USA/GLOBALE: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTATTACI

Categoria: Test meccanici

 

Valutazione dell'attrito a velocità estremamente basse

 

Importanza della valutazione dell'attrito a basse velocità

L'attrito è la forza che resiste al movimento relativo di superfici solide che scivolano l'una contro l'altra. Quando si verifica il movimento relativo di queste due superfici a contatto, l'attrito all'interfaccia converte l'energia cinetica in calore. Questo processo può anche portare all'usura del materiale e quindi al degrado delle prestazioni dei componenti in uso.
Grazie all'ampio rapporto di elasticità, all'elevata resilienza, alle grandi proprietà di impermeabilità e alla resistenza all'usura, la gomma è ampiamente applicata in una varietà di applicazioni e prodotti in cui l'attrito svolge un ruolo importante, come i pneumatici delle automobili, le spazzole dei tergicristalli, le suole delle scarpe e molti altri. A seconda della natura e dei requisiti di queste applicazioni, si desidera un attrito elevato o ridotto contro i diversi materiali. Di conseguenza, diventa fondamentale una misurazione controllata e affidabile dell'attrito della gomma contro varie superfici.



Obiettivo di misurazione

Il coefficiente di attrito (COF) della gomma rispetto a diversi materiali viene misurato in modo controllato e monitorato utilizzando Nanovea Tribometro. In questo studio, vorremmo mostrare la capacità del Tribometro Nanovea di misurare il COF di diversi materiali a velocità estremamente basse.




Risultati e discussione

Il coefficiente di attrito (COF) delle sfere di gomma (diametro 6 mm, RubberMill) su tre materiali (acciaio inox SS 316, Cu 110 e acrilico opzionale) è stato valutato dal tribometro Nanovea. I campioni metallici testati sono stati lucidati meccanicamente fino a ottenere una finitura superficiale a specchio prima della misurazione. La leggera deformazione della sfera di gomma sotto il carico normale applicato ha creato un'area di contatto che contribuisce a ridurre l'impatto delle asperità o delle disomogeneità della finitura superficiale del campione sulle misurazioni COF. I parametri della prova sono riassunti nella Tabella 1.


 

La COF di una sfera di gomma contro diversi materiali a quattro diverse velocità è mostrata nella Figura 2, mentre le COF medie calcolate automaticamente dal software sono riassunte nella Figura 3. 2, mentre le COF medie calcolate automaticamente dal software sono sintetizzate e confrontate nella Figura 3. È interessante notare che i campioni metallici (SS 316 e Cu 110) mostrano un aumento significativo delle COF all'aumentare della velocità di rotazione da un valore molto basso di 0,01 rpm a 5 rpm - il valore di COF della coppia gomma/SS 316 aumenta da 0,29 a 0,8 e da 0,65 a 1,1 per la coppia gomma/Cu 110. Questo dato è in accordo con i risultati ottenuti con il software. Questo dato è in accordo con i risultati riportati da diversi laboratori. Come proposto da Grosch4 l'attrito della gomma è determinato principalmente da due meccanismi: (1) l'adesione tra la gomma e l'altro materiale e (2) le perdite di energia dovute alla deformazione della gomma causata dalle asperità della superficie. Schallamach5 osservato onde di distacco della gomma dal materiale di contrasto attraverso l'interfaccia tra sfere di gomma morbida e una superficie dura. La forza con cui la gomma si stacca dalla superficie del substrato e la velocità delle onde di distacco possono spiegare il diverso attrito a diverse velocità durante il test.

In confronto, la coppia gomma/materiale acrilico mostra un'elevata COF a diverse velocità di rotazione. Il valore di COF aumenta leggermente da ~ 1,02 a ~ 1,09 con l'aumento della velocità di rotazione da 0,01 rpm a 5 rpm. Questo valore elevato di COF è probabilmente attribuito a un più forte legame chimico locale sulla superficie di contatto formatosi durante i test.



 
 

 

 




Conclusione



In questo studio, dimostriamo che a velocità estremamente basse, la gomma presenta un comportamento di attrito peculiare: il suo attrito contro una superficie dura aumenta con l'aumentare della velocità del movimento relativo. La gomma mostra un attrito diverso quando scivola su materiali diversi. Il Tribometro Nanovea è in grado di valutare le proprietà di attrito dei materiali in modo controllato e monitorato a diverse velocità, consentendo agli utenti di migliorare la comprensione fondamentale del meccanismo di attrito dei materiali e di selezionare la migliore coppia di materiali per applicazioni mirate di ingegneria tribologica.

Il tribometro Nanovea offre test di usura e attrito precisi e ripetibili utilizzando modalità rotative e lineari conformi alle norme ISO e ASTM, con moduli opzionali per l'usura ad alta temperatura, la lubrificazione e la tribocorrosione disponibili in un unico sistema pre-integrato. È in grado di controllare la fase di rotazione a velocità estremamente basse, fino a 0,01 rpm, e di monitorare l'evoluzione dell'attrito in situ. La gamma impareggiabile di Nanovea è la soluzione ideale per determinare l'intera gamma di proprietà tribologiche di rivestimenti, film e substrati sottili o spessi, morbidi o duri.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Misura del rilassamento da sforzo mediante nanoindentazione

INTRODUZIONE

I materiali viscoelastici sono caratterizzati da proprietà sia viscose che elastiche. Questi materiali sono soggetti a una diminuzione delle sollecitazioni in funzione del tempo ("rilassamento" delle sollecitazioni) in presenza di una deformazione costante, che porta a una perdita significativa della forza di contatto iniziale. Il rilassamento delle sollecitazioni dipende dal tipo di materiale, dalla struttura, dalla temperatura, dalla sollecitazione iniziale e dal tempo. La comprensione del rilassamento delle sollecitazioni è fondamentale per la selezione di materiali ottimali che abbiano la resistenza e la flessibilità (rilassamento) necessarie per applicazioni specifiche.

Importanza della misurazione del rilassamento da stress

Secondo la norma ASTM E328i, "Standard Test Methods for Stress Relaxation for Materials and Structures", una forza esterna viene inizialmente applicata su un materiale o una struttura con un penetratore fino a raggiungere una forza massima predeterminata. Una volta raggiunta la forza massima, la posizione del penetratore viene mantenuta costante a questa profondità. Quindi si misura la variazione della forza esterna necessaria per mantenere la posizione del penetratore in funzione del tempo. La difficoltà nei test di rilassamento sotto sforzo consiste nel mantenere costante la profondità. Il tester meccanico Nanovea nanoindentazione Il modulo misura accuratamente il rilassamento da sforzo applicando un controllo ad anello chiuso (feedback) della profondità con un attuatore piezoelettrico. L'attuatore reagisce in tempo reale per mantenere costante la profondità, mentre la variazione del carico viene misurata e registrata da un sensore di carico altamente sensibile. Questo test può essere eseguito praticamente su tutti i tipi di materiali, senza la necessità di requisiti rigorosi in termini di dimensioni del campione. Inoltre, è possibile eseguire più test su un singolo campione piatto per garantire la ripetibilità del test.

OBIETTIVO DI MISURAZIONE

In questa applicazione, il modulo di nanoindentazione del Nanovea Mechanical Tester misura il comportamento di rilassamento da stress di un campione acrilico e di rame. Mostriamo che la Nanovea Collaudatore meccanico è uno strumento ideale per valutare il comportamento viscoelastico dipendente dal tempo di polimeri e materiali metallici.

CONDIZIONI DI PROVA

Il rilassamento delle sollecitazioni di un campione di acrilico e di rame è stato misurato dal modulo di nanoindentazione del Nanovea Mechanical Tester. Sono state applicate diverse velocità di carico di indentazione, da 1 a 10 µm/min. Il rilassamento è stato misurato a una profondità fissa una volta raggiunto il carico massimo desiderato. È stato applicato un periodo di mantenimento di 100 secondi a una profondità fissa e la variazione del carico è stata registrata allo scadere del tempo di mantenimento. Tutti i test sono stati condotti in condizioni ambientali (temperatura ambiente di 23 °C) e i parametri della prova di indentazione sono riassunti nella Tabella 1.

RISULTATI E DISCUSSIONE

Figura 2 mostra l'evoluzione dello spostamento e del carico in funzione del tempo durante la misurazione del rilassamento delle sollecitazioni di un campione acrilico con una velocità di carico di indentazione di 3 µm/min come esempio. L'intero test può essere suddiviso in tre fasi: Carico, Rilassamento e Scarico. Durante la fase di carico, la profondità è aumentata linearmente con il progressivo aumento del carico. La fase di rilassamento è iniziata una volta raggiunto il carico massimo. Durante questa fase è stata mantenuta una profondità costante per 100 secondi utilizzando la funzione di controllo della profondità ad anello chiuso di feedback dello strumento ed è stato osservato che il carico è diminuito nel tempo. L'intero test si è concluso con una fase di scarico per rimuovere il penetratore dal campione acrilico.

Ulteriori prove di indentazione sono state condotte utilizzando le stesse velocità di carico del penetratore, ma escludendo un periodo di rilassamento (creep). Da queste prove sono stati acquisiti i diagrammi carico-spostamento, combinati nei grafici della Figura 3 per i campioni di acrilico e rame. Quando la velocità di carico del penetratore è diminuita da 10 a 1 µm/min, la curva carico-spostamento si è spostata progressivamente verso profondità di penetrazione maggiori sia per l'acrilico che per il rame. Questo aumento della deformazione in funzione del tempo deriva dall'effetto di scorrimento viscoelastico dei materiali. Una velocità di carico inferiore consente a un materiale viscoelastico di avere più tempo per reagire alle sollecitazioni esterne subite e di deformarsi di conseguenza.

L'evoluzione del carico a deformazione costante utilizzando diverse velocità di carico di indentazione è stata tracciata nella Figura 4 per entrambi i materiali testati. Il carico è diminuito a una velocità maggiore nelle prime fasi della fase di rilassamento (periodo di mantenimento di 100 secondi) delle prove e ha rallentato una volta che il tempo di mantenimento ha raggiunto ~50 secondi. I materiali viscoelastici, come i polimeri e i metalli, mostrano una maggiore perdita di carico quando sono sottoposti a tassi di carico di indentazione più elevati. Il tasso di perdita di carico durante il rilassamento è aumentato da 51,5 a 103,2 mN per l'acrilico e da 15,0 a 27,4 mN per il rame, rispettivamente, all'aumentare della velocità di carico di indentazione da 1 a 10 µm/min, come riassunto in Figura 5.

Come indicato nella norma ASTM E328ii, il problema principale riscontrato nelle prove di rilassamento sotto sforzo è l'incapacità dello strumento di mantenere una deformazione/profondità costante. Il tester meccanico Nanovea fornisce misurazioni accurate ed eccellenti del rilassamento da sforzo grazie alla sua capacità di applicare un controllo ad anello chiuso di feedback della profondità tra l'attuatore piezoelettrico ad azione rapida e il sensore di profondità a condensatore indipendente. Durante la fase di rilassamento, l'attuatore piezoelettrico regola il penetratore per mantenere il vincolo di profondità costante in tempo reale, mentre la variazione del carico viene misurata e registrata da un sensore di carico indipendente ad alta precisione.

CONCLUSIONE

Il rilassamento delle sollecitazioni di un campione di acrilico e di rame è stato misurato utilizzando il modulo di nanoindentazione del Nanovea Mechanical Tester a diverse velocità di carico. Una maggiore profondità massima viene raggiunta quando le indentazioni vengono eseguite a velocità di carico inferiori, a causa dell'effetto di scorrimento del materiale durante il caricamento. Sia il campione di acrilico che quello di rame presentano un comportamento di rilassamento delle sollecitazioni quando la posizione del penetratore al carico massimo desiderato viene mantenuta costante. Le variazioni maggiori nella perdita di carico durante la fase di rilassamento sono state osservate per le prove con tassi di carico di indentazione più elevati.

Il test di rilassamento da sforzo prodotto dal tester meccanico Nanovea dimostra la capacità dello strumento di quantificare e misurare in modo affidabile il comportamento viscoelastico in funzione del tempo dei materiali polimerici e metallici. Il tester è dotato di moduli Nano e Micro multifunzione ineguagliabili su un'unica piattaforma. I moduli di controllo dell'umidità e della temperatura possono essere abbinati a questi strumenti per ottenere funzionalità di test ambientali applicabili a un'ampia gamma di settori. Entrambi i moduli Nano e Micro includono modalità di test di graffiatura, durezza e usura, offrendo la più ampia e semplice gamma di funzionalità di test meccanici disponibili su un unico sistema.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Capire i guasti del rivestimento con i test di graffiatura

Introduzione:

L'ingegneria superficiale dei materiali svolge un ruolo significativo in una varietà di applicazioni funzionali, che vanno dall'aspetto decorativo alla protezione dei substrati dall'usura, dalla corrosione e da altre forme di attacco. Un fattore importante e preponderante che determina la qualità e la durata dei rivestimenti è la loro forza coesiva e adesiva.

Clicca qui per leggere!

Resistenza ai graffi delle protezioni dello schermo del cellulare

Resistenza ai graffi delle protezioni dello schermo del cellulare

Per saperne di più
 

Importanza di testare le protezioni per lo schermo

Sebbene gli schermi dei telefoni siano progettati per resistere a frantumi e graffi, sono comunque suscettibili di danni. L'uso quotidiano del telefono ne provoca l'usura, ad esempio l'accumulo di graffi e crepe. Poiché la riparazione di questi schermi può essere costosa, le protezioni per lo schermo sono un articolo economico per la prevenzione dei danni, comunemente acquistato e utilizzato per aumentare la durata dello schermo.


Utilizzando il modulo Macro del tester meccanico Nanovea PB1000 in combinazione con il sensore di emissioni acustiche (AE), possiamo identificare chiaramente i carichi critici ai quali le protezioni per schermi mostrano cedimenti dovuti a graffi1 per creare uno studio comparativo tra due tipi di protezioni per schermi.


Due tipi comuni di materiali per la protezione dello schermo sono il TPU (poliuretano termoplastico) e il vetro temperato. Tra i due, il vetro temperato è considerato il migliore in quanto offre una migliore protezione dagli urti e dai graffi. Tuttavia, è anche il più costoso. Le protezioni per schermo in TPU, invece, sono meno costose e rappresentano una scelta popolare per i consumatori che preferiscono le protezioni per schermo in plastica. Poiché le protezioni per schermi sono progettate per assorbire graffi e urti e sono solitamente realizzate in materiali con proprietà fragili, i test controllati sui graffi abbinati al rilevamento AE in situ sono una configurazione di test ottimale per determinare i carichi ai quali si verificano i cedimenti coesivi (ad esempio, cricche, scheggiature e fratture) e/o i cedimenti adesivi (ad esempio, delaminazione e spallazione).



Obiettivo di misurazione

In questo studio sono stati eseguiti tre test di graffiatura su due diversi screen protector commerciali utilizzando il modulo Macro del tester meccanico PB1000 di Nanovea. Utilizzando un sensore di emissioni acustiche e un microscopio ottico, sono stati identificati i carichi critici ai quali ogni pellicola protettiva ha mostrato dei cedimenti.




Procedura di test e procedure

Il tester meccanico Nanovea PB1000 è stato utilizzato per testare due protezioni dello schermo applicate allo schermo di un telefono e fissate a un tavolo con sensore di attrito. I parametri di prova per tutti i graffi sono riportati nella Tabella 1.




Risultati e discussione

Poiché le protezioni per lo schermo erano realizzate con materiali diversi, ciascuna di esse ha mostrato diversi tipi di guasti. Per la protezione dello schermo in TPU è stato osservato un solo guasto critico, mentre per la protezione dello schermo in vetro temperato se ne sono verificati due. I risultati per ciascun campione sono riportati nella Tabella 2. Il carico critico #1 è definito come il carico al quale le protezioni dello schermo hanno iniziato a mostrare segni di rottura coesiva al microscopio. Il carico critico #2 è definito dal primo cambiamento di picco osservato nei dati del grafico delle emissioni acustiche.


Per la protezione dello schermo in TPU, il carico critico #2 è correlato alla posizione del graffio in cui la protezione ha iniziato a staccarsi visibilmente dallo schermo del telefono. Una volta superato il carico critico #2, è apparso un graffio sulla superficie dello schermo del telefono per il resto dei test di graffiatura. Per la protezione dello schermo in vetro temperato, il carico critico #1 è correlato alla posizione in cui hanno iniziato a comparire le fratture radiali. Il carico critico #2 si verifica verso la fine del graffio a carichi più elevati. L'emissione acustica è di entità maggiore rispetto alla protezione dello schermo in TPU, tuttavia non si sono verificati danni allo schermo del telefono. In entrambi i casi, il carico critico #2 corrisponde a un'ampia variazione di profondità, che indica che il penetratore ha perforato la protezione dello schermo.













Conclusione




In questo studio mostriamo la capacità del tester meccanico Nanovea PB1000 di eseguire test di graffiatura controllati e ripetibili e di utilizzare contemporaneamente il rilevamento delle emissioni acustiche per identificare con precisione i carichi ai quali si verificano i cedimenti adesivi e coesivi nelle protezioni dello schermo in TPU e vetro temperato. I dati sperimentali presentati in questo documento supportano l'ipotesi iniziale che il vetro temperato sia il migliore per la prevenzione dei graffi sugli schermi dei telefoni.


Il tester meccanico Nanovea offre funzionalità di misurazione di indentazione, graffi e usura accurate e ripetibili utilizzando moduli Nano e Micro conformi a ISO e ASTM. IL Collaudatore meccanico è un sistema completo, che lo rende la soluzione ideale per determinare l'intera gamma di proprietà meccaniche di rivestimenti, pellicole e substrati sottili o spessi, morbidi o duri.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Automazione multigraffio di campioni simili con il tester meccanico PB1000

Introduzione :

I rivestimenti sono ampiamente utilizzati in vari settori industriali grazie alle loro proprietà funzionali. La durezza, la resistenza all'erosione, il basso attrito e l'elevata resistenza all'usura sono solo alcune delle numerose proprietà che rendono importanti i rivestimenti. Un metodo comunemente utilizzato per quantificare queste proprietà è il test di graffiatura, che consente di misurare in modo ripetibile le proprietà adesive e/o coesive di un rivestimento. Confrontando i carichi critici ai quali si verifica il cedimento, è possibile valutare le proprietà intrinseche di un rivestimento.

Clicca per saperne di più!

Caratterizzazione nano-meccanica delle costanti di primavera

La capacità della molla di immagazzinare energia meccanica ha una lunga storia di utilizzo. Dagli archi per la caccia alle serrature per le porte, la tecnologia delle molle esiste da molti secoli. Oggi ci affidiamo alle molle, che si tratti di materassi, penne o sospensioni automobilistiche, perché svolgono un ruolo fondamentale nella nostra vita quotidiana. Con una tale varietà di usi e progetti, è necessario poter quantificare le loro proprietà meccaniche.

Per saperne di più

Strumento di selezione della mappa meccanica Broadview

Abbiamo tutti sentito l'espressione "il tempo è denaro". Ecco perché molte aziende cercano costantemente metodi per accelerare e migliorare i vari processi: si risparmia tempo. Quando si tratta di prove di indentazione, la velocità, l'efficienza e la precisione possono essere integrate in un processo di controllo qualità o di ricerca e sviluppo utilizzando uno dei nostri tester meccanici Nanovea. In questa nota applicativa, illustreremo un modo semplice per risparmiare tempo grazie alle funzioni del nostro tester meccanico Nanovea e del software Broad View Map and Selection Tool.

Fate clic per leggere la nota applicativa completa!

Transizione vetrosa localizzata con precisione con la nanoindentazione DMA

Transizione vetrosa localizzata con precisione con la nanoindentazione DMA

Per saperne di più
 
Immaginate uno scenario in cui un campione sfuso viene riscaldato uniformemente a una velocità costante. Quando un materiale sfuso si riscalda e si avvicina al suo punto di fusione, inizia a perdere la sua rigidità. Se si eseguono indentazioni periodiche (prove di durezza) con la stessa forza target, la profondità di ciascuna indentazione dovrebbe aumentare costantemente, poiché il campione sta diventando più morbido (vedi figura 1). Ciò continua fino a quando il campione inizia a fondere. A questo punto, si osserverà un forte aumento della profondità di ciascuna tacca. Utilizzando questo concetto, il cambiamento di fase in un materiale può essere osservato utilizzando oscillazioni dinamiche con un'ampiezza di forza fissa e misurando il suo spostamento, ovvero l'analisi meccanica dinamica (DMA).   Leggete la notizia della transizione vetrosa localizzata con precisione!

Misura del rilassamento da sforzo mediante nanoindentazione

Per saperne di più

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Compressione su materiali morbidi e flessibili

Importanza di testare materiali morbidi e flessibili

Un esempio di campioni molto morbidi e flessibili è un sistema microelettromeccanico. I MEMS sono utilizzati in prodotti commerciali di uso quotidiano come stampanti, telefoni cellulari e automobili [1]. I loro impieghi includono anche funzioni speciali, come i biosensori [2] e la raccolta di energia [3]. Per le loro applicazioni, i MEMS devono essere in grado di passare reversibilmente dalla configurazione originale a una configurazione compressa in modo ripetuto [4]. Per capire come le strutture reagiranno alle forze meccaniche, si possono effettuare prove di compressione. Le prove di compressione possono essere utilizzate per testare e mettere a punto varie configurazioni di MEMS e per verificare i limiti di forza superiori e inferiori per questi campioni.

 La Nanovea Collaudatore meccanico Nano La capacità del modulo di raccogliere dati con precisione a carichi molto bassi e di percorrere oltre 1 mm di distanza lo rende ideale per testare campioni morbidi e flessibili. Avendo sensori di carico e profondità indipendenti, il grande spostamento del penetratore non influenza le letture del sensore di carico. La capacità di eseguire test a basso carico su un intervallo superiore a 1 mm di corsa del penetratore rende il nostro sistema unico rispetto ad altri sistemi di nanoindentazione. In confronto, una distanza di percorrenza ragionevole per un sistema di indentazione su scala nanometrica è generalmente inferiore a 250 μm.
 

Obiettivo di misurazione

In questo caso di studio, Nanovea ha condotto test di compressione su due campioni flessibili e simili a molle, unici nel loro genere. Mostriamo la nostra capacità di effettuare la compressione a carichi molto bassi e di registrare grandi spostamenti ottenendo dati accurati a bassi carichi e come questo possa essere applicato all'industria dei MEMS. A causa delle norme sulla privacy, i campioni e la loro origine non saranno rivelati in questo studio.

Parametri di misura

Nota: la velocità di caricamento di 1 V/min è proporzionale a circa 100μm di spostamento quando il penetratore è in aria.

Risultati e discussione

La risposta del campione alle forze meccaniche è visibile nelle curve di carico e profondità. Il campione A mostra solo una deformazione elastica lineare con i parametri di prova sopra elencati. La Figura 2 è un ottimo esempio della stabilità che si può ottenere per una curva carico/profondità a 75μN. Grazie alla stabilità dei sensori di carico e profondità, sarebbe facile percepire una risposta meccanica significativa da parte del campione.

Il campione B mostra una risposta meccanica diversa da quella del campione A. Dopo 750μm di profondità, nel grafico inizia a comparire un comportamento simile alla frattura. Ciò è visibile con i bruschi cali di carico a 850 e 975μm di profondità. Nonostante l'elevata velocità di carico per oltre 1 mm in un intervallo di 8 mN, i nostri sensori di carico e profondità altamente sensibili consentono all'utente di ottenere le eleganti curve carico/profondità riportate di seguito.

La rigidità è stata calcolata dalla porzione di scarico delle curve carico/profondità. La rigidità riflette la forza necessaria per deformare il campione. Per il calcolo della rigidità è stato utilizzato uno pseudo rapporto di Poisson di 0,3, poiché il rapporto effettivo del materiale non è noto. In questo caso, il campione B si è rivelato più rigido del campione A.

 

Conclusione

Due diversi campioni flessibili sono stati testati a compressione utilizzando il modulo Nanovea Mechanical Tester. I test sono stati condotti a carichi molto bassi (1 mm). I test di compressione in scala nanometrica con il modulo Nano hanno dimostrato la capacità del modulo di testare campioni molto morbidi e flessibili. Ulteriori test per questo studio potrebbero analizzare il modo in cui il carico ciclico ripetuto influisce sull'aspetto del recupero elastico dei campioni simili a molle tramite l'opzione di carico multiplo del Nanovea Mechanical Tester.

Per ulteriori informazioni su questo metodo di prova, non esitate a contattarci all'indirizzo [email protected] e per ulteriori note applicative consultate la nostra vasta libreria digitale di note applicative.

Riferimenti

[1] "Introduzione e aree di applicazione dei MEMS". EEHerald, 1 marzo 2017, www.eeherald.com/section/design-guide/mems_application_introduction.html.

[2] Louizos, Louizos-Alexandros; Athanasopoulos, Panagiotis G.; Varty, Kevin (2012). "Sistemi microelettromeccanici e nanotecnologie. Una piattaforma per la prossima era tecnologica degli stent". Vasc Endovascular Surg.46 (8): 605–609. doi:10.1177/1538574412462637. PMID 23047818.

[3] Hajati, Arman; Sang-Gook Kim (2011). "Raccolta di energia piezoelettrica a banda ultra larga". AppliedPhysics Letters. 99 (8): 083105. doi:10.1063/1.3629551.

[4] Fu, Haoran, et al. "Mesostrutture 3D morfabili e dispositivi microelettronici tramite meccanica di buckling multistabile". Nature materials 17.3 (2018): 268.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Analisi viscoelastica della gomma

Analisi viscoelastica della gomma

Per saperne di più

 

I pneumatici sono soggetti a deformazioni cicliche elevate quando i veicoli circolano su strada. Quando sono esposti a condizioni stradali difficili, la durata degli pneumatici è compromessa da molti fattori, come l'usura del filo, il calore generato dall'attrito, l'invecchiamento della gomma e altri.

Di conseguenza, i pneumatici presentano solitamente strutture a strati compositi in gomma caricata con carbonio, corde di nylon e fili d'acciaio, ecc. In particolare, la composizione della gomma nelle diverse aree dei sistemi di pneumatici è ottimizzata per fornire diverse proprietà funzionali, tra cui, a titolo esemplificativo, il filo resistente all'usura, lo strato di gomma ammortizzante e lo strato di base in gomma dura.

Un test affidabile e ripetibile del comportamento viscoelastico della gomma è fondamentale nel controllo di qualità e nella ricerca e sviluppo di nuovi pneumatici, nonché nella valutazione della durata di vita dei vecchi pneumatici. Analisi Dinamico-Meccanica (DMA) durante Nanoindentazione è una tecnica per caratterizzare la viscoelasticità. Quando viene applicata una sollecitazione oscillatoria controllata, viene misurata la deformazione risultante, consentendo agli utenti di determinare il modulo complesso dei materiali testati.