EE.UU./GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTACTO

Category: Scratch Testing | Scratch Hardness

 

Dureza al rayado a alta temperatura utilizando un tribómetro

DUREZA AL RAYADO A ALTA TEMPERATURA

UTILIZANDO UN TRIBÓMETRO

Preparado por

DUANJIE, Doctor

INTRODUCCIÓN

La dureza mide la resistencia de los materiales a la deformación permanente o plástica. Desarrollado originalmente por el mineralogista alemán Friedrich Mohs en 1820, el ensayo de dureza al rayado determina la dureza de un material a los arañazos y la abrasión debidos a la fricción de un objeto afilado.1. La escala de Mohs es un índice comparativo más que una escala lineal, por lo que se desarrolló una medición de la dureza al rayado más precisa y cualitativa, tal como se describe en la norma ASTM G171-032. Mide la anchura media del arañazo creado por un estilete de diamante y calcula el número de dureza del arañazo (HSP).

IMPORTANCIA DE LA MEDICIÓN DE LA DUREZA AL RAYADO A ALTAS TEMPERATURAS

Los materiales se seleccionan en función de los requisitos de servicio. Para aplicaciones que implican cambios de temperatura y gradientes térmicos significativos, es fundamental investigar las propiedades mecánicas de los materiales a altas temperaturas para conocer a fondo los límites mecánicos. Los materiales, especialmente los polímeros, suelen ablandarse a altas temperaturas. Muchos fallos mecánicos se deben a la deformación por fluencia y a la fatiga térmica que sólo tienen lugar a temperaturas elevadas. Por lo tanto, se necesita una técnica fiable para medir la dureza a altas temperaturas con el fin de garantizar una selección adecuada de los materiales para aplicaciones a altas temperaturas.

OBJETIVO DE MEDICIÓN

En este estudio, el Tribómetro NANOVEA T50 mide la dureza al rayado de una muestra de teflón a diferentes temperaturas, desde temperatura ambiente hasta 300ºC. La capacidad de realizar mediciones de dureza al rayado a alta temperatura hace que el NANOVEA Tribómetro un sistema versátil para evaluaciones tribológicas y mecánicas de materiales para aplicaciones de alta temperatura.

NANOVEA

T50

CONDICIONES DE ENSAYO

Se utilizó el tribómetro estándar de peso libre NANOVEA T50 para realizar los ensayos de dureza al rayado en una muestra de teflón a temperaturas que oscilaban entre la temperatura ambiente (TA) y 300°C. El teflón tiene un punto de fusión de 326,8°C. Se utilizó un palpador cónico de diamante con un ángulo de vértice de 120° y un radio de punta de 200 µm. La muestra de teflón se fijó en la platina giratoria con una distancia de 10 mm al centro de la platina. La muestra se calentó en un horno y se probó a temperaturas de RT, 50°C, 100°C, 150°C, 200°C, 250°C y 300°C.

PARÁMETROS DE PRUEBA

de la medición de la dureza al rayado a alta temperatura

FUERZA NORMAL 2 N
VELOCIDAD DE DESLIZAMIENTO 1 mm/s
DISTANCIA DE DESLIZAMIENTO 8 mm por temperatura
ATMÓSFERA Aire
TEMPERATURA RT, 50°C, 100°C, 150°C, 200°C, 250°C, 300°C.

RESULTADOS Y DEBATE

En la FIGURA 1 se muestran los perfiles de la pista de rayado de la muestra de teflón a diferentes temperaturas con el fin de comparar la dureza del rayado a diferentes temperaturas elevadas. La acumulación de material en los bordes de la pista de rayado se forma a medida que el palpador se desplaza con una carga constante de 2 N y penetra en la muestra de teflón, empujando y deformando el material de la pista de rayado hacia un lado.

Las huellas de rayado se examinaron al microscopio óptico como se muestra en la FIGURA 2. Las anchuras de las huellas de rayado medidas y los números de dureza de rayado (HSP) calculados se resumen en la FIGURA 3. En la FIGURA 3 se resumen y comparan las anchuras de las pistas de rayado medidas y los números de dureza de rayado (HSP) calculados. La anchura de la pista de rayado medida con el microscopio coincide con la medida con el NANOVEA Profiler: la muestra de teflón presenta una anchura de rayado mayor a temperaturas más altas. La anchura de la pista de rayado aumenta de 281 a 539 µm a medida que la temperatura se eleva de RT a 300oC, lo que resulta en una disminución de la HSP de 65 a 18 MPa.

La dureza al rayado a temperaturas elevadas puede medirse con alta precisión y repetibilidad utilizando el Tribómetro NANOVEA T50. Proporciona una solución alternativa a otras mediciones de dureza y convierte a los tribómetros NANOVEA en un sistema más completo para evaluaciones tribo-mecánicas exhaustivas a altas temperaturas.

FIGURA 1: Perfiles de huellas de arañazos tras los ensayos de dureza al rayado a diferentes temperaturas.

FIGURA 2: Huellas de arañazos bajo el microscopio tras las mediciones a diferentes temperaturas.

FIGURA 3: Evolución de la anchura de la pista de rayado y de la dureza del rayado en función de la temperatura.

CONCLUSIÓN

En este estudio, mostramos cómo el tribómetro NANOVEA mide la dureza al rayado a temperaturas elevadas de conformidad con la norma ASTM G171-03. El ensayo de dureza al rayado con carga constante proporciona una solución alternativa sencilla para comparar la dureza de los materiales utilizando el tribómetro. La capacidad de realizar mediciones de dureza al rayado a temperaturas elevadas convierte al Tribómetro NANOVEA en una herramienta ideal para evaluar las propiedades tribo-mecánicas de los materiales a altas temperaturas.

El tribómetro NANOVEA también ofrece pruebas de desgaste y fricción precisas y repetibles mediante modos rotativos y lineales conformes con ISO y ASTM, con módulos opcionales de desgaste a alta temperatura, lubricación y tribo-corrosión disponibles en un sistema preintegrado. Hay disponible un perfilador 3D sin contacto opcional para obtener imágenes 3D de alta resolución de las huellas de desgaste, además de otras mediciones de superficies como la rugosidad.

1 Wredenberg, Fredrik; PL Larsson (2009). "Ensayo de rayado de metales y polímeros: Experiments and numerics". Wear 266 (1-2): 76
2 ASTM G171-03 (2009), "Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus" (Método de ensayo estándar para la dureza al rayado de materiales utilizando un estilete de diamante).

AHORA, HABLEMOS DE SU SOLICITUD

Medición de la dureza a los arañazos mediante un comprobador mecánico

MEDICIÓN DE LA DUREZA AL RAYADO

UTILIZANDO UN COMPROBADOR MECÁNICO

Preparado por

DUANJIE LI, Doctor

INTRODUCCIÓN

En general, los ensayos de dureza miden la resistencia de los materiales a la deformación permanente o plástica. Existen tres tipos de mediciones de la dureza: dureza al rayado, dureza por indentación y dureza por rebote. El ensayo de dureza al rayado mide la resistencia de un material al rayado y la abrasión debidos a la fricción de un objeto afilado1. Fue desarrollado originalmente por el mineralogista alemán Friedrich Mohs en 1820 y todavía se utiliza ampliamente para clasificar las propiedades físicas de los minerales2. Este método de ensayo también es aplicable a metales, cerámicas, polímeros y superficies recubiertas.

Durante una medición de la dureza al rayado, un palpador de diamante de geometría especificada raya la superficie de un material a lo largo de una trayectoria lineal bajo una fuerza normal constante con una velocidad constante. Se mide la anchura media del rayado y se utiliza para calcular el número de dureza al rayado (HSP). Esta técnica proporciona una solución sencilla para escalar la dureza de diferentes materiales.

OBJETIVO DE MEDICIÓN

En este estudio, el Probador Mecánico NANOVEA PB1000 se utiliza para medir la dureza al rayado de diferentes metales de acuerdo con ASTM G171-03.

Al mismo tiempo, este estudio muestra la capacidad del NANOVEA Comprobador mecánico en la medición de la dureza al rayado con gran precisión y reproducibilidad.

NANOVEA

PB1000

CONDICIONES DE ENSAYO

El comprobador mecánico NANOVEA PB1000 realizó ensayos de dureza al rayado en tres metales pulidos (Cu110, Al6061 y SS304). Se utilizó un palpador cónico de diamante con un ángulo de vértice de 120° y un radio de punta de 200 µm. Cada muestra se rayó tres veces con los mismos parámetros de ensayo para garantizar la reproducibilidad de los resultados. Los parámetros de prueba se resumen a continuación. Se realizó un barrido de perfil a una carga normal baja de 10 mN antes y después del prueba de resistencia al rayado para medir el cambio en el perfil de la superficie del arañazo.

PARÁMETROS DE PRUEBA

FUERZA NORMAL

10 N

TEMPERATURA

24°C (RT)

VELOCIDAD DE DESLIZAMIENTO

20 mm/min

DISTANCIA DE DESLIZAMIENTO

10 mm

ATMÓSFERA

Aire

RESULTADOS Y DEBATE

Las imágenes de las huellas de rayado de tres metales (Cu110, Al6061 y SS304) después de las pruebas se muestran en la FIGURA 1 con el fin de comparar la dureza de rayado de diferentes materiales. La función de mapeo del software NANOVEA Mechanical se utilizó para crear tres rayados paralelos ensayados bajo la misma condición en un protocolo automatizado. El ancho de la pista de rayado medido y el número de dureza de rayado calculado (HSP) se resumen y comparan en la TABLA 1. Los metales muestran diferentes anchos de pista de desgaste de 174, 220 y 89 µm para Al6061, Cu110 y SS304, respectivamente, dando como resultado un HSP calculado de 0,84, 0,52 y 3,2 GPa.

Además de la dureza al rayado calculada a partir de la anchura de la pista de rayado, se registraron in situ la evolución del coeficiente de fricción (COF), la profundidad real y la emisión acústica durante el ensayo de dureza al rayado. La profundidad real es la diferencia de profundidad entre la profundidad de penetración del palpador durante la prueba de rayado y el perfil de superficie medido en la exploración previa. En la FIGURA 2 se muestran, a modo de ejemplo, el COF, la profundidad real y la emisión acústica del Cu110. Dicha información proporciona información sobre los fallos mecánicos que tienen lugar durante el rayado, lo que permite a los usuarios detectar defectos mecánicos e investigar más a fondo el comportamiento al rayado del material ensayado.

Los ensayos de dureza al rayado pueden finalizarse en un par de minutos con gran precisión y repetibilidad. En comparación con los procedimientos de indentación convencionales, el ensayo de dureza al rayado de este estudio proporciona una solución alternativa para las mediciones de dureza, que resulta útil para el control de calidad y el desarrollo de nuevos materiales.

Al6061

Cu110

SS304

FIGURA 1: Imagen microscópica de las huellas de arañazos tras la prueba (aumento 100x).

 Anchura de la huella del arañazo (μm)HSp (GPa)
Al6061174±110.84
Cu110220±10.52
SS30489±53.20

TABLA 1: Resumen de la anchura de la pista de rayado y del número de dureza del rayado.

FIGURA 2: Evolución del coeficiente de fricción, de la profundidad real y de las emisiones acústicas durante el ensayo de dureza al rayado en Cu110.

CONCLUSIÓN

En este estudio, mostramos la capacidad del NANOVEA Mechanical Tester para realizar ensayos de dureza al rayado conforme a la norma ASTM G171-03. Además de la adherencia del revestimiento y la resistencia al rayado, el ensayo de rayado con carga constante proporciona una solución alternativa sencilla para comparar la dureza de los materiales. A diferencia de los durómetros de rayado convencionales, los Comprobadores Mecánicos NANOVEA ofrecen módulos opcionales para controlar in situ la evolución del coeficiente de fricción, la emisión acústica y la profundidad real.

Los módulos Nano y Micro de un NANOVEA Mechanical Tester incluyen modos de indentación, rayado y desgaste conformes a ISO y ASTM, proporcionando la gama de ensayos más amplia y fácil de usar disponible en un solo sistema. La gama inigualable de NANOVEA es una solución ideal para determinar la gama completa de propiedades mecánicas de revestimientos, películas y sustratos finos o gruesos, blandos o duros, incluyendo dureza, módulo de Young, tenacidad a la fractura, adhesión, resistencia al desgaste y muchos otros.

AHORA, HABLEMOS DE SU SOLICITUD

A BETTER Look at Polycarbonate Lens

A BETTER Look at Polycarbonate Lens Learn more
 
Polycarbonate lenses are commonly used in many optical applications. Their high impact resistance, low weight, and cheap cost of high-volume production makes them more practical than traditional glass in various applications [1]. Some of these applications require safety (e.g. safety eyewear), complexity (e.g. Fresnel lens) or durability (e.g. traffic light lens) criteria that are difficult to meet without the use of plastics. Its ability to cheaply meet many requirements while maintaining sufficient optical qualities makes plastic lenses stand out in its field. Polycarbonate lenses also have limitations. The main concern for consumers is the ease at which they can be scratched. To compensate for this, extra processes can be carried out to apply an anti-scratch coating. Nanovea takes a look into some important properties of plastic lens by utilizing our three metrology instruments: Perfilómetro, Tribómetro, and Comprobador mecánico.   Click to Read More!
Tribología de alta temperatura

Dureza al rayado a alta temperatura mediante tribómetro

Los materiales se seleccionan en función de los requisitos de servicio. Para las aplicaciones que implican cambios de temperatura y gradientes térmicos significativos, es fundamental investigar las propiedades mecánicas de los materiales a altas temperaturas para conocer a fondo los límites mecánicos. Los materiales, especialmente los polímeros, suelen ablandarse a altas temperaturas. Muchos fallos mecánicos se deben a la deformación por fluencia y a la fatiga térmica que sólo tienen lugar a temperaturas elevadas. Por lo tanto, se necesita una técnica fiable para medir la dureza al rayado a altas temperaturas con el fin de garantizar una selección adecuada de los materiales para aplicaciones a altas temperaturas.

Dureza al rayado a alta temperatura mediante tribómetro

 

Medición de la dureza al rayado con un tribómetro

En este estudio, el Nanovea Tribómetro se utiliza para medir la dureza al rayado de diferentes metales. El
capacidad de realizar mediciones de dureza al rayado con gran precisión y reproducibilidad hace que
Tribómetro Nanovea un sistema más completo para evaluaciones tribológicas y mecánicas.

Medición de la dureza al rayado con un tribómetro

Propiedades mecánicas y tribológicas de la fibra de carbono

Combinado con la prueba de desgaste por Tribómetro y análisis de superficies mediante perfilómetro óptico 3D, nos
mostrar la versatilidad y precisión de los instrumentos Nanovea en el ensayo de materiales compuestos
con propiedades mecánicas direccionales.

Propiedades mecánicas y tribológicas de la fibra de carbono

Medición de la profundidad de microarañazos mediante perfilometría 3D

En esta aplicación, el Nanovea ST400 Profilometer se utiliza para medición de la profundidad de una hilera de microarañazos creados con la tecnología Comprobador mecánico en modo rayado. En segundos, el perfilómetro, con una sola pasada de línea en modo 2D, proporciona mediciones de área y profundidad.

Medición de la profundidad de microarañazos mediante perfilometría 3D