisis mecánico dinámico (AMD) nos permite evaluar cuantitativamente las propiedades de flexibilidad y resiliencia de los tapones, proporcionando un método fiable de evaluación.

El Comprobador Mecánico NANOVEA PB1000 en el Nanoindentación permite caracterizar estas propiedades, en concreto el módulo de Young, el módulo de almacenamiento, el módulo de pérdida y tan delta (tan (δ)). Las pruebas DMA también permiten recopilar datos valiosos sobre el desplazamiento de fase, la dureza, la tensión y la deformación del material de corcho. Gracias a estos exhaustivos análisis, podemos comprender mejor el comportamiento mecánico de los corchos y su idoneidad para las aplicaciones de sellado del vino.

OBJETIVO DE MEDICIÓN

En este estudio, se realiza el análisis mecánico dinámico (AMD) de cuatro tapones de corcho utilizando el Probador Mecánico NANOVEA PB1000 en el modo de Nanoindentación. La calidad de los tapones de corcho se etiqueta como: 1 - Flor, 2 - Primera, 3 - Colmatado, 4 - Caucho sintético. Los ensayos de indentación DMA se realizaron tanto en dirección axial como radial para cada tapón de corcho. Mediante el análisis de la respuesta mecánica de los tapones de corcho, pretendíamos comprender mejor su comportamiento dinámico y evaluar su rendimiento en distintas orientaciones.

NANOVEA

PB1000

PARÁMETROS DE PRUEBA

FUERZA MÁXIMA75 mN
VELOCIDAD DE CARGA150 mN/min
VELOCIDAD DE DESCARGA150 mN/min
AMPLITUD5 mN
FRECUENCIA1 Hz
CREEP60 s

tipo de penetrador

Bola

51200 Acero

3 mm Diámetro

RESULTADOS

En las tablas y gráficos siguientes, se comparan el módulo de Young, el módulo de almacenamiento, el módulo de pérdida y tan delta entre cada muestra y orientación.

Módulo de Young: Stiffness; valores altos indican stiff, valores bajos indican flexible.

Módulo de almacenamiento: Respuesta elástica; energía almacenada en el material.

Módulo de pérdida: Respuesta viscosa; pérdida de energía debida al calor.

Tan (δ): Amortiguación; los valores altos indican más amortiguación.

ORIENTACIÓN AXIAL

TapónMÓDULO DE YOUNGMÓDULO DE ALMACENAMIENTOMÓDULO DE PÉRDIDATAN
#(MPa)(MPa)(MPa)(δ)
122.567522.272093.6249470.162964
218.5466418.271533.1623490.17409
323.7538123.472673.6178190.154592
423.697223.580642.3470080.099539



ORIENTACIÓN RADIAL

TapónMÓDULO DE YOUNGMÓDULO DE ALMACENAMIENTOMÓDULO DE PÉRDIDATAN
#(MPa)(MPa)(MPa)(δ)
124.7886324.565423.3082240.134865
226.6661426.317394.2862160.163006
344.0786743.614266.3659790.146033
428.0475127.941482.4359780.087173

MÓDULO DE YOUNG

MÓDULO DE ALMACENAMIENTO

MÓDULO DE PÉRDIDA

TAN DELTA

Entre los tapones de corcho, el módulo de Young no es muy diferente cuando se ensaya en la orientación axial. Sólo los tapones #2 y #3 mostraron una diferencia aparente en el módulo de Young entre la dirección radial y axial. En consecuencia, el módulo de almacenamiento y el módulo de pérdida también serán mayores en la dirección radial que en la axial. El tapón #4 muestra características similares a las de los tapones de corcho natural, excepto en el módulo de pérdida. Esto es bastante interesante, ya que significa que los tapones de corcho natural tienen una propiedad más viscosa que el material de caucho sintético.

CONCLUSIÓN

La NANOVEA Comprobador mecánico en el modo Nano Scratch Tester permite simular muchos fallos reales de revestimientos de pintura y capas duras. Aplicando cargas crecientes de forma controlada y estrechamente supervisada, el instrumento permite identificar a qué carga se producen los fallos. Esto puede utilizarse para determinar valores cuantitativos de resistencia al rayado. Se sabe que el revestimiento ensayado, sin intemperie, presenta una primera fisura a unos 22 mN. Con valores más próximos a 5 mN, es evidente que el lapso de 7 años ha degradado la pintura.

La compensación del perfil original permite obtener la profundidad corregida durante el rayado y también medir la profundidad residual después del rayado. Esto proporciona información adicional sobre el comportamiento plástico frente al elástico del revestimiento bajo una carga creciente. Tanto el agrietamiento como la información sobre la deformación pueden ser de gran utilidad para mejorar el revestimiento duro. Las muy pequeñas desviaciones estándar también muestran la reproducibilidad de la técnica del instrumento, que puede ayudar a los fabricantes a mejorar la calidad de su revestimiento duro/pintura y estudiar los efectos de la intemperie.

Ensayo Nano Scratch & Mar de pintura sobre sustrato metálico

Pruebas Nano Scratch & Mar

de pintura sobre sustrato metálico

Preparado por

SUSANA CABELLO

INTRODUCCIÓN

La pintura con o sin revestimiento duro es uno de los revestimientos más utilizados. La vemos en coches, paredes, electrodomésticos y prácticamente cualquier cosa que necesite un revestimiento protector o simplemente con fines estéticos. Las pinturas destinadas a la protección del sustrato subyacente suelen tener sustancias químicas que evitan que la pintura se incendie o simplemente que pierda su color o se agriete. A menudo, la pintura utilizada con fines estéticos viene en varios colores, pero puede no estar necesariamente destinada a la protección de su sustrato o para una larga vida útil.

No obstante, todas las pinturas sufren cierto desgaste con el paso del tiempo. A menudo, el desgaste de la pintura puede alterar sus propiedades. Puede desconcharse más rápido, descascararse con el calor, perder color o agrietarse. Los diferentes cambios en las propiedades de la pintura con el paso del tiempo son la razón por la que los fabricantes ofrecen una selección tan amplia. Las pinturas se adaptan a las necesidades de cada cliente.

IMPORTANCIA DE LAS PRUEBAS DE NANORRAYADO PARA EL CONTROL DE CALIDAD

Una de las principales preocupaciones de los fabricantes de pintura es la capacidad de su producto para resistir el agrietamiento. Cuando la pintura empieza a agrietarse, deja de proteger el sustrato sobre el que se aplicó y, por tanto, no satisface al cliente. Por ejemplo, si una rama golpea el lateral de un coche e inmediatamente después la pintura empieza a desconcharse, los fabricantes de la pintura perderían negocio debido a la mala calidad de su pintura. La calidad de la pintura es muy importante porque si el metal bajo la pintura queda expuesto puede empezar a oxidarse o corroerse debido a su nueva exposición.

 

Razones como ésta se aplican a varios otros espectros, como suministros domésticos y de oficina y productos electrónicos, juguetes, herramientas de investigación y más. Aunque la pintura puede ser resistente al agrietamiento cuando se aplica por primera vez a los revestimientos metálicos, las propiedades pueden cambiar con el tiempo cuando se ha producido cierta meteorización en la muestra. Por eso es muy importante que las muestras de pintura se prueben en su fase de envejecimiento. Aunque el agrietamiento bajo una gran carga de tensión puede ser inevitable, el fabricante debe predecir hasta qué punto pueden debilitarse los cambios con el tiempo y la profundidad del arañazo affectante para poder ofrecer a sus consumidores los mejores productos posibles.

OBJETIVO DE MEDICIÓN

Debemos simular el proceso de rayado de forma controlada y monitorizada para observar los effectos del comportamiento de la muestra. En esta aplicación, el NANOVEA PB1000 Mechanical Tester en modo Nano Scratch Testing se utiliza para medir la carga necesaria para provocar el fallo de una muestra de pintura de aproximadamente 7 años de 30-50 μm de espesor sobre un sustrato metálico.

Se utiliza un palpador con punta de diamante de 2 μm con una carga progresiva que oscila entre 0,015 mN y 20,00 mN para rayar el revestimiento. Realizamos una exploración previa y posterior de la pintura con una carga de 0,2 mN para determinar el valor de la profundidad verdadera del rayado. La profundidad real analiza la deformación plástica y elástica de la muestra durante la prueba; mientras que el escaneado posterior sólo analiza la deformación plástica del arañazo. El punto en el que el revestimiento falla por agrietamiento se toma como punto de fallo. Utilizamos la ASTMD7187 como guía para determinar nuestros parámetros de ensayo.

 

Podemos concluir que al haber utilizado una muestra envejecida; por lo tanto, el ensayo de una muestra de pintura en su fase más débil, nos presentaba menores puntos de fallo.

 

Se realizaron cinco pruebas con esta muestra para

determinar con exactitud las cargas críticas de fallo.

NANOVEA

PB1000

PARÁMETROS DE PRUEBA

siguiente ASTM D7027

La superficie de un patrón de rugosidad se escaneó utilizando un NANOVEA ST400 equipado con un sensor de alta velocidad que genera una línea brillante de 192 puntos, como se muestra en la FIGURA 1. Estos 192 puntos escanean la superficie de la muestra al mismo tiempo, lo que conlleva un aumento significativo de la velocidad de escaneado.

TIPO DE CARGA Progresiva
CARGA INICIAL 0,015 mN
CARGA FINAL 20 mN
VELOCIDAD DE CARGA 20 mN/min
LONGITUD DEL RASPADO 1,6 mm
VELOCIDAD SCRATCH, dx/dt 1.601 mm/min
CARGA PREVIA AL ESCANEO 0,2 mN
CARGA POST-SCAN 0,2 mN
Indentador cónico 90° Cono 2 µm radio punta

tipo de penetrador

Cónica

Cono diamante 90

Radio de punta de 2 µm

Indentador cónico Diamante Cono 90° Radio de punta 2 µm

RESULTADOS

Esta sección presenta los datos recogidos sobre los fallos durante la prueba scratch. La primera sección describe los fallos observados en el scratch y define las cargas críticas que se registraron. La siguiente parte contiene una tabla resumen de las cargas críticas para todas las muestras y una representación gráfica. La última parte presenta los resultados detallados de cada muestra: las cargas críticas de cada rayado, las micrografías de cada fallo y el gráfico de la prueba.

FALLOS OBSERVADOS Y DEFINICIÓN DE CARGAS CRÍTICAS

FALLO CRÍTICO:

DAÑOS INICIALES

Este es el primer punto en el que se observa el daño a lo largo de la pista de rayado.

nano arañazo fallo crítico daño inicial

FALLO CRÍTICO:

DAÑO TOTAL

En este punto, el daño es más significativo donde la pintura se está astillando y agrietando a lo largo de la pista de arañazos.

nano arañazo fallo crítico daño completo

RESULTADOS DETALLADOS

* Valores de fallo tomados en el punto de agrietamiento del sustrato.

CARGAS CRÍTICAS
ROZADURA DAÑO INICIAL [mN] DAÑO COMPLETO [µm]
1 14.513 4.932
2 3.895 4.838
3 3.917 4.930
MEDIA 3.988 4.900
DEV STD 0.143 0.054
Micrografía de arañazo completo del ensayo de nano arañazo (magnificación 1000x).

FIGURA 2: Micrografía de rasguño completo (magnificación 1000x).

Micrografía del daño inicial del ensayo de nanorrayado (magnificación 1000x)

FIGURA 3: Micrografía del daño inicial (magnificación 1000x).

Micrografía del daño completo del ensayo de nanorrayado (magnificación 1000x).

FIGURA 4: Micrografía de daño completo (magnificación 1000x).

Fuerza de fricción y coeficiente de fricción en el ensayo lineal de nanorrayado

FIGURA 5: Fuerza de fricción y Coefficiente de fricción.

Perfil lineal de superficie de nano arañazos

FIGURA 6: Perfil de la superficie.

Linear Nano Scratch Test Profundidad real y profundidad residual

FIGURA 7: Profundidad real y profundidad residual.

CONCLUSIÓN

La NANOVEA Comprobador mecánico en el Nano comprobador de arañazos permite simular muchos fallos reales de revestimientos de pintura y capas duras. Aplicando cargas crecientes de forma controlada y estrechamente vigilada, el instrumento permite identificar a qué carga se producen los fallos. Esto puede utilizarse para determinar valores cuantitativos de resistencia al rayado. Se sabe que el revestimiento ensayado, sin intemperie, presenta una primera fisura a unos 22 mN. Con valores más próximos a 5 mN, es evidente que el lapso de 7 años ha degradado la pintura.

La compensación del perfil original permite obtener la profundidad corregida durante el rayado y medir la profundidad residual después del rayado. Esto proporciona información adicional sobre el comportamiento plástico frente al elástico del revestimiento bajo una carga creciente. Tanto el rayado como la información sobre la deformación pueden ser de gran utilidad para mejorar el revestimiento duro. Las muy pequeñas desviaciones estándar también muestran la reproducibilidad de la técnica del instrumento, que puede ayudar a los fabricantes a mejorar la calidad de su revestimiento duro/pintura y estudiar los effectos de la intemperie.

Dureza al rayado a alta temperatura utilizando un tribómetro

DUREZA AL RAYADO A ALTA TEMPERATURA

UTILIZANDO UN TRIBÓMETRO

Preparado por

DUANJIE, Doctor

INTRODUCCIÓN

La dureza mide la resistencia de los materiales a la deformación permanente o plástica. Desarrollado originalmente por el mineralogista alemán Friedrich Mohs en 1820, el ensayo de dureza al rayado determina la dureza de un material a los arañazos y la abrasión debidos a la fricción de un objeto afilado.1. La escala de Mohs es un índice comparativo más que una escala lineal, por lo que se desarrolló una medición de la dureza al rayado más precisa y cualitativa, tal como se describe en la norma ASTM G171-032. Mide la anchura media del arañazo creado por un estilete de diamante y calcula el número de dureza del arañazo (HSP).

IMPORTANCIA DE LA MEDICIÓN DE LA DUREZA AL RAYADO A ALTAS TEMPERATURAS

Los materiales se seleccionan en función de los requisitos de servicio. Para aplicaciones que implican cambios de temperatura y gradientes térmicos significativos, es fundamental investigar las propiedades mecánicas de los materiales a altas temperaturas para conocer a fondo los límites mecánicos. Los materiales, especialmente los polímeros, suelen ablandarse a altas temperaturas. Muchos fallos mecánicos se deben a la deformación por fluencia y a la fatiga térmica que sólo tienen lugar a temperaturas elevadas. Por lo tanto, se necesita una técnica fiable para medir la dureza a altas temperaturas con el fin de garantizar una selección adecuada de los materiales para aplicaciones a altas temperaturas.

OBJETIVO DE MEDICIÓN

En este estudio, el Tribómetro NANOVEA T50 mide la dureza al rayado de una muestra de teflón a diferentes temperaturas, desde temperatura ambiente hasta 300ºC. La capacidad de realizar mediciones de dureza al rayado a alta temperatura hace que el NANOVEA Tribómetro un sistema versátil para evaluaciones tribológicas y mecánicas de materiales para aplicaciones de alta temperatura.

NANOVEA

T50

CONDICIONES DE ENSAYO

Se utilizó el tribómetro estándar de peso libre NANOVEA T50 para realizar los ensayos de dureza al rayado en una muestra de teflón a temperaturas que oscilaban entre la temperatura ambiente (TA) y 300°C. El teflón tiene un punto de fusión de 326,8°C. Se utilizó un palpador cónico de diamante con un ángulo de vértice de 120° y un radio de punta de 200 µm. La muestra de teflón se fijó en la platina giratoria con una distancia de 10 mm al centro de la platina. La muestra se calentó en un horno y se probó a temperaturas de RT, 50°C, 100°C, 150°C, 200°C, 250°C y 300°C.

PARÁMETROS DE PRUEBA

de la medición de la dureza al rayado a alta temperatura

FUERZA NORMAL 2 N
VELOCIDAD DE DESLIZAMIENTO 1 mm/s
DISTANCIA DE DESLIZAMIENTO 8 mm por temperatura
ATMÓSFERA Aire
TEMPERATURA RT, 50°C, 100°C, 150°C, 200°C, 250°C, 300°C.

RESULTADOS Y DEBATE

En la FIGURA 1 se muestran los perfiles de la pista de rayado de la muestra de teflón a diferentes temperaturas con el fin de comparar la dureza del rayado a diferentes temperaturas elevadas. La acumulación de material en los bordes de la pista de rayado se forma a medida que el palpador se desplaza con una carga constante de 2 N y penetra en la muestra de teflón, empujando y deformando el material de la pista de rayado hacia un lado.

Las huellas de rayado se examinaron al microscopio óptico como se muestra en la FIGURA 2. Las anchuras de las huellas de rayado medidas y los números de dureza de rayado (HSP) calculados se resumen en la FIGURA 3. En la FIGURA 3 se resumen y comparan las anchuras de las pistas de rayado medidas y los números de dureza de rayado (HSP) calculados. La anchura de la pista de rayado medida con el microscopio coincide con la medida con el NANOVEA Profiler: la muestra de teflón presenta una anchura de rayado mayor a temperaturas más altas. La anchura de la pista de rayado aumenta de 281 a 539 µm a medida que la temperatura se eleva de RT a 300oC, lo que resulta en una disminución de la HSP de 65 a 18 MPa.

La dureza al rayado a temperaturas elevadas puede medirse con alta precisión y repetibilidad utilizando el Tribómetro NANOVEA T50. Proporciona una solución alternativa a otras mediciones de dureza y convierte a los tribómetros NANOVEA en un sistema más completo para evaluaciones tribo-mecánicas exhaustivas a altas temperaturas.

FIGURA 1: Perfiles de huellas de arañazos tras los ensayos de dureza al rayado a diferentes temperaturas.

FIGURA 2: Huellas de arañazos bajo el microscopio tras las mediciones a diferentes temperaturas.

FIGURA 3: Evolución de la anchura de la pista de rayado y de la dureza del rayado en función de la temperatura.

CONCLUSIÓN

En este estudio, mostramos cómo el tribómetro NANOVEA mide la dureza al rayado a temperaturas elevadas de conformidad con la norma ASTM G171-03. El ensayo de dureza al rayado con carga constante proporciona una solución alternativa sencilla para comparar la dureza de los materiales utilizando el tribómetro. La capacidad de realizar mediciones de dureza al rayado a temperaturas elevadas convierte al Tribómetro NANOVEA en una herramienta ideal para evaluar las propiedades tribo-mecánicas de los materiales a altas temperaturas.

El tribómetro NANOVEA también ofrece pruebas de desgaste y fricción precisas y repetibles mediante modos rotativos y lineales conformes con ISO y ASTM, con módulos opcionales de desgaste a alta temperatura, lubricación y tribo-corrosión disponibles en un sistema preintegrado. Hay disponible un perfilador 3D sin contacto opcional para obtener imágenes 3D de alta resolución de las huellas de desgaste, además de otras mediciones de superficies como la rugosidad.

1 Wredenberg, Fredrik; PL Larsson (2009). "Ensayo de rayado de metales y polímeros: Experiments and numerics". Wear 266 (1-2): 76
2 ASTM G171-03 (2009), "Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus" (Método de ensayo estándar para la dureza al rayado de materiales utilizando un estilete de diamante).

Evaluación de arañazos y desgaste en revestimientos industriales

RECUBRIMIENTO INDUSTRIAL

EVALUACIÓN DEL RAYADO Y EL DESGASTE MEDIANTE UN TRIBÓMETRO

Preparado por

DUANJIE LI, Doctorado, y ANDREA HERRMANN

INTRODUCCIÓN

La pintura de uretano acrílico es un tipo de recubrimiento protector de secado rápido ampliamente utilizado en diversas aplicaciones industriales, como pintura para pisos, pintura para automóviles y otras. Cuando se utiliza como pintura para pisos, puede servir en áreas con mucho tránsito peatonal y de ruedas de goma, como pasillos, bordillos y estacionamientos.

IMPORTANCIA DE LAS PRUEBAS DE RAYADURAS Y DESGASTE PARA EL CONTROL DE CALIDAD

Tradicionalmente, las pruebas de abrasión Taber se realizaban para evaluar la resistencia al desgaste de la pintura acrílica de uretano para pisos de acuerdo con la norma ASTM D4060. Sin embargo, como se menciona en la norma, “Para algunos materiales, las pruebas de abrasión que utilizan el abrasómetro Taber pueden estar sujetas a variaciones debido a cambios en las características abrasivas de la rueda durante la prueba”.1 Esto puede dar lugar a una mala reproducibilidad de los resultados de las pruebas y crear dificultades para comparar los valores comunicados por diferentes laboratorios. Además, en las pruebas de abrasión Taber, la resistencia a la abrasión se calcula como la pérdida de peso en un número específico de ciclos de abrasión. Sin embargo, las pinturas acrílicas de uretano para suelos tienen un espesor de película seca recomendado de 37,5-50 μm².

El agresivo proceso de abrasión del abrasómetro Taber puede desgastar rápidamente el recubrimiento de uretano acrílico y provocar una pérdida de masa en el sustrato, lo que da lugar a errores sustanciales en el cálculo de la pérdida de peso de la pintura. La implantación de partículas abrasivas en la pintura durante la prueba de abrasión también contribuye a los errores. Por lo tanto, es fundamental realizar una medición cuantificable y fiable bien controlada para garantizar una evaluación reproducible del desgaste de la pintura. Además, el prueba de resistencia al rayado permite a los usuarios detectar fallos prematuros en la adhesión/cohesión en aplicaciones reales.

OBJETIVO DE MEDICIÓN

En este estudio, demostramos que NANOVEA Tribómetros y Comprobadores mecánicos Son ideales para la evaluación y el control de calidad de recubrimientos industriales.

El proceso de desgaste de las pinturas acrílicas de uretano para pisos con diferentes capas de acabado se simula de manera controlada y supervisada utilizando el tribómetro NANOVEA. Se utilizan pruebas de microarañazos para medir la carga necesaria para provocar un fallo cohesivo o adhesivo en la pintura.

NANOVEA T100

El tribómetro neumático compacto

NANOVEA PB1000

El probador mecánico de plataforma grande

PROCEDIMIENTO DE PRUEBA

Este estudio evalúa cuatro recubrimientos acrílicos para pisos a base de agua disponibles en el mercado que tienen la misma imprimación (capa base) y diferentes capas de acabado de la misma fórmula, con una pequeña alteración en las mezclas de aditivos con el fin de mejorar la durabilidad. Estos cuatro recubrimientos se identifican como muestras A, B, C y D.

PRUEBA DE DESGASTE

Se utilizó el tribómetro NANOVEA para evaluar el comportamiento tribológico, por ejemplo, el coeficiente de fricción (COF) y la resistencia al desgaste. Se aplicó una punta de bola SS440 (6 mm de diámetro, grado 100) contra las pinturas sometidas a prueba. El COF se registró in situ. La tasa de desgaste, K, se evaluó utilizando la fórmula K=V/(F×s)=A/(F×n), donde V es el volumen desgastado, F es la carga normal, s es la distancia de deslizamiento, A es el área transversal de la huella de desgaste y n es el número de revoluciones. La rugosidad de la superficie y los perfiles de las huellas de desgaste se evaluaron con el NANOVEA. Perfilómetro óptico, y se examinó la morfología de la pista de desgaste con un microscopio óptico.

PARÁMETROS DE LA PRUEBA DE DESGASTE

FUERZA NORMAL

20 N

VELOCIDAD

15 m/min

DURACIÓN DE LA PRUEBA

100, 150, 300 y 800 ciclos

PRUEBA DE RAYADO

Se utilizó el probador mecánico NANOVEA equipado con una aguja de diamante Rockwell C (radio de 200 μm) para realizar pruebas de rayado con carga progresiva en las muestras de pintura utilizando el modo Micro Scratch Tester. Se utilizaron dos cargas finales: una carga final de 5 N para investigar la delaminación de la pintura de la imprimación y una de 35 N para investigar la delaminación de la imprimación de los sustratos metálicos. Se repitieron tres pruebas en las mismas condiciones de ensayo en cada muestra para garantizar la reproducibilidad de los resultados.

El software del sistema generó automáticamente imágenes panorámicas de toda la longitud de los rayones y correlacionó sus puntos críticos de falla con las cargas aplicadas. Esta función del software permite a los usuarios realizar análisis de las marcas de los rayones en cualquier momento, en lugar de tener que determinar la carga crítica bajo el microscopio inmediatamente después de las pruebas de rayado.

PARÁMETROS DE LA PRUEBA DE RAYADO

TIPO DE CARGAProgresiva
CARGA INICIAL0,01 mN
CARGA FINAL5 N / 35 N
VELOCIDAD DE CARGA10 / 70 N/min
LONGITUD DEL RASPADO3 mm
velocidad de rayado, dx/dt6,0 mm/min
GEOMETRÍA DEL PENETRADORcono de 120º
MATERIAL INDENTADOR (punta)Diamante
RADIO DE LA PUNTA DEL PENETRADOR200 μm

RESULTADOS DE LA PRUEBA DE DESGASTE

Se realizaron cuatro pruebas de desgaste con pasador sobre disco a diferentes números de revoluciones (100, 150, 300 y 800 ciclos) en cada muestra con el fin de supervisar la evolución del desgaste. La morfología de la superficie de las muestras se midió con un perfilómetro 3D sin contacto NANOVEA para cuantificar la rugosidad de la superficie antes de realizar las pruebas de desgaste. Todas las muestras tenían una rugosidad superficial comparable de aproximadamente 1 μm, como se muestra en la FIGURA 1. El COF se registró in situ durante las pruebas de desgaste, como se muestra en la FIGURA 2. La FIGURA 4 presenta la evolución de las huellas de desgaste después de 100, 150, 300 y 800 ciclos, y la FIGURA 3 resume la tasa de desgaste media de diferentes muestras en diferentes etapas del proceso de desgaste.

 

En comparación con un valor de COF de ~0,07 para las otras tres muestras, la muestra A presenta un COF mucho más alto de ~0,15 al principio, que aumenta gradualmente y se estabiliza en ~0,3 después de 300 ciclos de desgaste. Un COF tan alto acelera el proceso de desgaste y genera una cantidad considerable de residuos de pintura, como se indica en la FIGURA 4: la capa superior de la muestra A ha comenzado a desprenderse en las primeras 100 revoluciones. Como se muestra en la FIGURA 3, la muestra A presenta la tasa de desgaste más alta, de ~5 μm2/N, en los primeros 300 ciclos, que disminuye ligeramente hasta ~3,5 μm2/N debido a la mejor resistencia al desgaste del sustrato metálico. La capa superior de la muestra C comienza a fallar después de 150 ciclos de desgaste, como se muestra en la FIGURA 4, lo que también se indica por el aumento del COF en la FIGURA 2.

 

En comparación, las muestras B y D muestran propiedades tribológicas mejoradas. La muestra B mantiene un bajo coeficiente de fricción (COF) durante toda la prueba: el COF aumenta ligeramente de ~0,05 a ~0,1. Este efecto lubricante mejora sustancialmente su resistencia al desgaste: la capa superior sigue proporcionando una protección superior a la imprimación subyacente después de 800 ciclos de desgaste. La tasa de desgaste promedio más baja, de solo ~0,77 μm2/N, se mide para la muestra B a los 800 ciclos. La capa superior de la muestra D comienza a deslaminarse después de 375 ciclos, como se refleja en el aumento abrupto del COF en la FIGURA 2. La tasa de desgaste promedio de la muestra D es de ~1,1 μm2/N a los 800 ciclos.

 

En comparación con las mediciones de abrasión Taber convencionales, el tribómetro NANOVEA proporciona evaluaciones de desgaste cuantificables y fiables bien controladas que garantizan evaluaciones reproducibles y el control de calidad de las pinturas comerciales para suelos y automóviles. Además, la capacidad de realizar mediciones de COF in situ permite a los usuarios correlacionar las diferentes etapas de un proceso de desgaste con la evolución del COF, lo cual es fundamental para mejorar la comprensión básica del mecanismo de desgaste y las características tribológicas de diversos recubrimientos de pintura.

FIGURA 1: Morfología 3D y rugosidad de las muestras de pintura.

FIGURA 2: COF durante las pruebas de pin-on-disk.

FIGURA 3: Evolución de la tasa de desgaste de diferentes pinturas.

FIGURA 4: Evolución de las marcas de desgaste durante las pruebas de pasador sobre disco.

RESULTADOS DE LA PRUEBA DE RAYADO

La FIGURA 5 muestra el gráfico de la fuerza normal, la fuerza de fricción y la profundidad real en función de la longitud del rayón para la muestra A, a modo de ejemplo. Se puede instalar un módulo opcional de emisión acústica para proporcionar más información. A medida que la carga normal aumenta linealmente, la punta de la indentación se hunde gradualmente en la muestra sometida a prueba, lo que se refleja en el aumento progresivo de la profundidad real. La variación en las pendientes de las curvas de fuerza de fricción y profundidad real puede utilizarse como uno de los indicios de que comienzan a producirse fallos en el recubrimiento.

FIGURA 5: Fuerza normal, fuerza de fricción y profundidad real en función de la longitud del rayón para la prueba de rayado de la muestra A con una carga máxima de 5 N.

Las FIGURAS 6 y 7 muestran los rayones completos de las cuatro muestras de pintura probadas con una carga máxima de 5 N y 35 N, respectivamente. La muestra D requirió una carga mayor, de 50 N, para deslaminar la imprimación. Las pruebas de rayado con una carga final de 5 N (FIGURA 6) evalúan el fallo cohesivo/adhesivo de la pintura superior, mientras que las realizadas con 35 N (FIGURA 7) evalúan la deslaminación de la imprimación. Las flechas de las micrografías indican el punto en el que la capa superior o la imprimación comienzan a desprenderse completamente de la imprimación o del sustrato. La carga en este punto, denominada carga crítica, Lc, se utiliza para comparar las propiedades cohesivas o adhesivas de la pintura, tal y como se resume en la Tabla 1.

 

Es evidente que la muestra de pintura D tiene la mejor adhesión interfacial, ya que presenta los valores Lc más altos, de 4,04 N en la delaminación de la pintura y 36,61 N en la delaminación de la imprimación. La muestra B muestra la segunda mejor resistencia al rayado. A partir del análisis de rayado, demostramos que la optimización de la fórmula de la pintura es fundamental para el comportamiento mecánico o, más concretamente, para la resistencia al rayado y la propiedad de adhesión de las pinturas acrílicas para suelos.

Cuadro 1: Resumen de cargas críticas.

FIGURA 6: Micrografías de rayado completo con una carga máxima de 5 N.

FIGURA 7: Micrografías de rayado completo con una carga máxima de 35 N.

CONCLUSIÓN

En comparación con las mediciones de abrasión Taber convencionales, el probador mecánico y el tribómetro NANOVEA son herramientas superiores para la evaluación y el control de calidad de los recubrimientos comerciales para pisos y automóviles. El probador mecánico NANOVEA en modo Rasguño puede detectar problemas de adhesión/cohesión en un sistema de recubrimiento. El tribómetro NANOVEA proporciona un análisis tribológico cuantificable y repetible bien controlado sobre la resistencia al desgaste y el coeficiente de fricción de las pinturas.

 

Basándonos en los análisis tribológicos y mecánicos exhaustivos realizados a los recubrimientos acrílicos para suelos a base de agua probados en este estudio, demostramos que la muestra B posee el menor coeficiente de fricción y la menor tasa de desgaste, así como la segunda mejor resistencia al rayado, mientras que la muestra D presenta la mejor resistencia al rayado y la segunda mejor resistencia al desgaste. Esta evaluación nos permite valorar y seleccionar el mejor candidato en función de las necesidades de los diferentes entornos de aplicación.

 

Los módulos Nano y Micro del probador mecánico NANOVEA incluyen modos de prueba de indentación, rayado y desgaste que cumplen con las normas ISO y ASTM, lo que proporciona la gama más amplia de pruebas disponibles para la evaluación de pinturas en un solo módulo. El tribómetro NANOVEA ofrece pruebas de desgaste y fricción precisas y repetibles utilizando modos rotativos y lineales que cumplen con las normas ISO y ASTM, con módulos opcionales de desgaste a alta temperatura, lubricación y tribocorrosión disponibles en un sistema preintegrado. La inigualable gama de NANOVEA es una solución ideal para determinar todas las propiedades mecánicas y tribológicas de recubrimientos, películas y sustratos finos o gruesos, blandos o duros, incluyendo la dureza, el módulo de Young, la resistencia a la fractura, la adhesión, la resistencia al desgaste y muchas otras. Los perfilómetros ópticos sin contacto opcionales de NANOVEA están disponibles para la obtención de imágenes 3D de alta resolución de arañazos y marcas de desgaste, además de otras mediciones de superficie, como la rugosidad.

AHORA, HABLEMOS DE SU SOLICITUD

Medición de la dureza de los arañazos mediante un comprobador mecánico

MEDICIÓN DE LA DUREZA AL RAYADO

UTILIZANDO UN COMPROBADOR MECÁNICO

Preparado por

DUANJIE LI, Doctor

INTRODUCCIÓN

En general, los ensayos de dureza miden la resistencia de los materiales a la deformación permanente o plástica. Existen tres tipos de mediciones de la dureza: dureza al rayado, dureza por indentación y dureza por rebote. El ensayo de dureza al rayado mide la resistencia de un material al rayado y la abrasión debidos a la fricción de un objeto afilado1. Fue desarrollado originalmente por el mineralogista alemán Friedrich Mohs en 1820 y todavía se utiliza ampliamente para clasificar las propiedades físicas de los minerales2. Este método de ensayo también es aplicable a metales, cerámicas, polímeros y superficies recubiertas.

Durante una medición de la dureza al rayado, un palpador de diamante de geometría especificada raya la superficie de un material a lo largo de una trayectoria lineal bajo una fuerza normal constante con una velocidad constante. Se mide la anchura media del rayado y se utiliza para calcular el número de dureza al rayado (HSP). Esta técnica proporciona una solución sencilla para escalar la dureza de diferentes materiales.

OBJETIVO DE MEDICIÓN

En este estudio, el Probador Mecánico NANOVEA PB1000 se utiliza para medir la dureza al rayado de diferentes metales de acuerdo con ASTM G171-03.

Simultáneamente, este estudio muestra la capacidad del NANOVEA Comprobador mecánico en la medición de la dureza al rayado con gran precisión y reproducibilidad.

NANOVEA

PB1000

CONDICIONES DE ENSAYO

El comprobador mecánico NANOVEA PB1000 realizó ensayos de dureza al rayado en tres metales pulidos (Cu110, Al6061 y SS304). Se utilizó un palpador cónico de diamante con un ángulo de vértice de 120° y un radio de punta de 200 µm. Cada muestra se rayó tres veces con los mismos parámetros de ensayo para garantizar la reproducibilidad de los resultados. Los parámetros de prueba se resumen a continuación. Se realizó un barrido de perfil a una carga normal baja de 10 mN antes y después del prueba de resistencia al rayado para medir el cambio en el perfil de la superficie del arañazo.

PARÁMETROS DE PRUEBA

FUERZA NORMAL

10 N

TEMPERATURA

24°C (RT)

VELOCIDAD DE DESLIZAMIENTO

20 mm/min

DISTANCIA DE DESLIZAMIENTO

10 mm

ATMÓSFERA

Aire

RESULTADOS Y DEBATE

Las imágenes de las huellas de rayado de tres metales (Cu110, Al6061 y SS304) después de las pruebas se muestran en la FIGURA 1 con el fin de comparar la dureza de rayado de diferentes materiales. La función de mapeo del software NANOVEA Mechanical se utilizó para crear tres rayados paralelos ensayados bajo la misma condición en un protocolo automatizado. El ancho de la pista de rayado medido y el número de dureza de rayado calculado (HSP) se resumen y comparan en la TABLA 1. Los metales muestran diferentes anchos de pista de desgaste de 174, 220 y 89 µm para Al6061, Cu110 y SS304, respectivamente, dando como resultado un HSP calculado de 0,84, 0,52 y 3,2 GPa.

Además de la dureza al rayado calculada a partir de la anchura de la pista de rayado, se registraron in situ la evolución del coeficiente de fricción (COF), la profundidad real y la emisión acústica durante el ensayo de dureza al rayado. La profundidad real es la diferencia de profundidad entre la profundidad de penetración del palpador durante la prueba de rayado y el perfil de superficie medido en la exploración previa. En la FIGURA 2 se muestran, a modo de ejemplo, el COF, la profundidad real y la emisión acústica del Cu110. Esta información permite conocer los fallos mecánicos que tienen lugar durante el rayado, lo que permite a los usuarios detectar defectos mecánicos e investigar más a fondo el comportamiento al rayado del material ensayado.

Los ensayos de dureza al rayado pueden finalizarse en un par de minutos con gran precisión y repetibilidad. En comparación con los procedimientos de indentación convencionales, el ensayo de dureza al rayado de este estudio proporciona una solución alternativa para las mediciones de dureza, que resulta útil para el control de calidad y el desarrollo de nuevos materiales.

Al6061

Cu110

SS304

FIGURA 1: Imagen microscópica de las huellas de arañazos tras la prueba (aumento 100x).

 Anchura de la huella del arañazo (μm)HSp (GPa)
Al6061174±110.84
Cu110220±10.52
SS30489±53.20

TABLA 1: Resumen de la anchura de la pista de rayado y del número de dureza del rayado.

FIGURA 2: Evolución del coeficiente de fricción, de la profundidad real y de las emisiones acústicas durante el ensayo de dureza al rayado en Cu110.

CONCLUSIÓN

En este estudio, mostramos la capacidad del NANOVEA Mechanical Tester para realizar ensayos de dureza al rayado conforme a la norma ASTM G171-03. Además de la adherencia del revestimiento y la resistencia al rayado, el ensayo de rayado con carga constante proporciona una solución alternativa sencilla para comparar la dureza de los materiales. A diferencia de los durómetros de rayado convencionales, los Comprobadores Mecánicos NANOVEA ofrecen módulos opcionales para controlar in situ la evolución del coeficiente de fricción, la emisión acústica y la profundidad real.

Los módulos Nano y Micro de un NANOVEA Mechanical Tester incluyen modos de indentación, rayado y desgaste conformes a ISO y ASTM, proporcionando la gama de ensayos más amplia y fácil de usar disponible en un solo sistema. La gama inigualable de NANOVEA es una solución ideal para determinar la gama completa de propiedades mecánicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros, incluyendo dureza, módulo de Young, tenacidad a la fractura, adhesión, resistencia al desgaste y muchos otros.

Prueba de rayado del revestimiento de nitruro de titanio

PRUEBA DE RAYADO DEL RECUBRIMIENTO DE NITRURO DE TITANIO

INSPECCIÓN DE CONTROL DE CALIDAD

Preparado por

DUANJIE LI, Doctor

INTRODUCCIÓN

La combinación de alta dureza, excelente resistencia al desgaste, resistencia a la corrosión e inercia hace que el nitruro de titanio (TiN) sea un recubrimiento protector ideal para componentes metálicos en diversas industrias. Por ejemplo, la retención de los bordes y la resistencia a la corrosión de un recubrimiento de TiN pueden aumentar sustancialmente la eficiencia del trabajo y prolongar la vida útil de las herramientas mecánicas, como las cuchillas de afeitar, los cortadores de metal, los moldes de inyección y las sierras. Su alta dureza, inercia y no toxicidad hacen del TiN un excelente candidato para aplicaciones en dispositivos médicos, incluidos implantes e instrumentos quirúrgicos.

IMPORTANCIA DE LAS PRUEBAS DE RAYADO DEL RECUBRIMIENTO DE TiN

La tensión residual en los recubrimientos protectores PVD/CVD desempeña un papel fundamental en el rendimiento y la integridad mecánica del componente recubierto. La tensión residual se deriva de varias fuentes principales, entre las que se incluyen la tensión de crecimiento, los gradientes térmicos, las restricciones geométricas y la tensión de servicio¹. La discrepancia en la expansión térmica entre el recubrimiento y el sustrato que se produce durante la deposición del recubrimiento a temperaturas elevadas da lugar a una alta tensión residual térmica. Además, las herramientas recubiertas de TiN se utilizan a menudo bajo tensiones muy concentradas, por ejemplo, brocas y rodamientos. Es fundamental desarrollar un proceso de control de calidad fiable para inspeccionar cuantitativamente la resistencia cohesiva y adhesiva de los recubrimientos funcionales protectores.

[1] V. Teixeira, Vacuum 64 (2002) 393-399.

OBJETIVO DE MEDICIÓN

En este estudio, mostramos que el NANOVEA Comprobadores mecánicos en modo Scratch son ideales para evaluar la resistencia cohesiva/adhesiva de los recubrimientos protectores de TiN de forma controlada y cuantitativa.

NANOVEA

PB1000

CONDICIONES DE ENSAYO

Se utilizó el comprobador mecánico NANOVEA PB1000 para realizar el recubrimiento. pruebas de rascado en tres recubrimientos de TiN utilizando los mismos parámetros de prueba que se resumen a continuación:

MODO DE CARGA: Lineal progresivo

CARGA INICIAL

0,02 N

CARGA FINAL

10 N

VELOCIDAD DE CARGA

20 N/min

LONGITUD DEL RASPADO

5 mm

TIPO DE INDENTADOR

Esférico-cónico

Diamante, radio de 20 μm

RESULTADOS Y DEBATE

La FIGURA 1 muestra la evolución registrada de la profundidad de penetración, el coeficiente de fricción (COF) y la emisión acústica durante la prueba. Las microrayaduras completas en las muestras de TiN se muestran en la FIGURA 2. Los comportamientos de fallo a diferentes cargas críticas se muestran en la FIGURA 3, donde la carga crítica Lc1 se define como la carga a la que se produce el primer signo de grieta cohesiva en la traza de rayado, Lc2 es la carga a partir de la cual se producen fallos repetidos por espalación, y Lc3 es la carga a la que el recubrimiento se desprende completamente del sustrato. Los valores de carga crítica (Lc) para los recubrimientos de TiN se resumen en la FIGURA 4.

La evolución de la profundidad de penetración, el COF y la emisión acústica proporcionan información sobre el mecanismo de fallo del recubrimiento en diferentes etapas, que se representan mediante las cargas críticas en este estudio. Se puede observar que la muestra A y la muestra B muestran un comportamiento similar durante la prueba de rayado. El lápiz penetra progresivamente en la muestra hasta una profundidad de ~0,06 mm y el COF aumenta gradualmente hasta ~0,3 a medida que la carga normal aumenta linealmente al comienzo de la prueba de rayado del recubrimiento. Cuando se alcanza el Lc1 de ~3,3 N, se produce el primer signo de fallo por astillamiento. Esto también se refleja en los primeros picos importantes en el gráfico de profundidad de penetración, COF y emisión acústica. A medida que la carga sigue aumentando hasta Lc2 de ~3,8 N, se produce una mayor fluctuación de la profundidad de penetración, el COF y la emisión acústica. Podemos observar un fallo por espalación continuo presente en ambos lados de la pista de rayado. En Lc3, el recubrimiento se deslamina completamente del sustrato metálico bajo la alta presión aplicada por el estilete, dejando el sustrato expuesto y sin protección.

En comparación, la muestra C presenta cargas críticas más bajas en diferentes etapas de las pruebas de rayado del recubrimiento, lo que también se refleja en la evolución de la profundidad de penetración, el coeficiente de fricción (COF) y la emisión acústica durante la prueba de rayado del recubrimiento. La muestra C posee una capa intermedia de adhesión con menor dureza y mayor tensión en la interfaz entre el recubrimiento superior de TiN y el sustrato metálico en comparación con la muestra A y la muestra B.

Este estudio demuestra la importancia de un soporte adecuado del sustrato y una arquitectura adecuada del recubrimiento para la calidad del sistema de recubrimiento. Una capa intermedia más resistente puede resistir mejor la deformación bajo una carga externa elevada y una tensión de concentración, lo que mejora la fuerza cohesiva y adhesiva del sistema de recubrimiento/sustrato.

FIGURA 1: Evolución de la profundidad de penetración, el COF y la emisión acústica de las muestras de TiN.

FIGURA 2: Rastro completo de rayaduras de los recubrimientos TiN después de las pruebas.

FIGURA 3: Fallos del recubrimiento TiN bajo diferentes cargas críticas, Lc.

FIGURA 4: Resumen de los valores de carga crítica (Lc) para los recubrimientos de TiN.

CONCLUSIÓN

En este estudio, demostramos que el probador mecánico NANOVEA PB1000 realiza pruebas de rayado fiables y precisas en muestras recubiertas de TiN de forma controlada y estrechamente supervisada. Las mediciones de rayado permiten a los usuarios identificar rápidamente la carga crítica a la que se producen los fallos típicos de cohesión y adhesión del recubrimiento. Nuestros instrumentos son herramientas de control de calidad superiores que pueden inspeccionar y comparar cuantitativamente la calidad intrínseca de un recubrimiento y la integridad interfacial de un sistema de recubrimiento/sustrato. Un recubrimiento con una capa intermedia adecuada puede resistir grandes deformaciones bajo una alta carga externa y una tensión de concentración, y mejorar la fuerza de cohesión y adhesión de un sistema de recubrimiento/sustrato.

Los módulos Nano y Micro de un medidor mecánico NANOVEA incluyen modos de medición de indentación, rayado y desgaste que cumplen con las normas ISO y ASTM, lo que proporciona la gama de pruebas más amplia y fácil de usar disponible en un solo sistema. La inigualable gama de NANOVEA es la solución ideal para determinar todas las propiedades mecánicas de recubrimientos, películas y sustratos finos o gruesos, blandos o duros, incluyendo la dureza, el módulo de Young, la resistencia a la fractura, la adhesión, la resistencia al desgaste y muchas otras.

Propiedades mecánicas del hidrogel

PROPIEDADES MECÁNICAS DEL HIDROGEL

USO DE LA NANOINDENTACIÓN

PROPIEDADES MECÁNICAS DEL HIDROGEL

Preparado por

DUANJIE LI, Doctor y JORGE RAMÍREZ

INTRODUCCIÓN

El hidrogel es conocido por su gran capacidad de absorción de agua, lo que le permite tener una flexibilidad muy similar a la de los tejidos naturales. Esta similitud ha convertido al hidrogel en una opción habitual no solo en biomateriales, sino también en aplicaciones electrónicas, medioambientales y de bienes de consumo, como las lentes de contacto. Cada aplicación específica requiere propiedades mecánicas concretas del hidrogel.

IMPORTANCIA DE LA NANOINDENTACIÓN PARA EL HIDROGEL

Los hidrogeles plantean retos únicos para la nanoindentación, como la selección de los parámetros de prueba y la preparación de las muestras. Muchos sistemas de nanoindentación tienen limitaciones importantes, ya que no fueron diseñados originalmente para materiales tan blandos. Algunos de los sistemas de nanoindentación utilizan un conjunto de bobina/imán para aplicar fuerza sobre la muestra. No se realiza una medición real de la fuerza, lo que da lugar a una carga inexacta y no lineal al realizar ensayos con materiales blandos. materiales. Determinar el punto de contacto es extremadamente difícil, ya que el La profundidad es el único parámetro que realmente se mide. Es casi imposible observar el cambio de pendiente en el Profundidad frente a tiempo trama durante el período en el que la punta del penetrador se aproxima al material hidrogel.

Con el fin de superar las limitaciones de estos sistemas, el nanomódulo del NANOVEA Comprobador mecánico mide la retroalimentación de fuerza con una célula de carga individual para garantizar una alta precisión en todo tipo de materiales, ya sean blandos o duros. El desplazamiento controlado por piezoeléctricos es extremadamente preciso y rápido. Esto permite una medición inigualable de las propiedades viscoelásticas, ya que elimina muchas suposiciones teóricas que deben tener en cuenta los sistemas con un conjunto de bobina/imán y sin retroalimentación de fuerza.

OBJETIVO DE MEDICIÓN

En esta aplicación, el NANOVEA El probador mecánico, en modo nanoindentación, se utiliza para estudiar la dureza, el módulo elástico y la fluencia de una muestra de hidrogel.

NANOVEA PB1000 Comprobador mecánico

CONDICIONES DE ENSAYO

Se analizó una muestra de hidrogel colocada sobre un portaobjetos de vidrio mediante la técnica de nanoindentación utilizando un NANOVEA Probador mecánico. Para este material blando se utilizó una punta esférica de 3 mm de diámetro. La carga aumentó linealmente de 0,06 a 10 mN durante el periodo de carga. A continuación, se midió la fluencia mediante el cambio de la profundidad de la indentación a la carga máxima de 10 mN durante 70 segundos.

VELOCIDAD DE APROXIMACIÓN: 100 μm/min

CARGA DE CONTACTO
0,06 mN
CARGA MÁXIMA
10 mN
VELOCIDAD DE CARGA

20 mN/min

CREEP
70 s
Prueba de indentación con hidrogel

RESULTADOS Y DEBATE

La evolución de la carga y la profundidad en función del tiempo se muestra en FIGURA 1. Se puede observar que en el gráfico de la Profundidad frente a tiempo, es muy difícil determinar el punto de cambio de pendiente al inicio del periodo de carga, que suele servir como indicación del momento en que el penetrador comienza a entrar en contacto con el material blando. Sin embargo, el gráfico de la Carga frente a tiempo muestra el comportamiento peculiar del hidrogel bajo una carga aplicada. Cuando el hidrogel comienza a entrar en contacto con el penetrador de bola, el hidrogel tira del penetrador debido a su tensión superficial, que tiende a disminuir el área superficial. Este comportamiento da lugar a una carga medida negativa al comienzo de la etapa de carga. La carga aumenta progresivamente a medida que el penetrador se hunde en el hidrogel, y luego se controla para que se mantenga constante a la carga máxima de 10 mN durante 70 segundos para estudiar el comportamiento de fluencia del hidrogel.

caracterización del hidrogel
nanoindentación de hidrogeles

FIGURA 1: Evolución de la carga y la profundidad en función del tiempo.

La trama de la Profundidad de fluencia frente al tiempo se muestra en FIGURA 2, y el Carga frente a desplazamiento El gráfico de la prueba de nanoindentación se muestra en FIGURA 3. El hidrogel utilizado en este estudio tiene una dureza de 16,9 kPa y un módulo de Young de 160,2 kPa, calculados a partir de la curva de desplazamiento de carga utilizando el método Oliver-Pharr.

La fluencia es un factor importante para el estudio de las propiedades mecánicas de un hidrogel. El control de retroalimentación de bucle cerrado entre el piezoeléctrico y la célula de carga ultrasensible garantiza una carga constante real durante el tiempo de fluencia a la carga máxima. Como se muestra en FIGURA 2, El hidrogel se hunde ~42 μm como resultado de la fluencia en 70 segundos bajo la carga máxima de 10 mN aplicada por la punta de bola de 3 mm.

pruebas mecánicas de hidrogeles

FIGURA 2: Desplazamiento lento con una carga máxima de 10 mN durante 70 segundos.

prueba de durabilidad del hidrogel

FIGURA 3: Gráfico de carga frente a desplazamiento del hidrogel.

CONCLUSIÓN

En este estudio, demostramos que el NANOVEA El probador mecánico, en modo nanoindentación, proporciona una medición precisa y repetible de las propiedades mecánicas de un hidrogel, incluyendo la dureza, el módulo de Young y la fluencia. La punta de bola grande de 3 mm garantiza un contacto adecuado con la superficie del hidrogel. La plataforma motorizada de alta precisión permite posicionar con precisión la cara plana de la muestra de hidrogel bajo la punta de bola. El hidrogel de este estudio presenta una dureza de 16,9 KPa y un módulo de Young de 160,2 KPa. La profundidad de fluencia es de ~42 μm bajo una carga de 10 mN durante 70 segundos.

NANOVEA Los probadores mecánicos ofrecen módulos nano y micro multifuncionales sin igual en una sola plataforma. Ambos módulos incluyen un probador de rayaduras, un probador de dureza y un modo de probador de desgaste, lo que ofrece la gama de pruebas más amplia y fácil de usar disponible en un solo dispositivo.
sistema.

Propiedades de adhesión del recubrimiento de oro sobre sustrato de cristal de cuarzo

Propiedades de adhesión del recubrimiento de oro

sobre sustrato de cristal de cuarzo

Preparado por

DUANJIE LI, Doctorado

INTRODUCCIÓN

La microbalanza de cristal de cuarzo (QCM) es un sensor de masa extremadamente sensible capaz de realizar mediciones precisas de masas pequeñas en el rango de los nanogramos. La QCM mide el cambio de masa en la superficie mediante la detección de variaciones en la frecuencia de resonancia del cristal de cuarzo con dos electrodos fijados a cada lado de la placa. Su capacidad para medir pesos extremadamente pequeños lo convierte en un componente clave en una variedad de instrumentos industriales y de investigación para detectar y monitorear la variación de la masa, la adsorción, la densidad y la corrosión, entre otros.

IMPORTANCIA DE LA PRUEBA DE RAYADO PARA QCM

Como dispositivo extremadamente preciso, el QCM mide el cambio de masa hasta 0,1 nanogramos. Cualquier pérdida de masa o delaminación de los electrodos en la placa de cuarzo será detectada por el cristal de cuarzo y causará errores de medición significativos. Como resultado, la calidad intrínseca del recubrimiento del electrodo y la integridad interfacial del sistema de recubrimiento/sustrato desempeñan un papel esencial en la realización de mediciones de masa precisas y repetibles. La prueba de microarañazos es una medición comparativa muy utilizada para evaluar las propiedades relativas de cohesión o adhesión de los recubrimientos basándose en la comparación de las cargas críticas en las que aparecen fallos. Es una herramienta superior para el control de calidad fiable de los QCM.

OBJETIVO DE MEDICIÓN

En esta aplicación, el NANOVEA Comprobador mecánico, en modo Micro Scratch, se utiliza para evaluar la fuerza cohesiva y adhesiva del recubrimiento de oro sobre el sustrato de cuarzo de una muestra QCM. Nos gustaría mostrar la capacidad del NANOVEA Probador mecánico para realizar pruebas de microarañazos en muestras delicadas con alta precisión y repetibilidad.

NANOVEA

PB1000

CONDICIONES DE ENSAYO

El NANOVEA Se utilizó el probador mecánico PB1000 para realizar las pruebas de microarañazos en una muestra de QCM utilizando los parámetros de prueba que se resumen a continuación. Se realizaron tres arañazos para garantizar la reproducibilidad de los resultados.

TIPO DE CARGA: Progresiva

CARGA INICIAL

0,01 N

CARGA FINAL

30 N

AMBIENTE: Aire 24 °C

VELOCIDAD DE DESLIZAMIENTO

2 mm/min

DISTANCIA DE DESLIZAMIENTO

2 mm

RESULTADOS Y DISCUSIÓN

La pista completa de microarañazos en la muestra QCM se muestra en FIGURA 1. Los comportamientos de fallo a diferentes cargas críticas se muestran en la FIGURA 2., donde la carga crítica, LC1 se define como la carga a la que se produce el primer signo de fallo adhesivo en la pista de rayado, L.C2 es la carga a partir de la cual se producen fallos adhesivos repetitivos, y LC3 es la carga a la que el recubrimiento se desprende completamente del sustrato. Se puede observar que se producen pocos desconchones a LC1 de 11,15 N, el primer indicio de fallo del recubrimiento. 

A medida que la carga normal sigue aumentando durante la prueba de microarañazos, se producen fallos adhesivos repetitivos después de L.C2 de 16,29 N. Cuando LC3 de 19,09 N, el recubrimiento se desprende completamente del sustrato de cuarzo. Estas cargas críticas pueden utilizarse para comparar cuantitativamente la fuerza cohesiva y adhesiva del recubrimiento y seleccionar el mejor candidato para las aplicaciones específicas.

FIGURA 1: Microarañazo completo en la muestra QCM.

FIGURA 2: Microarañazos en diferentes cargas críticas.

FIGURA 3 representa gráficamente la evolución del coeficiente de fricción y la profundidad, lo que puede proporcionar más información sobre la progresión de los fallos del recubrimiento durante la prueba de microarañazos.

FIGURA 3: Evolución del COF y la profundidad durante la prueba de microarañazos.

CONCLUSIÓN

En este estudio, demostramos que el NANOVEA El probador mecánico realiza pruebas de microarañazos fiables y precisas en una muestra QCM. Mediante la aplicación de cargas incrementadas linealmente de forma controlada y estrechamente supervisada, la medición de arañazos permite a los usuarios identificar la carga crítica a la que se produce el fallo típico de los recubrimientos cohesivos y adhesivos. Proporciona una herramienta superior para evaluar cuantitativamente y comparar la calidad intrínseca del recubrimiento y la integridad interfacial del sistema de recubrimiento/sustrato para QCM.

Los módulos Nano, Micro o Macro del NANOVEA Todos los probadores mecánicos incluyen modos de prueba de indentación, rayado y desgaste que cumplen con las normas ISO y ASTM, lo que proporciona la gama de pruebas más amplia y fácil de usar disponible en un solo sistema. NANOVEA‘Su incomparable gama es la solución ideal para determinar todas las propiedades mecánicas de recubrimientos, películas y sustratos finos o gruesos, blandos o duros, incluyendo dureza, módulo de Young, resistencia a la fractura, adhesión, resistencia al desgaste y muchas otras.

Además, hay disponibles un perfilador 3D sin contacto y un módulo AFM opcionales para obtener imágenes 3D de alta resolución de hendiduras, rayones y marcas de desgaste, además de otras mediciones de la superficie, como la rugosidad y la deformación.