USA/GLOBALE: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTATTACI

Categoria: Indentazione | Durezza ed elasticità

 

Analisi meccanica dinamica del sughero mediante nanoindentazione

ANALISI MECCANICA DINAMICA

DEL SUGHERO MEDIANTE NANOINDENTAZIONE

Preparato da

FRANK LIU

INTRODUZIONE

L'analisi meccanica dinamica (DMA) è una tecnica potente utilizzata per studiare le proprietà meccaniche dei materiali. In questa applicazione, ci concentriamo sull'analisi del sughero, un materiale ampiamente utilizzato nei processi di sigillatura e invecchiamento del vino. Il sughero, ottenuto dalla corteccia della quercia Quercus suber, presenta strutture cellulari distinte che forniscono proprietà meccaniche simili a quelle dei polimeri sintetici. In un asse, il sughero ha una struttura a nido d'ape. Gli altri due assi sono strutturati in prismi multipli di forma rettangolare. Ciò conferisce al sughero proprietà meccaniche diverse a seconda dell'orientamento testato.

IMPORTANZA DELLE PROVE DI ANALISI MECCANICA DINAMICA (DMA) NELLA VALUTAZIONE DELLE PROPRIETÀ MECCANICHE DEL SUGHERO

La qualità dei tappi di sughero dipende in larga misura dalle loro proprietà meccaniche e fisiche, che sono fondamentali per la loro effcacia nella sigillatura del vino. I fattori chiave che determinano la qualità del sughero includono la flessibilità, l'isolamento, la resilienza e l'impermeabilità a gas e liquidi. Utilizzando test di analisi meccanica dinamica (DMA), possiamo valutare quantitativamente le proprietà di flessibilità e resilienza dei tappi di sughero, fornendo un metodo di valutazione affidabile.

Il tester meccanico NANOVEA PB1000 nel Nanoindentazione consente di caratterizzare queste proprietà, in particolare il modulo di Young, il modulo di accumulo, il modulo di perdita e il tan delta (tan (δ)). Il test DMA consente inoltre di raccogliere dati preziosi sullo sfasamento, la durezza, le sollecitazioni e le deformazioni del materiale di sughero. Grazie a queste analisi complete, è possibile approfondire il comportamento meccanico dei tappi di sughero e la loro idoneità per le applicazioni di sigillatura del vino.

OBIETTIVO DI MISURAZIONE

In questo studio, è stata eseguita un'analisi meccanica dinamica (DMA) su quattro tappi di sughero utilizzando il tester meccanico NANOVEA PB1000 in modalità di nanoindentazione. La qualità dei tappi di sughero è etichettata come: 1 - Flor, 2 - First, 3 - Colmato, 4 - Gomma sintetica. Le prove di indentazione DMA sono state condotte sia in direzione assiale che radiale per ciascun tappo di sughero. Analizzando la risposta meccanica dei tappi di sughero, abbiamo cercato di capire il loro comportamento dinamico e di valutare le loro prestazioni in caso di orientamenti diversi.

NANOVEA

PB1000

PARAMETRI DEL TEST

FORZA MASSIMA75 mN
TASSO DI CARICO150 mN/min
TASSO DI SCARICO150 mN/min
AMPLITUDINE5 mN
FREQUENZA1 Hz
CREEP60 s

tipo di penetratore

Palla

51200 Acciaio

Diametro 3 mm

RISULTATI

Nelle tabelle e nei grafici seguenti vengono confrontati il modulo di Young, il modulo di accumulo, il modulo di perdita e il tan delta tra ciascun campione e orientamento.

Modulo di Young: Stiffness; valori elevati indicano stiff, valori bassi indicano flessibilità.

Modulo di stoccaggio: Risposta elastica; energia immagazzinata nel materiale.

Modulo di perdita: Risposta viscosa; energia persa a causa del calore.

Abbronzatura (δ): Smorzamento; valori elevati indicano un maggiore smorzamento.

ORIENTAMENTO ASSIALE

TappoMODULO DI YOUNGMODULO DI ACCUMULOMODULO DI PERDITATAN
#(MPa)(MPa)(MPa)(δ)
122.567522.272093.6249470.162964
218.5466418.271533.1623490.17409
323.7538123.472673.6178190.154592
423.697223.580642.3470080.099539



ORIENTAMENTO RADIALE

TappoMODULO DI YOUNGMODULO DI ACCUMULOMODULO DI PERDITATAN
#(MPa)(MPa)(MPa)(δ)
124.7886324.565423.3082240.134865
226.6661426.317394.2862160.163006
344.0786743.614266.3659790.146033
428.0475127.941482.4359780.087173

MODULO DI YOUNG

MODULO DI ACCUMULO

MODULO DI PERDITA

TAN DELTA

Tra i tappi di sughero, il modulo di Young non è molto diverso quando viene testato in direzione assiale. Solo i tappi #2 e #3 mostrano un'apparente differenza nel modulo di Young tra la direzione radiale e quella assiale. Di conseguenza, anche il modulo di accumulo e il modulo di perdita saranno più alti in direzione radiale che in direzione assiale. Il tappo #4 presenta caratteristiche simili a quelle dei tappi in sughero naturale, tranne che per il modulo di perdita. Questo dato è molto interessante perché significa che il sughero naturale ha una proprietà più viscosa rispetto al materiale in gomma sintetica.

CONCLUSIONE

La NANOVEA Collaudatore meccanico nella modalità Nano Scratch Tester consente la simulazione di molti guasti reali dei rivestimenti di vernice e dei rivestimenti duri. Applicando carichi crescenti in modo controllato e attentamente monitorato, lo strumento permette di individuare in quali momenti si verificano cedimenti di carico. Questo può quindi essere utilizzato come metodo per determinare valori quantitativi per la resistenza ai graffi. È noto che il rivestimento testato, senza agenti atmosferici, presenta una prima fessura a circa 22 mN. Con valori più vicini a 5 mN, è chiaro che il giro di 7 anni ha degradato la vernice.

La compensazione del profilo originale consente di ottenere una profondità corretta durante il graffio e di misurare la profondità residua dopo il graffio. Ciò fornisce ulteriori informazioni sul comportamento plastico ed elastico del rivestimento in presenza di un carico crescente. Sia la fessurazione che le informazioni sulla deformazione possono essere di grande utilità per migliorare il rivestimento duro. Le deviazioni standard molto ridotte dimostrano anche la riproducibilità della tecnica dello strumento, che può aiutare i produttori a migliorare la qualità del loro rivestimento/vernice dura e a studiare gli effetti degli agenti atmosferici.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Proprietà meccaniche dell'idrogel

PROPRIETÀ MECCANICHE DELL'IDROGEL

UTILIZZANDO LA NANOINDENTAZIONE

Preparato da

DUANJIE LI, PhD & JORGE RAMIREZ

INTRODUZIONE

L'idrogel è noto per la sua super capacità di assorbimento dell'acqua, che consente una flessibilità molto simile a quella dei tessuti naturali. Questa somiglianza ha reso l'idrogel una scelta comune non solo nei biomateriali, ma anche nell'elettronica, nell'ambiente e nelle applicazioni di consumo come le lenti a contatto. Ogni singola applicazione richiede specifiche proprietà meccaniche dell'idrogel.

IMPORTANZA DELLA NANOINDENTAZIONE PER GLI IDROGEL

Gli idrogel creano sfide uniche per la nanoindentazione, come la selezione dei parametri di prova e la preparazione dei campioni. Molti sistemi di nanoindentazione presentano limitazioni importanti, in quanto non sono stati originariamente progettati per tali materiali morbidi. Alcuni dei sistemi di nanoindentazione utilizzano un gruppo bobina/magnete per applicare la forza sul campione. Non c'è una misurazione effettiva della forza, il che porta a un carico impreciso e non lineare quando si testano materiali morbidi. materiali. La determinazione del punto di contatto è estremamente difficile, in quanto la La profondità è l'unico parametro che viene effettivamente misurato. È quasi impossibile osservare il cambiamento di pendenza nel Profondità rispetto al tempo durante il periodo in cui la punta del penetratore si avvicina al materiale idrogel.

Per superare le limitazioni di questi sistemi, il nano modulo della NANOVEA Collaudatore meccanico misura il feedback di forza con una cella di carico individuale per garantire un'elevata precisione su tutti i tipi di materiali, morbidi o duri. Lo spostamento piezo-controllato è estremamente preciso e veloce. Ciò consente una misurazione senza eguali delle proprietà viscoelastiche eliminando molti presupposti teorici di cui devono tenere conto i sistemi con un gruppo bobina/magnete e senza feedback di forza.

OBIETTIVO DI MISURAZIONE

In questa applicazione, il NANOVEA Il tester meccanico, in modalità di nanoindentazione, viene utilizzato per studiare la durezza, il modulo elastico e il creep di un campione di idrogel.

NANOVEA

PB1000

CONDIZIONI DI PROVA

Un campione di idrogel posizionato su un vetrino è stato testato con la tecnica della nanoindentazione utilizzando un NANOVEA Tester meccanico. Per questo materiale morbido è stata utilizzata una punta sferica di 3 mm di diametro. Il carico è aumentato linearmente da 0,06 a 10 mN durante il periodo di carico. Il creep è stato misurato in base alla variazione della profondità di indentazione al carico massimo di 10 mN per 70 secondi.

VELOCITÀ DI AVVICINAMENTO: 100 μm/min

CARICO DEL CONTATTO
0,06 mN
CARICO MASSIMO
10 mN
TASSO DI CARICO

20 mN/min

CREEP
70 s
RISULTATI E DISCUSSIONE

L'evoluzione del carico e della profondità in funzione del tempo è mostrata in FUGURA 1. Si può osservare che sul grafico del Profondità rispetto al tempoÈ molto difficile determinare il punto di variazione della pendenza all'inizio del periodo di carico, che di solito serve a indicare il punto in cui il penetratore inizia a contattare il materiale morbido. Tuttavia, il grafico della Carico rispetto al tempo mostra il particolare comportamento dell'idrogel sotto un carico applicato. Quando l'idrogel inizia a entrare in contatto con il penetratore a sfera, l'idrogel tira il penetratore a sfera a causa della sua tensione superficiale, che tende a diminuire l'area superficiale. Questo comportamento porta al carico negativo misurato all'inizio della fase di carico. Il carico aumenta progressivamente man mano che il penetratore affonda nell'idrogel e viene poi controllato per essere costante al carico massimo di 10 mN per 70 secondi per studiare il comportamento a scorrimento dell'idrogel.

FIGURA 1: Evoluzione del carico e della profondità in funzione del tempo.

La trama del Profondità di scorrimento rispetto al tempo è mostrato in FIGURA 2, e il Carico vs. Spostamento Il grafico della prova di nanoindentazione è mostrato in FIGURA 3. L'idrogel di questo studio possiede una durezza di 16,9 KPa e un modulo di Young di 160,2 KPa, calcolati sulla base della curva di spostamento del carico con il metodo Oliver-Pharr.

Il creep è un fattore importante per lo studio delle proprietà meccaniche di un idrogel. Il controllo di retroazione close-loop tra il piezo e la cella di carico ultrasensibile assicura un carico realmente costante durante il tempo di creep al carico massimo. Come mostrato in FIGURA 2L'idrogel cede ~42 μm per effetto del creep in 70 secondi sotto il carico massimo di 10 mN applicato dalla punta a sfera di 3 mm.

FIGURA 2: Strisciamento a un carico massimo di 10 mN per 70 secondi.

FIGURA 3: Grafico del carico rispetto allo spostamento dell'idrogel.

CONCLUSIONE

In questo studio, abbiamo mostrato che il NANOVEA Il tester meccanico, in modalità di nanoindentazione, fornisce una misura precisa e ripetibile delle proprietà meccaniche di un idrogel, tra cui durezza, modulo di Young e creep. La grande punta a sfera da 3 mm assicura un contatto corretto con la superficie dell'idrogel. Lo stadio del campione motorizzato ad alta precisione consente di posizionare con precisione la faccia piatta del campione di idrogel sotto la punta a sfera. L'idrogel di questo studio presenta una durezza di 16,9 KPa e un modulo di Young di 160,2 KPa. La profondità di scorrimento è di ~42 μm sotto un carico di 10 mN per 70 secondi.

NANOVEA I tester meccanici offrono moduli Nano e Micro multifunzione ineguagliabili su un'unica piattaforma. Entrambi i moduli includono un tester di graffi, un tester di durezza e una modalità di tester di usura, offrendo la più ampia e semplice gamma di test disponibili su un'unica piattaforma.
sistema.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Il tester micro-meccanico leader nel mondo

ORA IL LEADER MONDIALE

TEST MICRO MECCANICI

Preparato da

PIERRE LEROUX e DUANJIE LI, PhD

INTRODUZIONE

I microtester di durezza Vickers standard hanno intervalli di carico utilizzabili da 10 a 2000 grammi di forza (gf). I durometri Vickers Macro standard hanno un carico da 1 a 50 Kgf. Questi strumenti non solo sono molto limitati nella gamma di carichi, ma sono anche imprecisi quando si tratta di superfici più ruvide o di carichi bassi, quando le tacche diventano troppo piccole per essere misurate visivamente. Queste limitazioni sono intrinseche alla vecchia tecnologia e di conseguenza l'indentazione strumentale sta diventando la scelta standard grazie alla maggiore precisione e alle prestazioni che offre.

Con La durezza Vickers viene calcolata automaticamente dai dati di profondità rispetto al carico, con il più ampio intervallo di carico mai disponibile su un singolo modulo (da 0,3 grammi a 2 kg o da 6 grammi a 40 kg). Poiché misura la durezza dalle curve di profondità rispetto al carico, il Micro Modulo NANOVEA può misurare qualsiasi tipo di materiale, compresi quelli molto elastici. Inoltre, è in grado di fornire non solo la durezza Vickers, ma anche dati accurati sul modulo elastico e sul creep, oltre ad altri tipi di test come le prove di adesione ai graffi, l'usura, le prove di fatica, la resistenza allo snervamento e la tenacità alla frattura, per una gamma completa di dati di controllo della qualità.

ORA LEADER MONDIALE NEI TEST MICRO MECCANICI

In questa nota applicativa viene spiegato come il Modulo Micro sia stato progettato per offrire il miglior test strumentale di indentazione e graffiatura al mondo. L'ampia gamma di test del Modulo Micro è ideale per molte applicazioni. Ad esempio, l'intervallo di carico consente di misurare con precisione la durezza e il modulo elastico di rivestimenti duri e sottili e di applicare carichi molto più elevati per misurare l'adesione di questi stessi rivestimenti.

OBIETTIVO DI MISURAZIONE

La capacità del micro modulo è evidenziata con la dicitura NANOVEA CB500 Collaudatore meccanico di
che esegue test di indentazione e di graffiatura con una precisione e un'affidabilità superiori, utilizzando un'ampia gamma di carichi da 0,03 a 200 N.

NANOVEA

CB500

CONDIZIONI DI PROVA

È stata eseguita una serie (3×4, 12 indentature in totale) di microindentazioni su un campione di acciaio standard utilizzando un penetratore Vickers. Il carico e la profondità sono stati misurati e registrati per l'intero ciclo di prova di indentazione. Le indentazioni sono state eseguite con carichi massimi diversi, da 0,03 N a 200 N (da 0,0031 a 20,4 kgf), per dimostrare la capacità del micro modulo di eseguire test di indentazione accurati a carichi diversi. Vale la pena notare che è disponibile anche una cella di carico opzionale da 20 N per fornire una risoluzione 10 volte superiore per i test nella gamma di carico inferiore da 0,3 gf a 2 kgf.

Sono stati eseguiti due test di graffiatura con il modulo Micro con un carico aumentato linearmente da 0,01 N a 200 N e da 0,01 N a 0,5 N, rispettivamente, utilizzando uno stilo diamantato conico-sferico con raggio della punta di 500 μm e 20 μm.

Venti Microindentazione I test sono stati eseguiti sul campione standard di acciaio a 4 N, dimostrando la superiore ripetibilità dei risultati del Micro Module, in contrasto con le prestazioni dei tradizionali misuratori di durezza Vickers.

*microindentatore sul campione di acciaio

PARAMETRI DEL TEST

della mappatura dell'indentazione

MAPPATURA: 3 PER 4 INDENTI

RISULTATI E DISCUSSIONE

Il nuovo modulo micro presenta una combinazione unica di motore Z, cella di carico ad alta forza e sensore di profondità capacitivo ad alta precisione. L'utilizzo esclusivo di sensori di profondità e di carico indipendenti garantisce un'elevata precisione in tutte le condizioni.

Le prove di durezza Vickers convenzionali utilizzano punte di penetrazione piramidali a base quadrata di diamante che creano impronte di forma quadrata. Misurando la lunghezza media della diagonale, d, è possibile calcolare la durezza Vickers.

In confronto, la tecnica di indentazione strumentale utilizzata da NANOVEAIl modulo micro misura direttamente le proprietà meccaniche dalle misure di carico e spostamento dell'indentazione. Non è necessaria l'osservazione visiva dell'indentazione. In questo modo si eliminano gli errori di elaborazione delle immagini da parte dell'utente o del computer nel determinare i valori d dell'indentazione. Il sensore di profondità a condensatore ad alta precisione, con un livello di rumore molto basso di 0,3 nm, è in grado di misurare con precisione la profondità di tacche che sono difficili o impossibili da misurare visivamente al microscopio con i tradizionali misuratori di durezza Vickers.

Inoltre, la tecnica del cantilever utilizzata dai concorrenti applica il carico normale su una trave a sbalzo tramite una molla, e questo carico viene a sua volta applicato al penetratore. Questo tipo di progettazione presenta un difetto nel caso in cui venga applicato un carico elevato: la trave a sbalzo non è in grado di fornire una rigidità strutturale sufficiente, con conseguente deformazione della trave a sbalzo e conseguente disallineamento del penetratore. In confronto, il Modulo Micro applica il carico normale tramite il motore Z che agisce sulla cella di carico e poi sul penetratore per l'applicazione diretta del carico. Tutti gli elementi sono allineati verticalmente per garantire la massima rigidità, assicurando misure di indentazione e graffiatura ripetibili e accurate nell'intera gamma di carichi.

Vista ravvicinata del nuovo modulo Micro

RIENTRANZA DA 0,03 A 200 N

L'immagine della mappa di indentazione è riportata in FIGURA 1. La distanza tra le due indentature adiacenti al di sopra di 10 N è di 0,5 mm, mentre quella a carichi inferiori è di 0,25 mm. Il controllo di posizione ad alta precisione dello stadio del campione consente agli utenti di selezionare la posizione di destinazione per la mappatura delle proprietà meccaniche. Grazie all'eccellente rigidità del micro modulo dovuta all'allineamento verticale dei suoi componenti, il penetratore Vickers mantiene un perfetto orientamento verticale mentre penetra nel campione di acciaio con un carico fino a 200 N (400 N opzionale). Questo crea impronte di forma quadrata simmetrica sulla superficie del campione a diversi carichi.

Le singole indentature a diversi carichi al microscopio sono visualizzate insieme ai due graffi, come mostrato nella FIGURA 2, per mostrare la capacità del nuovo micro modulo di eseguire test di indentazione e graffiatura in un ampio intervallo di carico con un'elevata precisione. Come mostrato nei grafici del carico normale rispetto alla lunghezza del graffio, il carico normale aumenta linearmente quando lo stilo diamantato conico-sferico scorre sulla superficie del campione di acciaio. Si crea così una traccia di graffio rettilinea e liscia di larghezza e profondità progressivamente maggiori.

FIGURA 1: Mappa di indentazione

Sono stati eseguiti due test di graffiatura con il modulo Micro con un carico aumentato linearmente da 0,01 N a 200 N e da 0,01 N a 0,5 N, rispettivamente, utilizzando uno stilo diamantato conico-sferico con raggio della punta di 500 μm e 20 μm.

Sono state eseguite venti prove di microindentazione sul campione standard di acciaio a 4 N, dimostrando la superiore ripetibilità dei risultati del modulo Micro, in contrasto con le prestazioni dei tradizionali tester di durezza Vickers.

A: INDENTAZIONE E GRAFFIO AL MICROSCOPIO (360X)

B: INDENTAZIONE E GRAFFIO AL MICROSCOPIO (3000X)

FIGURA 2: Grafici carico-spostamento a diversi carichi massimi.

Le curve carico-spostamento durante l'indentazione a diversi carichi massimi sono mostrate in FIGURA 3. La durezza e il modulo elastico sono riassunti e confrontati nella FIGURA 4. Il campione di acciaio presenta un modulo elastico costante per tutto il carico di prova che va da 0,03 a 200 N (possibile intervallo da 0,003 a 400 N), con un valore medio di ~211 GPa. La durezza presenta un valore relativamente costante di ~6,5 GPa misurato con un carico massimo superiore a 100 N. Quando il carico diminuisce fino a un intervallo compreso tra 2 e 10 N, si misura una durezza media di ~9 GPa.

FIGURA 3: Grafici carico-spostamento a diversi carichi massimi.

FIGURA 4: Durezza e modulo di Young del campione di acciaio misurati con diversi carichi massimi.

RIENTRANZA DA 0,03 A 200 N

Sono state eseguite venti prove di microindentazione con un carico massimo di 4N. Le curve di carico-spostamento sono visualizzate in FIGURA 5 e la durezza Vickers e il modulo di Young risultanti sono mostrati in FIGURA 6.

FIGURA 5: Curve carico-spostamento per prove di microindentazione a 4 N.

FIGURA 6: Durezza Vickers e modulo di Young per 20 microindentazioni a 4 N.

Le curve di carico-spostamento dimostrano la superiore ripetibilità del nuovo Modulo Micro. L'acciaio standard ha una durezza Vickers di 842±11 HV misurata dal nuovo Modulo Micro, rispetto a 817±18 HV misurata con il tester di durezza Vickers convenzionale. La piccola deviazione standard della misura della durezza garantisce una caratterizzazione affidabile e riproducibile delle proprietà meccaniche nella ricerca e sviluppo e nel controllo di qualità dei materiali sia nel settore industriale che nella ricerca accademica.

Inoltre, dalla curva carico-spostamento è stato calcolato un modulo di Young di 208±5 GPa, che non è disponibile per il tester di durezza Vickers convenzionale a causa della mancata misurazione della profondità durante l'indentazione. Al diminuire del carico e delle dimensioni dell'indentazione, il modulo di Young s è stato calcolato in base alla curva carico-spostamento. NANOVEA I vantaggi di Micro Module in termini di ripetibilità rispetto ai durometri Vickers aumentano fino a quando non è più possibile misurare il rientro attraverso l'ispezione visiva.

Il vantaggio di misurare la profondità per calcolare la durezza diventa evidente anche quando si ha a che fare con campioni più ruvidi o più difficili da osservare con i microscopi standard in dotazione ai durometri Vickers.

CONCLUSIONE

In questo studio abbiamo dimostrato come il nuovo modulo NANOVEA Micro (gamma 200 N), leader a livello mondiale, esegua misure di indentazione e graffiatura riproducibili e precise in un'ampia gamma di carichi da 0,03 a 200 N (da 3 gf a 20,4 kgf). Un modulo micro opzionale a gamma inferiore può fornire test da 0,003 a 20 N (da 0,3 gf a 2 kgf). L'esclusivo allineamento verticale del motore Z, della cella di carico ad alta forza e del sensore di profondità garantisce la massima rigidità strutturale durante le misurazioni. Le indentature misurate a diversi carichi hanno tutte una forma quadrata simmetrica sulla superficie del campione. Nel test di graffiatura con un carico massimo di 200 N viene creata una traccia rettilinea di larghezza e profondità progressivamente crescenti.

Il nuovo modulo Micro può essere configurato sulla base meccanica PB1000 (150 x 200 mm) o CB500 (100 x 50 mm) con una motorizzazione z (portata 50 mm). In combinazione con un potente sistema di telecamere (precisione di posizione di 0,2 micron), i sistemi offrono le migliori capacità di automazione e mappatura del mercato. NANOVEA offre anche un'esclusiva funzione brevettata (EP n. 30761530) che consente di verificare e calibrare i penetratori Vickers eseguendo un singolo rientro sull'intera gamma di carichi. Al contrario, i durometri Vickers standard possono fornire la calibrazione a un solo carico.

Inoltre, il software NANOVEA consente all'utente di misurare la durezza Vickers con il metodo tradizionale di misurazione delle diagonali del rientro, se necessario (per ASTM E92 ed E384). Come mostrato in questo documento, le prove di durezza in profondità rispetto al carico (ASTM E2546 e ISO 14577) eseguite da un Micro Modulo NANOVEA sono precise e riproducibili rispetto ai durometri tradizionali. Soprattutto per i campioni che non possono essere osservati/misurati con un microscopio.

In conclusione, la maggiore precisione e ripetibilità del progetto del Micro Modulo, con la sua ampia gamma di carichi e test, l'elevata automazione e le opzioni di mappatura rendono obsoleti i tradizionali durometri Vickers. Ma lo stesso vale per i tester per graffi e micrograffi, attualmente ancora disponibili, ma progettati con i difetti degli anni '80.

Il continuo sviluppo e miglioramento di questa tecnologia fa di NANOVEA un leader mondiale nei test micro meccanici.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Materiale multifase usando la nanoindentazione NANOVEA

Nanoindentazione multifase dei metalli

Studio metallurgico di materiale multifase usando la nanoindentazione

Per saperne di più

STUDIO DELLA METALLURGIA
DI MATERIALE MULTIFASE

UTILIZZANDO LA NANOINDENTAZIONE

Preparato da

DUANJIE LI, Dottore di ricerca & ALESSIO CELESTINO

INTRODUZIONE

La metallurgia studia il comportamento fisico e chimico degli elementi metallici, nonché dei loro composti intermetallici e delle leghe. I metalli sottoposti a processi di lavorazione, come la fusione, la forgiatura, la laminazione, l'estrusione e la lavorazione, subiscono cambiamenti nelle loro fasi, nella microstruttura e nella struttura. Questi cambiamenti si traducono in proprietà fisiche diverse, tra cui durezza, forza, tenacità, duttilità e resistenza all'usura del materiale. La metallografia viene spesso applicata per conoscere il meccanismo di formazione di tali fasi, microstrutture e strutture specifiche.

IMPORTANZA DELLE PROPRIETÀ MECCANICHE LOCALI PROPRIETÀ MECCANICHE LOCALI PER LA PROGETTAZIONE DEI MATERIALI

I materiali avanzati spesso presentano fasi multiple in una microstruttura e una struttura speciali per ottenere le proprietà meccaniche desiderate per le applicazioni mirate nella pratica industriale. Nanoindentazione è ampiamente applicato per misurare i comportamenti meccanici dei materiali a piccole scale i ii. Tuttavia, è impegnativo e richiede tempo selezionare con precisione punti specifici per l'indentazione in un'area molto piccola. Per determinare le proprietà meccaniche di diverse fasi di un materiale con elevata precisione e misure tempestive, è necessaria una procedura affidabile e di facile utilizzo per i test di nanoindentazione.

OBIETTIVO DI MISURAZIONE

In questa applicazione, misuriamo le proprietà meccaniche di un campione metallurgico multifase utilizzando il più potente tester meccanico: il NANOVEA PB1000.

Qui mostriamo la capacità del PB1000 di eseguire misure di nanoindentazione su più fasi (grani) di una grande superficie di campione con elevata precisione e facilità d'uso, utilizzando il nostro Advanced Position Controller.

NANOVEA

PB1000

CONDIZIONI DI PROVA

In questo studio utilizziamo un campione metallurgico con fasi multiple. Il campione è stato lucidato a specchio prima dei test di indentazione. Nel campione sono state identificate quattro fasi: FASE 1, FASE 2, FASE 3 e FASE 4, come mostrato di seguito.

L'Advanced Stage Controller è uno strumento intuitivo per la navigazione dei campioni che regola automaticamente la velocità di movimento dei campioni nel microscopio ottico in base alla posizione del mouse. Più il mouse si allontana dal centro del campo visivo, più il palcoscenico si sposta velocemente verso la direzione del mouse. In questo modo si ottiene un metodo facile da usare per navigare sull'intera superficie del campione e selezionare la posizione prevista per i test meccanici. Le coordinate delle posizioni di prova vengono salvate e numerate, insieme alle singole impostazioni di prova, come i carichi, la velocità di carico/scarico, il numero di prove in una mappa, ecc. Questa procedura di test consente agli utenti di esaminare un'ampia superficie del campione per individuare aree specifiche di interesse per l'indentazione e di eseguire tutte le prove di indentazione in diverse posizioni in una sola volta, rendendolo uno strumento ideale per le prove meccaniche di campioni metallurgici con fasi multiple.

In questo studio, abbiamo localizzato le fasi specifiche del campione sotto il microscopio ottico integrato nel NANOVEA Tester meccanico come numerato su FIGURA 1. Le coordinate delle posizioni selezionate vengono salvate, quindi vengono eseguiti test automatici di nanoindentazione tutti in una volta nelle condizioni di prova riassunte di seguito.

FIGURA 1: SELEZIONE DELLA POSIZIONE DI NANOINDENTAZIONE SULLA SUPERFICIE DEL CAMPIONE.
RISULTATI: NANOINDENTAZIONI SU DIVERSE FASI

Di seguito sono riportate le indentature nelle diverse fasi del campione. Dimostriamo che l'eccellente controllo della posizione dello stadio del campione nella NANOVEA Collaudatore meccanico consente agli utenti di individuare con precisione la posizione target per i test delle proprietà meccaniche.

Le curve di carico-spostamento rappresentative delle indentazioni sono mostrate in FIGURA 2e la corrispondente durezza e modulo di Young calcolati con il metodo di Oliver e Pharr.iii sono riassunti e confrontati in FIGURA 3.


Il
FASI 1, 2, 3 e 4 possiedono una durezza media di ~5,4, 19,6, 16,2 e 7,2 GPa, rispettivamente. Le dimensioni relativamente piccole per FASI 2 contribuisce alla maggiore deviazione standard dei valori di durezza e modulo di Young.

FIGURA 2: CURVE CARICO-SPOSTAMENTO
DELLE NANOINDENTAZIONI

FIGURA 3: DUREZZA E MODULO DI YOUNG DI DIVERSE FASI

CONCLUSIONE

In questo studio abbiamo mostrato il tester meccanico NANOVEA che esegue misure di nanoindentazione su più fasi di un campione metallurgico di grandi dimensioni utilizzando il controller avanzato dello stadio. Il preciso controllo della posizione consente agli utenti di navigare facilmente su un'ampia superficie del campione e di selezionare direttamente le aree di interesse per le misure di nanoindentazione.

Le coordinate di posizione di tutte le indentature vengono salvate e poi eseguite consecutivamente. Questa procedura di prova rende la misurazione delle proprietà meccaniche locali su piccola scala, come nel caso del campione metallico multifase di questo studio, sostanzialmente meno dispendiosa in termini di tempo e più facile da usare. Le FASI 2, 3 e 4 dure migliorano le proprietà meccaniche del campione, con una durezza media di ~19,6, 16,2 e 7,2 GPa, rispettivamente, rispetto ai ~5,4 GPa della FASE 1.

I moduli Nano, Micro o Macro dello strumento includono tutti modalità di indentazione, graffio e usura conformi agli standard ISO e ASTM, fornendo la più ampia e semplice gamma di test disponibili in un unico sistema. L'impareggiabile gamma di NANOVEA è la soluzione ideale per determinare l'intera gamma di proprietà meccaniche di rivestimenti, film e substrati sottili o spessi, morbidi o duri, tra cui durezza, modulo di Young, tenacità alla frattura, adesione, resistenza all'usura e molte altre.

i Oliver, W. C.; Pharr, G. M., Journal of Materials Research, volume 19, numero 1, gennaio 2004, pagg. 3-20.
ii Schuh, C.A., Materiali Oggi, Volume 9, Numero 5, Maggio 2006, pp. 32-40
iii Oliver, W. C.; Pharr, G. M., Journal of Materials Research, Volume 7, Numero 6, Giugno 1992, pp.1564-1583

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Analisi meccanica dinamica (DMA) Sweep di frequenza su polimero

SWEEP DI FREQUENZA DMA

SUL POLIMERO UTILIZZANDO LA NANOINDENTAZIONE

Preparato da

Duanjie Li, PhD

INTRODUZIONE

IMPORTANZA DELL'ANALISI MECCANICA DINAMICA TEST DI FREQUENZA

La frequenza variabile dello stress porta spesso a variazioni nel modulo complesso, che è una proprietà meccanica critica dei polimeri. Ad esempio, i pneumatici sono soggetti a elevate deformazioni cicliche quando i veicoli circolano su strada. La frequenza della pressione e della deformazione cambia man mano che l'auto accelera a velocità più elevate. Un tale cambiamento può comportare una variazione delle proprietà viscoelastiche del pneumatico, che sono fattori importanti per le prestazioni dell'auto. È necessario un test affidabile e ripetibile del comportamento viscoelastico dei polimeri a diverse frequenze. Il modulo Nano della NANOVEA Collaudatore meccanico genera un carico sinusoidale mediante un attuatore piezoelettrico ad alta precisione e misura direttamente l'evoluzione della forza e dello spostamento utilizzando cella di carico e condensatore ultrasensibili. La combinazione di facilità di configurazione ed elevata precisione lo rende uno strumento ideale per la scansione della frequenza dell'analisi meccanica dinamica.

I materiali viscoelastici presentano caratteristiche sia viscose che elastiche quando subiscono una deformazione. Le lunghe catene molecolari nei materiali polimerici contribuiscono alle loro proprietà viscoelastiche uniche, ovvero una combinazione delle caratteristiche dei solidi elastici e dei fluidi newtoniani. Le sollecitazioni, la temperatura, la frequenza e altri fattori giocano un ruolo importante nelle proprietà viscoelastiche. L'analisi meccanica dinamica, nota anche come DMA, studia il comportamento viscoelastico e il modulo complesso del materiale applicando una sollecitazione sinusoidale e misurando la variazione della deformazione.

OBIETTIVO DI MISURAZIONE

In questa applicazione, studiamo le proprietà viscoelastiche di un campione di pneumatico lucidato a diverse frequenze DMA utilizzando il tester meccanico più potente, NANOVEA PB1000, in Nanoindentazione modalità.

NANOVEA

PB1000

CONDIZIONI DI PROVA

FREQUENZE (Hz):

0.1, 1.5, 10, 20

TEMPO DI SCORRIMENTO A CIASCUNA FREQUENZA.

50 sec

TENSIONE DI OSCILLAZIONE

0.1 V

TENSIONE DI CARICO

1 V

tipo di penetratore

Sferico

Diamante | 100 μm

RISULTATI E DISCUSSIONE

Lo sweep di frequenza dell'analisi meccanica dinamica al carico massimo consente di misurare in modo rapido e semplice le caratteristiche viscoelastiche del campione a diverse frequenze di carico in un unico test. Lo spostamento di fase e le ampiezze delle onde di carico e di spostamento a diverse frequenze possono essere utilizzati per calcolare una serie di proprietà viscoelastiche fondamentali del materiale, tra cui Modulo di stoccaggio, Modulo di perdita e Abbronzatura (δ) come riassunto nei grafici seguenti. 

Le frequenze di 1, 5, 10 e 20 Hz in questo studio corrispondono a velocità di circa 7, 33, 67 e 134 km all'ora. All'aumentare della frequenza di prova da 0,1 a 20 Hz, si può osservare che sia il modulo di accumulo che il modulo di perdita aumentano progressivamente. Tan (δ) diminuisce da ~0,27 a 0,18 con l'aumento della frequenza da 0,1 a 1 Hz, per poi aumentare gradualmente fino a ~0,55 quando si raggiunge la frequenza di 20 Hz. Lo sweep di frequenza del DMA consente di misurare l'andamento del modulo di accumulo, del modulo di perdita e del Tan (δ), che forniscono informazioni sul movimento dei monomeri e sulla reticolazione, nonché sulla transizione vetrosa dei polimeri. Aumentando la temperatura con una piastra riscaldante durante lo sweep di frequenza, è possibile ottenere un quadro più completo della natura del movimento molecolare in diverse condizioni di test.

EVOLUZIONE DEL CARICO E DELLA PROFONDITÀ

DELL'INTERO SWEEP DI FREQUENZA DMA

CARICO E PROFONDITÀ vs. TEMPO A DIVERSE FREQUENZE

MODULO DI ACCUMULO

A DIVERSE FREQUENZE

MODULO DI PERDITA

A DIVERSE FREQUENZE

TAN (δ)

A DIVERSE FREQUENZE

CONCLUSIONE

In questo studio, abbiamo dimostrato la capacità del tester meccanico NANOVEA di eseguire il test di analisi meccanica dinamica (frequency sweep) su un campione di pneumatico. Questo test misura le proprietà viscoelastiche del pneumatico a diverse frequenze di sollecitazione. Il pneumatico mostra un aumento del modulo di accumulo e di perdita all'aumentare della frequenza di carico da 0,1 a 20 Hz. Il test fornisce informazioni utili sul comportamento viscoelastico del pneumatico a diverse velocità, essenziali per migliorare le prestazioni dei pneumatici e ottenere una guida più fluida e sicura. Il test DMA frequency sweep può essere eseguito a varie temperature per simulare l'ambiente di lavoro realistico del pneumatico in condizioni climatiche diverse.

Nel modulo Nano del tester meccanico NANOVEA, l'applicazione del carico con il piezo veloce è indipendente dalla misurazione del carico effettuata da un estensimetro separato ad alta sensibilità. Ciò offre un netto vantaggio durante l'analisi meccanica dinamica, poiché la fase tra profondità e carico viene misurata direttamente dai dati raccolti dal sensore. Il calcolo della fase è diretto e non richiede una modellazione matematica che aggiunge imprecisione alla perdita risultante e al modulo di accumulo. Questo non è il caso di un sistema a bobina.

In conclusione, la DMA misura il modulo di perdita e di accumulo, il modulo complesso e il Tan (δ) in funzione della profondità di contatto, del tempo e della frequenza. Lo stadio di riscaldamento opzionale consente di determinare la temperatura di transizione di fase dei materiali durante il DMA. I tester meccanici NANOVEA offrono moduli Nano e Micro multifunzione ineguagliabili su un'unica piattaforma. Entrambi i moduli Nano e Micro includono le modalità scratch tester, hardness tester e wear tester, offrendo la più ampia e semplice gamma di test disponibili su un singolo modulo.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Microparticelle: Forza di compressione e microindentazione

MICROPARTICELLE

RESISTENZA ALLA COMPRESSIONE E MICROINDENTAZIONE
ATTRAVERSO L'ANALISI DEI SALI

Autore:
Jorge Ramirez

Revisionato da:
Jocelyn Esparza

INTRODUZIONE

La resistenza alla compressione è diventata fondamentale per le misure di controllo della qualità nello sviluppo e nel miglioramento delle microparticelle e dei microelementi (pilastri e sfere) nuovi ed esistenti. Le microparticelle hanno forme e dimensioni diverse e possono essere sviluppate a partire da ceramica, vetro, polimeri e metalli. Gli usi includono la somministrazione di farmaci, l'esaltazione del sapore degli alimenti, le formulazioni di calcestruzzo e molti altri. Il controllo delle proprietà meccaniche delle microparticelle o delle microcaratteristiche è fondamentale per il loro successo e richiede la capacità di caratterizzare quantitativamente la loro integrità meccanica.  

IMPORTANZA DELLA PROFONDITÀ RISPETTO ALLA RESISTENZA ALLA COMPRESSIONE DEL CARICO

Gli strumenti standard per la misurazione della compressione non sono in grado di sopportare carichi ridotti e non riescono a fornire un'adeguata dati di profondità per le microparticelle. Utilizzando i dati di profondità per le microparticelle. MicroindentazioneLa resistenza alla compressione di nano o microparticelle (morbide o dure) può essere misurata con precisione e accuratezza.  

OBIETTIVO DI MISURAZIONE

In questa nota applicativa misuriamo  la resistenza alla compressione del sale con il Tester meccanico NANOVEA in modalità microindentazione.

NANOVEA

CB500

CONDIZIONI DI PROVA

forza massima

30 N

tasso di carico

60 N/min

tasso di scarico

60 N/min

tipo di penetratore

Punzone piatto

Acciaio | Diametro 1 mm

Curve carico/profondità

Risultati e discussione

Altezza, forza di rottura e resistenza per la particella 1 e la particella 2

Il cedimento delle particelle è stato determinato come il punto in cui la pendenza iniziale della curva forza/profondità ha iniziato a diminuire sensibilmente. Questo comportamento indica che il materiale ha raggiunto un punto di snervamento e non è più in grado di resistere alle forze di compressione applicate. Una volta superato il punto di snervamento, la profondità di penetrazione inizia ad aumentare esponenzialmente per tutta la durata del periodo di carico. Questi comportamenti possono essere osservati in Curve di carico in funzione della profondità per entrambi i campioni.

CONCLUSIONE

In conclusione, abbiamo mostrato come il NANOVEA Collaudatore meccanico in modalità di microindentazione è un ottimo strumento per testare la resistenza alla compressione delle microparticelle. Sebbene le particelle testate siano fatte dello stesso materiale, si sospetta che i diversi punti di rottura misurati in questo studio siano probabilmente dovuti a microcricche preesistenti nelle particelle e a dimensioni diverse delle stesse. Va notato che per i materiali fragili sono disponibili sensori di emissione acustica per misurare l'inizio della propagazione della cricca durante una prova.


Il
NANOVEA Collaudatore meccanico offre risoluzioni di spostamento in profondità fino al livello sub nanometrico,
che lo rende un ottimo strumento per lo studio di microparticelle o elementi molto fragili. Per i materiali morbidi e fragili
materiali, con il nostro modulo di nano-indentazione è possibile ottenere carichi fino a 0,1 mN.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Ceramica: Mappatura veloce di nanoindentazione per il rilevamento dei grani

INTRODUZIONE

 

Nanoindentazione è diventata una tecnica ampiamente applicata per misurare il comportamento meccanico dei materiali su piccola scalai ii. Le curve di spostamento del carico ad alta risoluzione derivanti da una misurazione di nanoindentazione possono fornire una varietà di proprietà fisico-meccaniche, tra cui durezza, modulo di Young, scorrimento, resistenza alla frattura e molte altre.

 

 

Importanza dell'indentazione della mappatura rapida

 

Un ostacolo significativo per l’ulteriore divulgazione della tecnica di nanoindentazione è il consumo di tempo. Una mappatura delle proprietà meccaniche mediante la procedura di nanoindentazione convenzionale può facilmente richiedere ore, il che ostacola l'applicazione della tecnica nei settori della produzione di massa, come quello dei semiconduttori, aerospaziale, MEMS, prodotti di consumo come piastrelle di ceramica e molti altri.

La mappatura rapida può rivelarsi essenziale nel settore della produzione di piastrelle di ceramica. Le mappature dei moduli di Durezza e Young su una singola piastrella di ceramica possono presentare una distribuzione di dati che indica quanto omogenea sia la superficie. In questa mappatura è possibile delineare le regioni più morbide su un riquadro e mostrare le posizioni più soggette a guasti a causa degli impatti fisici che si verificano quotidianamente nella residenza di qualcuno. È possibile effettuare mappature su diversi tipi di piastrelle per studi comparativi e su un lotto di piastrelle simili per misurarne la consistenza nei processi di controllo qualità. La combinazione di configurazioni di misurazione può essere ampia, nonché accurata ed efficiente con il metodo di mappatura rapida.

 

OBIETTIVO DI MISURAZIONE

 

In questo studio, la Nanovea Collaudatore meccanico, in modalità FastMap viene utilizzato per mappare le proprietà meccaniche di una piastrella ad alta velocità. Mostriamo la capacità del Nanovea Mechanical Tester di eseguire due veloci mappature di nanoindentazione con elevata precisione e riproducibilità.

 

Condizioni di prova

 

Il Nanovea Mechanical Tester è stato utilizzato per eseguire una serie di nanoindentazioni con la modalità FastMap su una piastrella del pavimento utilizzando un penetratore Berkovich. I parametri del test sono riepilogati di seguito per le due matrici di rientro create.

 

Tabella 1: riepilogo dei parametri del test.

 

RISULTATI E DISCUSSIONE 

 

Figura 1: vista 2D e 3D della mappatura della durezza a 625 rientranze.

 

 

 

Figura 2: Micrografia della matrice a 625 rientranze che mostra la grana.

 

 

Una matrice da 625 rientranti è stata condotta su uno spessore di 0,20 mm2 area con una grande grana visibile presente. Questa grana (Figura 2) aveva una durezza media inferiore alla superficie complessiva della piastrella. Il software Nanovea Mechanical consente all'utente di vedere la mappa di distribuzione della durezza in modalità 2D e 3D, illustrata nella Figura 1. Utilizzando il controllo della posizione ad alta precisione del tavolino campione, il software consente agli utenti di individuare aree come queste in modo approfondito mappatura delle proprietà meccaniche.

Figura 3: vista 2D e 3D della mappatura della durezza a 1600 trattini.

 

 

Figura 4: Micrografia della matrice a 1600 rientranze.

 

 

Sulla stessa piastrella è stata inoltre creata una matrice da 1600 denti per misurare l'omogeneità della superficie. Anche in questo caso l'utente ha la possibilità di vedere la distribuzione della durezza in modalità 3D o 2D (Figura 3) nonché l'immagine al microscopio della superficie dentellata. Sulla base della distribuzione della durezza presentata, si può concludere che il materiale è poroso a causa della distribuzione uniforme dei punti dati di durezza alta e bassa.

Rispetto alle procedure convenzionali di nanoindentazione, la modalità FastMap in questo studio richiede sostanzialmente meno tempo ed è più economica. Consente una rapida mappatura quantitativa delle proprietà meccaniche, tra cui la durezza e il modulo di Young, e fornisce una soluzione per il rilevamento dei grani e della consistenza dei materiali, che è fondamentale per il controllo di qualità di una varietà di materiali nella produzione di massa.

 

 

CONCLUSIONE

 

In questo studio, abbiamo dimostrato la capacità del Nanovea Mechanical Tester nell'eseguire una mappatura della nanoindentazione rapida e precisa utilizzando la modalità FastMap. Le mappe delle proprietà meccaniche sulla piastrella in ceramica utilizzano il controllo della posizione (con precisione di 0,2 µm) degli stadi e la sensibilità del modulo di forza per rilevare i grani superficiali e misurare l'omogeneità di una superficie ad alta velocità.

I parametri di test utilizzati in questo studio sono stati determinati in base alle dimensioni della matrice e del materiale campione. È possibile scegliere una varietà di parametri di test per ottimizzare il tempo totale del ciclo di rientranza a 3 secondi per rientranza (o 30 secondi per ogni 10 rientranze).

I moduli Nano e Micro del Nanovea Mechanical Tester includono tutti modalità di test di indentazione, graffiatura e usura conformi ISO e ASTM, fornendo la gamma di test più ampia e intuitiva disponibile in un unico sistema. L'impareggiabile gamma di Nanovea è una soluzione ideale per determinare l'intera gamma di proprietà meccaniche di rivestimenti, pellicole e substrati sottili o spessi, morbidi o duri, tra cui durezza, modulo di Young, tenacità alla frattura, adesione, resistenza all'usura e molti altri.

Inoltre, sono disponibili un profilatore 3D senza contatto opzionale e un modulo AFM per l'imaging 3D ad alta risoluzione di rientranze, graffi e tracce di usura oltre ad altre misurazioni superficiali come la rugosità.

 

Autore: Duanjie Li, PhD Rivisto da Pierre Leroux e Jocelyn Esparza

Migliorare le procedure di estrazione con la microindicazione

RICERCA SULLA MICROINDENTAZIONE E CONTROLLO DI QUALITÀ

La meccanica delle rocce è lo studio del comportamento meccanico delle masse rocciose e trova applicazione nei settori dell'estrazione mineraria, della perforazione, della produzione di giacimenti e delle costruzioni civili. La strumentazione avanzata, che consente di misurare con precisione le proprietà meccaniche, permette di migliorare i pezzi e le procedure in questi settori. Il successo delle procedure di controllo della qualità è garantito dalla comprensione della meccanica delle rocce a livello microscopico.

Microindentazione è uno strumento fondamentale utilizzato per gli studi relativi alla meccanica delle rocce. Queste tecniche fanno progredire le tecniche di scavo, fornendo un'ulteriore comprensione delle proprietà della massa rocciosa. La microindentazione viene utilizzata per migliorare le teste di perforazione e quindi le procedure di estrazione. La microindentazione è stata utilizzata per studiare la formazione di gesso e polvere dai minerali. Gli studi di microindentazione possono includere durezza, modulo di Young, creep, stress-strain, tenacità alla frattura e compressione con un unico strumento.
 
 

OBIETTIVO DI MISURAZIONE

In questa applicazione la Nanovea tester meccanico misura la durezza Vickers (Hv), il modulo di Young e la resistenza alla frattura di un campione di roccia minerale. La roccia è costituita da biotite, feldspato e quarzo che formano il composito standard del granito. Ciascuno viene testato separatamente.

 

RISULTATI E DISCUSSIONE

Questa sezione comprende una tabella riassuntiva che confronta i principali risultati numerici per i diversi campioni, seguita dall'elenco completo dei risultati, che include ogni indentazione eseguita, accompagnata dalle micrografie dell'indentazione, quando disponibili. Questi risultati completi presentano i valori misurati di durezza e modulo di Young e la profondità di penetrazione (Δd) con le loro medie e deviazioni standard. Si deve considerare che una grande variazione nei risultati può verificarsi nel caso in cui la rugosità della superficie sia nella stessa gamma di dimensioni dell'indentazione.


Tabella riassuntiva dei principali risultati numerici per la durezza e la tenacità alla frattura

 

CONCLUSIONE

Il tester meccanico Nanovea ha dimostrato riproducibilità e precisione dei risultati di indentazione sulla superficie dura delle rocce minerali. La durezza e il modulo di Young di ciascun materiale che compone il granito sono stati misurati direttamente dalle curve di profondità rispetto al carico. La superficie ruvida ha comportato l'esecuzione di prove con carichi più elevati che potrebbero aver causato microfessurazioni. Le microfessurazioni spiegherebbero alcune delle variazioni osservate nelle misurazioni. Le fessure non erano percepibili attraverso l'osservazione al microscopio standard a causa della superficie ruvida del campione. Pertanto, non è possibile calcolare i numeri tradizionali di tenacità alla frattura, che richiedono la misurazione della lunghezza delle cricche. Invece, abbiamo usato il sistema per rilevare l'inizio delle cricche attraverso le dislocazioni nelle curve di profondità rispetto al carico, aumentando i carichi.

I carichi soglia di frattura sono stati riportati ai carichi in cui si sono verificati i cedimenti. A differenza dei test tradizionali di tenacità alla frattura, che misurano semplicemente la lunghezza della cricca, si ottiene un carico al quale inizia la soglia di frattura. Inoltre, l'ambiente controllato e strettamente monitorato consente di misurare la durezza come valore quantitativo per confrontare una varietà di campioni.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Valutazione della durezza dei tessuti biologici con la nanoindentazione

Importanza della nanoindentazione dei tessuti biologici

I test meccanici tradizionali (durezza, adesione, compressione, perforazione, resistenza allo snervamento, ecc.) richiedono maggiore precisione e affidabilità negli attuali ambienti di controllo qualità con un'ampia gamma di materiali avanzati, dai tessuti ai materiali fragili. La strumentazione meccanica tradizionale non è in grado di fornire il controllo sensibile del carico e la risoluzione necessari per i materiali avanzati. Le sfide associate ai biomateriali richiedono lo sviluppo di test meccanici in grado di controllare accuratamente il carico su materiali estremamente morbidi. Questi materiali richiedono carichi di prova molto bassi, inferiori al mN, con un ampio intervallo di profondità per garantire una misurazione corretta delle proprietà. Inoltre, molti tipi di test meccanici diversi possono essere eseguiti su un singolo sistema, consentendo una maggiore funzionalità. Ciò consente di effettuare una serie di importanti misurazioni sui biomateriali, tra cui la durezza, il modulo elastico, il modulo di perdita e di accumulo e il creep, oltre alla resistenza ai graffi e ai punti di rottura dello snervamento.

 

Obiettivo di misurazione

In questa applicazione il tester meccanico di Nanovea in modalità di nanoindentazione viene utilizzato per studiare la durezza e il modulo elastico di 3 aree separate di un sostituto biomateriale su regioni di grasso, carne chiara e carne scura del prosciutto.

La nanoindentazione si basa sugli standard di indentazione strumentale ASTM E2546 e ISO 14577. Utilizza metodi consolidati in cui una punta di penetrazione di geometria nota viene conficcata in un punto specifico del materiale di prova con un carico normale controllato e crescente. Quando si raggiunge una profondità massima prestabilita, il carico normale viene ridotto fino al completo rilassamento. Il carico viene applicato da un attuatore piezoelettrico e misurato in un ciclo controllato con una cella di carico ad alta sensibilità. Durante gli esperimenti, la posizione del penetratore rispetto alla superficie del campione viene monitorata con un sensore capacitivo ad alta precisione. Le curve di carico e spostamento risultanti forniscono dati specifici sulla natura meccanica del materiale testato. Modelli consolidati calcolano i valori quantitativi di durezza e modulo con i dati misurati. La nanoindentazione è adatta a misurazioni a basso carico e profondità di penetrazione su scala nanometrica.

Risultati e discussione

Le tabelle seguenti presentano i valori misurati di durezza e modulo di Young con medie e deviazioni standard. Un'elevata rugosità superficiale può causare grandi variazioni nei risultati a causa delle dimensioni ridotte dell'indentazione.

L'area del grasso presentava una durezza pari a circa la metà di quella delle aree della carne. Il trattamento della carne ha fatto sì che la zona scura della carne fosse più dura di quella chiara. Il modulo elastico e la durezza sono in relazione diretta con la masticabilità al tatto delle aree del grasso e della carne. L'area del grasso e della carne chiara ha continuato a scorrere in misura maggiore rispetto alla carne scura dopo 60 secondi.

Risultati dettagliati - Grasso

Risultati dettagliati - Carne leggera

Risultati dettagliati - Carne scura

Conclusione

In questa applicazione, Nanovea tester meccanico in modalità nanoindentazione hanno determinato in modo affidabile le proprietà meccaniche delle aree di grasso e carne, superando l'elevata ruvidità della superficie del campione. Ciò ha dimostrato l'ampia e ineguagliata capacità del tester meccanico di Nanovea. Il sistema fornisce contemporaneamente misurazioni precise delle proprietà meccaniche su materiali estremamente duri e tessuti biologici molli.

La cella di carico in controllo ad anello chiuso con la tavola piezoelettrica assicura una misurazione precisa di materiali in gel duri o morbidi da 1 a 5kPa. Utilizzando lo stesso sistema, è possibile testare i biomateriali a carichi più elevati, fino a 400N. Per le prove di fatica è possibile utilizzare un carico a più cicli e ottenere informazioni sulla resistenza allo snervamento in ogni zona utilizzando una punta di diamante cilindrica piatta. Inoltre, con l'analisi meccanica dinamica (DMA), le proprietà viscoelastiche, la perdita e il modulo di accumulo possono essere valutati con elevata precisione grazie al controllo del carico ad anello chiuso. Sullo stesso sistema sono disponibili anche prove a varie temperature e sotto liquidi.

Il tester meccanico di Nanovea continua a essere lo strumento superiore per le applicazioni biologiche e di polimeri/gel morbidi.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Valutazione della durezza del dente con la nanoindentazione

Importanza della nanoindentazione per i materiali biologici

 
Con molti test meccanici tradizionali (durezza, adesione, compressione, perforazione, resistenza allo snervamento, ecc.), gli odierni ambienti di controllo qualità con materiali sensibili avanzati, dai gel ai materiali fragili, richiedono ora un controllo di maggiore precisione e affidabilità. La strumentazione meccanica tradizionale non è in grado di fornire il controllo del carico sensibile e la risoluzione richiesta; è stata progettata per essere utilizzata per materiali sfusi. Poiché le dimensioni del materiale da testare sono diventate di maggiore interesse, lo sviluppo di Nanoindentazione ha fornito un metodo affidabile per ottenere informazioni meccaniche essenziali su superfici di dimensioni ridotte, come nel caso della ricerca sui biomateriali. Le sfide specificamente associate ai biomateriali hanno richiesto lo sviluppo di test meccanici in grado di controllare accuratamente il carico su materiali estremamente morbidi o fragili. Inoltre, sono necessari più strumenti per eseguire vari test meccanici che ora possono essere eseguiti con un unico sistema. La nanoindentazione offre un'ampia gamma di misurazioni con una risoluzione precisa a carichi nanocontrollati per applicazioni sensibili.

 

 

Obiettivo di misurazione

In questa applicazione, il sistema Nanovea Collaudatore meccanico, in modalità Nanoindentazione, viene utilizzato per studiare la durezza e il modulo elastico della dentina, della carie e della polpa di un dente. L'aspetto più critico con il test di nanoindentazione è la protezione del campione, qui abbiamo preso un dente tagliato e montato con resina epossidica lasciando tutte e tre le aree di interesse esposte per il test.

 

 

Risultati e discussione

Questa sezione comprende una tabella riassuntiva che confronta i principali risultati numerici per i diversi campioni, seguita dall'elenco completo dei risultati, che include ogni indentazione eseguita, accompagnata da micrografie dell'indentazione, quando disponibili. Questi risultati completi presentano i valori misurati di durezza e modulo di Young e la profondità di penetrazione con le loro medie e deviazioni standard. Si deve considerare che i risultati possono variare notevolmente nel caso in cui la rugosità superficiale sia della stessa dimensione dell'indentazione.

Tabella riassuntiva dei principali risultati numerici:

 

 

Conclusione

In conclusione, abbiamo mostrato come il Nanovea Mechanical Tester, in modalità di nanoindentazione, fornisca una misura precisa delle proprietà meccaniche di un dente. I dati possono essere utilizzati per lo sviluppo di otturazioni che corrispondano meglio alle caratteristiche meccaniche di un dente reale. La capacità di posizionamento del Nanovea Mechanical Tester consente una mappatura completa della durezza dei denti nelle varie zone.

Utilizzando lo stesso sistema, è possibile testare la tenacità alla frattura dei denti a carichi più elevati, fino a 200N. Un test di carico a più cicli può essere utilizzato su materiali più porosi per valutare il livello di elasticità rimanente. L'uso di una punta di diamante cilindrica piatta può fornire informazioni sulla resistenza allo snervamento in ogni zona. Inoltre, con l'analisi meccanica dinamica (DMA) è possibile valutare le proprietà viscoelastiche, compresi i moduli di perdita e di accumulo.

Il modulo Nanovea nano è ideale per questi test perché utilizza una risposta di feedback unica per controllare con precisione il carico applicato. Per questo motivo, il modulo nanovea può essere utilizzato anche per eseguire accurati test di graffiatura. Lo studio della resistenza al graffio e all'usura del materiale dentale e dei materiali da otturazione si aggiunge all'utilità complessiva del tester meccanico. L'uso di una punta affilata da 2 micron per confrontare quantitativamente le rigature sui materiali da otturazione consentirà di prevedere meglio il comportamento nelle applicazioni reali. Anche i test di usura multi-pass o di usura rotativa diretta sono test comuni e forniscono informazioni importanti sulla durata a lungo termine.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE