EE.UU./GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTACTO

Prueba de desgaste por humedad del recubrimiento de vidrio mediante tribómetro

Prueba de desgaste por humedad del recubrimiento de vidrio mediante tribómetro

Más información

HUMEDAD DEL RECUBRIMIENTO DE VIDRIO

PRUEBA DE DESGASTE MEDIANTE TRIBÓMETRO

Preparado por

DUANJIE LI, Doctorado

INTRODUCCIÓN

El recubrimiento autolimpiante para vidrio crea una superficie fácil de limpiar que evita la acumulación de mugre, suciedad y manchas. Su función autolimpiante reduce significativamente la frecuencia, el tiempo, la energía y los costos de limpieza, lo que lo convierte en una opción atractiva para una variedad de aplicaciones residenciales y comerciales, como fachadas de vidrio, espejos, vidrios de ducha, ventanas y parabrisas.

IMPORTANCIA DE LA RESISTENCIA AL DESGASTE DEL RECUBRIMIENTO DE VIDRIO AUTOLIMPIABLE

Una de las principales aplicaciones del recubrimiento autolimpiante es la superficie exterior de las fachadas acristaladas de los rascacielos. La superficie del vidrio suele verse afectada por partículas a gran velocidad arrastradas por fuertes vientos. Las condiciones meteorológicas también influyen considerablemente en la vida útil del recubrimiento del vidrio. El tratamiento superficial del vidrio y la aplicación de un nuevo recubrimiento cuando el antiguo falla pueden resultar muy difíciles y costosos. Por lo tanto, la resistencia al desgaste del recubrimiento del vidrio bajo
Las diferentes condiciones climáticas son fundamentales.


Para simular las condiciones ambientales reales del recubrimiento autolimpiante en diferentes condiciones climáticas, es necesario realizar una evaluación repetible del desgaste en condiciones de humedad controladas y supervisadas. Esto permite a los usuarios comparar adecuadamente la resistencia al desgaste de los recubrimientos autolimpiantes expuestos a diferentes niveles de humedad y seleccionar el mejor candidato para la aplicación deseada.

OBJETIVO DE MEDICIÓN

En este estudio, demostramos que el NANOVEA El tribómetro T100, equipado con un controlador de humedad, es una herramienta ideal para investigar la resistencia al desgaste de los recubrimientos de vidrio autolimpiables en diferentes condiciones de humedad.

NANOVEA

T100

PROCEDIMIENTOS DE PRUEBA

Los portaobjetos de microscopio de vidrio sodocálcico se recubrieron con recubrimientos de vidrio autolimpiables con dos fórmulas de tratamiento diferentes. Estos dos recubrimientos se identifican como Recubrimiento 1 y Recubrimiento 2. También se probó un portaobjetos de vidrio sin recubrimiento para comparar.


NANOVEA Tribómetro Se utilizó un módulo de control de humedad para evaluar el comportamiento tribológico, por ejemplo, el coeficiente de fricción (COF) y la resistencia al desgaste de los recubrimientos de vidrio autolimpiables. Se aplicó una punta de bola de WC (6 mm de diámetro) contra las muestras sometidas a prueba. El COF se registró in situ. El controlador de humedad conectado a la cámara tribológica controló con precisión el valor de humedad relativa (RH) en el rango de ±1 %. La morfología de la pista de desgaste se examinó con un microscopio óptico después de las pruebas de desgaste.

CARGA MÁXIMA 40 mN
RESULTADOS Y DISCUSIÓN

Se realizaron pruebas de desgaste con pasador sobre disco en diferentes condiciones de humedad sobre el vidrio recubierto y sin recubrir.
muestras. El COF se registró in situ durante las pruebas de desgaste, tal y como se muestra en
FIGURA 1 y el COF promedio se resume en FIGURA 2. FIGURA 4 compara las huellas de desgaste tras las pruebas de desgaste.


Como se muestra en
FIGURA 1, el vidrio sin recubrimiento presenta un alto coeficiente de fricción (COF) de ~0,45 una vez que comienza el movimiento de deslizamiento en el 30% RH, y aumenta progresivamente hasta ~0,6 al final de la prueba de desgaste de 300 revoluciones. En comparación, el
Las muestras de vidrio recubiertas Recubrimiento 1 y Recubrimiento 2 muestran un COF bajo, inferior a 0,2, al inicio de la prueba. El COF
El recubrimiento 2 se estabiliza en ~0,25 durante el resto de la prueba, mientras que el recubrimiento 1 muestra un fuerte aumento del COF en
~250 revoluciones y el COF alcanza un valor de ~0,5. Cuando las pruebas de desgaste se llevan a cabo en el 60% RH, el
El vidrio sin recubrimiento sigue mostrando un COF más alto, de ~0,45, a lo largo de toda la prueba de desgaste. Los recubrimientos 1 y 2 presentan valores de COF de 0,27 y 0,22, respectivamente. En el 90% RH, el vidrio sin recubrimiento posee un COF alto, de ~0,5, al final de la prueba de desgaste. Los recubrimientos 1 y 2 muestran un COF comparable de ~0,1 al inicio de la prueba de desgaste. El recubrimiento 1 mantiene un COF relativamente estable de ~0,15. Sin embargo, el recubrimiento 2 falla a las ~100 revoluciones, seguido de un aumento significativo del COF hasta ~0,5 hacia el final de la prueba de desgaste.


La baja fricción del recubrimiento de vidrio autolimpiante se debe a su baja energía superficial. Crea una estática muy alta.
ángulo de contacto con el agua y ángulo de rodadura bajo. Esto provoca la formación de pequeñas gotas de agua en la superficie del recubrimiento en el 90% RH, como se muestra bajo el microscopio en
FIGURA 3. También da lugar a una disminución del COF medio de ~0,23 a ~0,15 para el recubrimiento 2 a medida que el valor de humedad relativa aumenta de 30% a 90%.

FIGURA 1: Coeficiente de fricción durante las pruebas de clavija sobre disco en diferentes condiciones de humedad relativa.

FIGURA 2: COF promedio durante las pruebas de pin-on-disk en diferentes condiciones de humedad relativa.

FIGURA 3: Formación de pequeñas gotas de agua en la superficie del vidrio recubierto.

FIGURA 4 compara las marcas de desgaste en la superficie del vidrio tras las pruebas de desgaste en diferentes condiciones de humedad. El recubrimiento 1 muestra signos de desgaste leve tras las pruebas de desgaste en condiciones de humedad relativa de 30% y 60%. Presenta una marca de desgaste considerable tras la prueba en condiciones de humedad relativa de 90%, lo que concuerda con el aumento significativo del COF durante la prueba de desgaste. El recubrimiento 2 casi no muestra signos de desgaste tras las pruebas de desgaste tanto en ambiente seco como húmedo, y también presenta un COF bajo y constante durante las pruebas de desgaste en diferentes condiciones de humedad. La combinación de buenas propiedades tribológicas y baja energía superficial hace que el recubrimiento 2 sea un buen candidato para aplicaciones de recubrimiento de vidrio autolimpiante en entornos difíciles. En comparación, el vidrio sin recubrimiento muestra mayores marcas de desgaste y un COF más alto en diferentes condiciones de humedad, lo que demuestra la necesidad de la técnica de recubrimiento autolimpiante.

FIGURA 4: Marcas de desgaste tras las pruebas de pin-on-disk en diferentes condiciones de humedad relativa (aumento de 200x).

CONCLUSIÓN

NANOVEA El tribómetro T100 es una herramienta superior para la evaluación y el control de calidad de los recubrimientos de vidrio autolimpiables en diferentes condiciones de humedad. La capacidad de medición in situ del COF permite a los usuarios correlacionar las diferentes etapas del proceso de desgaste con la evolución del COF, lo cual es fundamental para mejorar la comprensión básica del mecanismo de desgaste y las características tribológicas de los recubrimientos de vidrio. Basándonos en el análisis tribológico exhaustivo de los recubrimientos de vidrio autolimpiables probados en diferentes condiciones de humedad, demostramos que el recubrimiento 2 posee un COF bajo constante y una resistencia al desgaste superior tanto en entornos secos como húmedos, lo que lo convierte en un mejor candidato para aplicaciones de recubrimiento de vidrio autolimpiable expuestas a diferentes condiciones climáticas.


NANOVEA Los tribómetros ofrecen pruebas de desgaste y fricción precisas y repetibles utilizando modos rotativos y lineales que cumplen con las normas ISO y ASTM, con módulos opcionales de desgaste a alta temperatura, lubricación y tribocorrosión disponibles en un sistema preintegrado. Se encuentra disponible un perfilador 3D sin contacto opcional para alta
Imágenes 3D de alta resolución de la huella de desgaste, además de otras mediciones superficiales, como la rugosidad. 

Deformación por fluencia de polímeros mediante nanoindentación

Deformación por fluencia de polímeros mediante nanoindentación

Más información

DEFORMACIÓN POR CREEP

DE POLÍMEROS MEDIANTE NANOINDENTACIÓN

Preparado por

DUANJIE LI, Doctorado

INTRODUCCIÓN

Como materiales viscoelásticos, los polímeros suelen sufrir una deformación dependiente del tiempo bajo una determinada carga aplicada, también conocida como fluencia. La fluencia se convierte en un factor crítico cuando las piezas poliméricas están diseñadas para estar expuestas a una tensión continua, como los componentes estructurales, las uniones y los accesorios, y los recipientes de presión hidrostática.

IMPORTANCIA DE LA MEDICIÓN DE LA FLUENCIA EN LOS POLÍMEROS

La naturaleza inherente de la viscoelasticidad desempeña un papel fundamental en el rendimiento de los polímeros e influye directamente en su fiabilidad de servicio. Las condiciones ambientales, como la carga y la temperatura, afectan al comportamiento de fluencia de los polímeros. Los fallos por fluencia suelen producirse debido a la falta de atención al comportamiento de fluencia dependiente del tiempo de los materiales poliméricos utilizados en condiciones de servicio específicas. Por ello, es importante desarrollar una prueba fiable y cuantitativa del comportamiento mecánico viscoelástico de los polímeros. El módulo Nano de NANOVEA Comprobadores mecánicos aplica la carga con un piezoeléctrico de alta precisión y mide directamente la evolución de la fuerza y el desplazamiento in situ. La combinación de precisión y repetibilidad lo convierte en una herramienta ideal para la medición de la fluencia.

OBJETIVO DE MEDICIÓN

En esta aplicación, mostramos que
El comprobador mecánico NANOVEA PB1000
en Nanoindentación El modo es una herramienta ideal.
para estudiar las propiedades mecánicas viscoelásticas
incluyendo dureza, módulo de Young
y fluencia de materiales poliméricos.

NANOVEA

PB1000

CONDICIONES DE ENSAYO

Se analizaron ocho muestras diferentes de polímeros mediante la técnica de nanoindentación utilizando el medidor mecánico NANOVEA PB1000. A medida que la carga aumentaba linealmente de 0 a 40 mN, la profundidad aumentaba progresivamente durante la fase de carga. A continuación, se midió la fluencia mediante el cambio de la profundidad de indentación a la carga máxima de 40 mN durante 30 s.

CARGA MÁXIMA 40 mN
VELOCIDAD DE CARGA
80 mN/min
VELOCIDAD DE DESCARGA 80 mN/min
TIEMPO DE DESLIZAMIENTO
30 s

TIPO DE INDENTADOR

Berkovich

Diamante

*Configuración de la prueba de nanoindentación

RESULTADOS Y DISCUSIÓN

El gráfico de carga frente a desplazamiento de las pruebas de nanoindentación realizadas en diferentes muestras de polímeros se muestra en la FIGURA 1, y las curvas de fluencia se comparan en la FIGURA 2. La dureza y el módulo de Young se resumen en la FIGURA 3, y la profundidad de fluencia se muestra en la FIGURA 4. Como ejemplos en la FIGURA 1, las partes AB, BC y CD de la curva de carga-desplazamiento para la medición de nanoindentación representan los procesos de carga, fluencia y descarga, respectivamente.

El Delrin y el PVC presentan la mayor dureza, con 0,23 y 0,22 GPa, respectivamente, mientras que el LDPE posee la menor dureza, con 0,026 GPa, entre los polímeros probados. En general, los polímeros más duros muestran menores índices de fluencia. El LDPE, que es el más blando, tiene la mayor profundidad de fluencia, con 798 nm, en comparación con los ~120 nm del Delrin.

Las propiedades de fluencia de los polímeros son fundamentales cuando se utilizan en piezas estructurales. Mediante la medición precisa de la dureza y la fluencia de los polímeros, se puede obtener una mejor comprensión de la fiabilidad de los polímeros en función del tiempo. La fluencia, es decir, el cambio de desplazamiento con una carga determinada, también se puede medir a diferentes temperaturas elevadas y humedades utilizando el ensayador mecánico NANOVEA PB1000, que constituye una herramienta ideal para medir de forma cuantitativa y fiable los comportamientos mecánicos viscoelásticos de los polímeros.
en el entorno de aplicación realista simulado.

FIGURA 1: Los gráficos de carga frente a desplazamiento
de diferentes polímeros.

FIGURA 2: Deslizamiento con una carga máxima de 40 mN durante 30 s.

FIGURA 3: Dureza y módulo de Young de los polímeros.

FIGURA 4: Profundidad de fluencia de los polímeros.

CONCLUSIÓN

En este estudio, demostramos que el NANOVEA PB1000
El medidor mecánico mide las propiedades mecánicas de diferentes polímeros, incluyendo la dureza, el módulo de Young y la fluencia. Dichas propiedades mecánicas son esenciales para seleccionar el material polimérico adecuado para las aplicaciones previstas. Derlin y PVC presentan la mayor dureza, con 0,23 y 0,22 GPa, respectivamente, mientras que el LDPE posee la menor dureza, con 0,026 GPa, entre los polímeros probados. En general, los polímeros más duros presentan menores índices de fluencia. El LDPE, que es el más blando, muestra la mayor profundidad de fluencia, con 798 nm, en comparación con los ~120 nm del Derlin.

Los probadores mecánicos NANOVEA ofrecen módulos nano y micro multifuncionales sin igual en una sola plataforma. Tanto los módulos nano como los micro incluyen modos de probador de rayaduras, probador de dureza y probador de desgaste, lo que proporciona la gama de pruebas más amplia y fácil de usar disponible en un solo sistema.