EUA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
FALE CONOSCO

Categoria: Indentação | Dureza e Elástico

 

Análise mecânica dinâmica da cortiça usando nanoindentação

ANÁLISE MECÂNICA DINÂMICA

DE CORTIÇA USANDO NANOINDENTAÇÃO

Preparado por

LIU FRANCA

INTRODUÇÃO

A Análise Mecânica Dinâmica (DMA) é uma técnica poderosa usada para investigar as propriedades mecânicas dos materiais. Nesta aplicação, nos concentramos na análise da cortiça, um material amplamente utilizado nos processos de vedação e envelhecimento do vinho. A cortiça, obtida da casca do carvalho Quercus suber, apresenta estruturas celulares distintas que proporcionam propriedades mecânicas semelhantes às dos polímeros sintéticos. Em um eixo, a cortiça tem estrutura de favo de mel. Os outros dois eixos são estruturados em múltiplos prismas retangulares. Isso confere à cortiça propriedades mecânicas diferentes, dependendo da orientação que está sendo testada.

IMPORTÂNCIA DO TESTE DE ANÁLISE MECÂNICA DINÂMICA (DMA) NA AVALIAÇÃO DAS PROPRIEDADES MECÂNICAS DA CORTIÇA

A qualidade das rolhas depende muito de suas propriedades mecânicas e físicas, que são cruciais para sua eficácia na vedação do vinho. Entre os principais fatores que determinam a qualidade da cortiça estão a flexibilidade, o isolamento, a resiliência e a impermeabilidade a gases e líquidos. Ao utilizar o teste de análise mecânica dinâmica (DMA), podemos avaliar quantitativamente as propriedades de flexibilidade e resiliência das rolhas, fornecendo um método confiável de avaliação.

O testador mecânico PB1000 da NANOVEA no Nanoindentação O modo DMA permite a caracterização dessas propriedades, especificamente o módulo de Young, o módulo de armazenamento, o módulo de perda e o tan delta (tan (δ)). O teste de DMA também permite a coleta de dados valiosos sobre mudança de fase, dureza, tensão e deformação do material de cortiça. Por meio dessas análises abrangentes, obtemos insights mais profundos sobre o comportamento mecânico das rolhas e sua adequação para aplicações de vedação de vinhos.

OBJETIVO DA MEDIÇÃO

Neste estudo, realizamos uma análise dinâmico-mecânica (DMA) em quatro rolhas de cortiça usando o NANOVEA PB1000 Mechanical Tester no modo de nanoindentação. A qualidade das rolhas de cortiça é rotulada como: 1 - Flor, 2 - Primeira, 3 - Colmatada, 4 - Borracha sintética. Os testes de indentação DMA foram realizados nas direções axial e radial para cada rolha de cortiça. Ao analisar a resposta mecânica das rolhas de cortiça, nosso objetivo foi obter informações sobre seu comportamento dinâmico e avaliar seu desempenho sob diferentes orientações.

NANOVEA

PB1000

PARÂMETROS DE TESTE

FORÇA MÁXIMA75 mN
TAXA DE CARREGAMENTO150 mN/min
TAXA DE DESLOCAÇÃO150 mN/min
AMPLITUDE5 mN
FREQÜÊNCIA1 Hz
CREEP60 s

tipo indenter

Bola

51200 Aço

3 mm de diâmetro

RESULTADOS

Nas tabelas e gráficos abaixo, o módulo de Young, o módulo de armazenamento, o módulo de perda e o tan delta são comparados entre cada amostra e orientação.

Módulo de Young: Stiffness; valores altos indicam stiff, valores baixos indicam flexible.

Módulo de armazenamento: Resposta elástica; energia armazenada no material.

Módulo de perda: Resposta viscosa; energia perdida devido ao calor.

Tan (δ): Amortecimento; valores altos indicam mais amortecimento.

ORIENTAÇÃO AXIAL

RolhaMÓDULO DE YOUNGMÓDULO DE ARMAZENAMENTOMÓDULO PERDIDOTAN
#(MPa)(MPa)(MPa)(δ)
122.567522.272093.6249470.162964
218.5466418.271533.1623490.17409
323.7538123.472673.6178190.154592
423.697223.580642.3470080.099539



ORIENTAÇÃO RADIAL

RolhaMÓDULO DE YOUNGMÓDULO DE ARMAZENAMENTOMÓDULO PERDIDOTAN
#(MPa)(MPa)(MPa)(δ)
124.7886324.565423.3082240.134865
226.6661426.317394.2862160.163006
344.0786743.614266.3659790.146033
428.0475127.941482.4359780.087173

MÓDULO DE YOUNG

MÓDULO DE ARMAZENAMENTO

MÓDULO PERDIDO

TAN DELTA

Entre as rolhas de cortiça, o módulo de Young não é muito diferente quando testado na orientação axial. Apenas as rolhas #2 e #3 apresentaram uma diferença aparente no módulo de Young entre as direções radial e axial. Como resultado, o módulo de armazenamento e o módulo de perda também serão maiores na direção radial do que na direção axial. A rolha #4 apresenta características semelhantes às das rolhas de cortiça natural, exceto no módulo de perda. Isso é bastante interessante, pois significa que a cortiça natural tem uma propriedade mais viscosa do que o material de borracha sintética.

CONCLUSÃO

A NANOVEA Testador Mecânico no modo Nano Scratch Tester permite a simulação de muitas falhas reais de revestimentos de pintura e revestimentos duros. Ao aplicar cargas crescentes de forma controlada e monitorada de perto, o instrumento permite identificar em que carga ocorrem falhas. Isso pode então ser usado como uma forma de determinar valores quantitativos de resistência a arranhões. Sabe-se que o revestimento testado, sem desgaste, apresenta uma primeira fissura a cerca de 22 mN. Com valores mais próximos de 5 mN, fica claro que a volta de 7 anos degradou a pintura.

A compensação do perfil original permite obter a profundidade corrigida durante o arranhão e também medir a profundidade residual após o arranhão. Isso fornece informações adicionais sobre o comportamento plástico versus elástico do revestimento sob carga crescente. Tanto as rachaduras quanto as informações sobre deformação podem ser de grande utilidade para melhorar o revestimento duro. Os desvios padrão muito pequenos também demonstram a reprodutibilidade da técnica do instrumento, o que pode ajudar os fabricantes a melhorar a qualidade de seu revestimento/pintura e a estudar os efeitos das intempéries.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Propriedades mecânicas do Hydrogel

PROPRIEDADES MECÂNICAS DO HIDROGEL

UTILIZANDO A NANOINDENTAÇÃO

Preparado por

DUANJIE LI, PhD & JORGE RAMIREZ

INTRODUÇÃO

O hidrogel é conhecido por sua superabsorção de água, permitindo uma grande semelhança em flexibilidade como tecidos naturais. Esta semelhança tornou o hidrogel uma escolha comum não apenas em biomateriais, mas também em eletrônica, meio ambiente e boas aplicações para o consumidor, como lentes de contato. Cada aplicação única requer propriedades mecânicas específicas do hidrogel.

IMPORTÂNCIA DA NANOINDENTAÇÃO PARA A HIDROGEL

Os hidrogéis criam desafios únicos para a nanoindentação, tais como a seleção de parâmetros de teste e o preparo de amostras. Muitos sistemas de nanoindentação têm grandes limitações desde que não foram originalmente projetados para materiais tão macios. Alguns dos sistemas de nanoindentação utilizam um conjunto bobina/imã para aplicar força sobre a amostra. Não há medição de força real, levando a uma carga imprecisa e não linear ao testar materiais moles. materiais. Determinar o ponto de contato é extremamente difícil, pois o A profundidade é o único parâmetro que está sendo realmente medido. É quase impossível observar a mudança de declive no Profundidade vs Tempo durante o período em que a ponta indentada está se aproximando do material hidrogel.

A fim de superar as limitações desses sistemas, o nano módulo do NANOVEA Testador Mecânico mede o feedback de força com uma célula de carga individual para garantir alta precisão em todos os tipos de materiais, macios ou duros. O deslocamento controlado por piezo é extremamente preciso e rápido. Isso permite uma medição incomparável das propriedades viscoelásticas, eliminando muitas suposições teóricas que os sistemas com um conjunto de bobina/ímã e sem realimentação de força devem levar em conta.

OBJETIVO DA MEDIÇÃO

Nesta aplicação, o NANOVEA O Testador Mecânico, no modo Nanoindentação, é usado para estudar a dureza, módulo elástico e fluência de uma amostra de hidrogel.

NANOVEA

PB1000

CONDIÇÕES DE TESTE

Uma amostra de hidrogel colocada sobre uma lâmina de vidro foi testada pela técnica de nanoindentação utilizando uma NANOVEA Testador Mecânico. Para este material macio foi utilizada uma ponta esférica de 3 mm de diâmetro. A carga aumentou linearmente de 0,06 para 10 mN durante o período de carga. A deformação foi então medida pela mudança da profundidade de indentação na carga máxima de 10 mN durante 70 segundos.

VELOCIDADE DE APROXIMAÇÃO: 100 μm/min

CONTATO CARREGAR
0,06 mN
CARGA MÁX
10 mN
TAXA DE CARREGAMENTO

20 mN/min

CREEP
70 s
RESULTADOS & DISCUSSÃO

A evolução da carga e da profundidade em função do tempo é mostrada em FUGURA 1. Pode-se observar que na trama do Profundidade vs TempoÉ muito difícil determinar o ponto de mudança de declive no início do período de carregamento, que geralmente funciona como uma indicação onde o indentro começa a entrar em contato com o material macio. No entanto, a trama do Carga vs Tempo mostra o comportamento peculiar do hidrogel sob uma carga aplicada. Quando o hidrogel começa a entrar em contato com o recuo da bola, o hidrogel puxa o recuo da bola devido a sua tensão superficial, que tende a diminuir a área da superfície. Este comportamento leva à carga medida negativa no início da fase de carga. A carga aumenta progressivamente à medida que o indentro afunda no hidrogel, e é então controlada para ser constante na carga máxima de 10 mN durante 70 segundos para estudar o comportamento de rastejamento do hidrogel.

FIGURA 1: Evolução da carga e profundidade em função do tempo.

A trama do Profundidade de Creep vs Tempo é mostrado em FIGURA 2e o Carga vs. Deslocamento gráfico do teste de nanoindentação é mostrado em FIGURA 3. O hidrogel neste estudo possui uma dureza de 16,9 KPa e um módulo de Young de 160,2 KPa, calculado com base na curva de deslocamento de carga usando o método Oliver-Pharr.

O arrepio é um fator importante para o estudo das propriedades mecânicas de um hidrogel. O controle de retroalimentação entre a célula de carga piezo e ultra-sensível garante uma verdadeira carga constante durante o tempo de fluência na carga máxima. Como mostrado em FIGURA 2o hidrogel subsidia ~42 μm como resultado de rastejamento em 70 segundos sob a carga máxima de 10 mN aplicada pela ponta esférica de 3 mm.

FIGURA 2: Rastejando a uma carga máxima de 10 mN durante 70 segundos.

FIGURA 3: O gráfico Carga vs. Deslocamento do hidrogel.

CONCLUSÃO

Neste estudo, mostramos que o NANOVEA O Testador Mecânico, no modo Nanoindentação, fornece uma medição precisa e repetível das propriedades mecânicas de um hidrogel, incluindo dureza, módulo de Young e fluência. A grande ponta esférica de 3 mm assegura um contato adequado com a superfície do hidrogel. O estágio de amostra motorizado de alta precisão permite o posicionamento preciso da face plana da amostra de hidrogel sob a ponta esférica. O hidrogel neste estudo apresenta uma dureza de 16,9 KPa e um módulo de Young de 160,2 KPa. A profundidade de deslizamento é de ~42 μm sob uma carga de 10 mN durante 70 segundos.

NANOVEA Os testadores mecânicos fornecem módulos Nano e Micro multi-funcionais inigualáveis em uma única plataforma. Ambos os módulos incluem um testador de arranhões, um testador de dureza e um modo de teste de desgaste, oferecendo a maior e mais amigável variedade de testes disponíveis em uma única plataforma.
sistema.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

O Líder Mundial em Ensaios Micro Mecânicos

AGORA O LÍDER MUNDIAL

TESTES MICRO MECÂNICOS

Preparado por

PIERRE LEROUX & DUANJIE LI, PhD

INTRODUÇÃO

Os Micro Hardness Testers Vickers padrão têm uma carga útil de 10 a 2000 gramas de força (gf). Os Macroduradores Vickers padrão carregam de 1 a 50 Kgf. Estes instrumentos não são apenas muito limitados na faixa de cargas, mas também são imprecisos ao lidar com superfícies mais ásperas ou cargas baixas quando os recuos se tornam muito pequenos para serem medidos visualmente. Estas limitações são intrínsecas à tecnologia mais antiga e, como resultado, o indentação instrumentada está se tornando a escolha padrão devido à maior precisão e desempenho que ela traz.

Com Os sistemas de testes micro mecânicos líderes mundiais da NANOVEA, a dureza Vickers é calculada automaticamente a partir dos dados de profundidade versus carga com a maior faixa de carga em um único módulo já disponível (0,3 gramas a 2 Kg ou 6 gramas a 40 Kg). Como mede a dureza a partir da profundidade versus curvas de carga, o NANOVEA Micro Module pode medir qualquer tipo de material, inclusive os muito elásticos. Ele também pode fornecer não apenas a dureza Vickers, mas também dados precisos do módulo elástico e da fluência, além de outros tipos de teste, como testes de aderência de arranhões, desgaste, teste de fadiga, resistência ao escoamento e resistência à fratura para uma gama completa de dados de controle de qualidade.

AGORA O LÍDER MUNDIAL EM TESTES MICRO MECÂNICOS

Nesta nota de aplicações, será explicado como o Micro Module foi projetado para oferecer os principais testes de indentação e de arranhões instrumentais do mundo. A ampla capacidade de teste do Micro Module é ideal para muitas aplicações. Por exemplo, a faixa de carga permite medições precisas de dureza e módulo elástico de revestimentos duros finos e pode então aplicar cargas muito maiores para medir a aderência desses mesmos revestimentos.

OBJETIVO DA MEDIÇÃO

A capacidade do Micro Module é mostrada com o NANOVEA CB500 Testador Mecânico por
realizando testes de recuo e arranhão com precisão e confiabilidade superiores, utilizando uma ampla faixa de carga de 0,03 a 200 N.

NANOVEA

CB500

CONDIÇÕES DE TESTE

Uma série (3×4, 12 travessões no total) de Microindentações foram realizadas em uma amostra padrão de aço utilizando um indentro Vickers. A carga e a profundidade foram medidas e registradas para o ciclo completo de teste de indentação. As indentações foram realizadas com diferentes cargas máximas variando de 0,03 N a 200 N (0,0031 a 20,4 kgf) para mostrar a capacidade do micro módulo em realizar testes de indentação precisos com diferentes cargas. Vale ressaltar que uma célula de carga opcional de 20 N também está disponível para fornecer uma resolução 10 vezes maior para testes na faixa de carga inferior de 0,3 gf a 2 kgf.

Dois testes de arranhões foram realizados usando o Micro Module com carga linearmente aumentada de 0,01 N a 200 N e de 0,01 N a 0,5 N, respectivamente, usando o estilete diamantado cônico-esférico com raio de ponta de 500 μm e 20 μm.

Vinte Microindentação Foram realizados testes na amostra padrão de aço a 4 N, demonstrando a repetibilidade superior dos resultados do Micro Module, que contrastam com o desempenho dos testadores de dureza Vickers convencionais.

*microindenter sobre a amostra de aço

PARÂMETROS DE TESTE

do Mapeamento de Indentação

MAPEAMENTO: 3 POR 4 INDENTES

RESULTADOS E DISCUSSÃO

O novo Micro Module tem uma combinação única de motor Z, célula de carga de alta força e um sensor de profundidade capacitivo de alta precisão. A utilização exclusiva de sensores de profundidade e carga independentes garante alta precisão em todas as condições.

Os testes convencionais de dureza Vickers usam pontas de diamante com base em pirâmide de diamante quadrada que criam reentrâncias em forma de quadrado. Medindo o comprimento médio da diagonal, d, a dureza do Vickers pode ser calculada.

Em comparação, a técnica de indentação instrumentada utilizada pela NANOVEAO Micro Module mede diretamente as propriedades mecânicas a partir das medidas de carga e deslocamento de indentação. Não é necessária nenhuma observação visual do recuo. Isto elimina os erros de processamento de imagem do usuário ou do computador na determinação dos valores d do recuo. O sensor de profundidade do capacitor de alta precisão com um nível de ruído muito baixo de 0,3 nm pode medir com precisão a profundidade dos recuos que são difíceis ou impossíveis de serem medidos visualmente sob um microscópio com os tradicionais testadores de dureza Vickers.

Além disso, a técnica de cantilever utilizada pelos concorrentes aplica a carga normal sobre uma viga de cantilever por uma mola, e esta carga é, por sua vez, aplicada sobre o indentro. Tal projeto tem uma falha caso seja aplicada uma carga alta - a viga cantilever não pode fornecer rigidez estrutural suficiente, levando à deformação da viga cantilever e, por sua vez, ao desalinhamento do indentro. Em comparação, o Micro Module aplica a carga normal através do motor Z atuando sobre a célula de carga e, em seguida, o indentro para aplicação direta da carga. Todos os elementos são alinhados verticalmente para máxima rigidez, garantindo reentrâncias e medições precisas de reentrâncias e arranhões em toda a faixa de carga.

Vista de perto do novo Micro Module

RECUO DE 0,03 A 200 N

A imagem do mapa de indentação é exibida em FIGURA 1. A distância entre os dois travessões adjacentes acima de 10 N é de 0,5 mm, enquanto que o de cargas mais baixas é de 0,25 mm. O controle de posição de alta precisão do estágio de amostra permite aos usuários selecionar o local de destino para o mapeamento das propriedades mecânicas. Graças à excelente rigidez do micro módulo devido ao alinhamento vertical de seus componentes, o indentro do Vickers mantém uma perfeita orientação vertical ao penetrar na amostra de aço sob uma carga de até 200 N (400 N opcional). Isto cria impressões de uma forma quadrada simétrica na superfície da amostra com diferentes cargas.

As indentações individuais em diferentes cargas sob o microscópio são exibidas ao lado dos dois riscos, como mostrado no FIGURA 2, para mostrar a capacidade do novo micro módulo em realizar os testes de indentação e de risco em uma ampla faixa de carga com uma alta precisão. Como mostrado nos gráficos de Carga Normal vs. Comprimento do Raspador, a carga normal aumenta linearmente à medida que a ponta diamantada cônico-esférica desliza sobre a superfície da amostra de aço. Ela cria uma raspagem reta suave de largura e profundidade progressivamente aumentadas.

FIGURA 1: Mapa de Indentação

Dois testes de arranhões foram realizados usando o Micro Module com carga linearmente aumentada de 0,01 N a 200 N e de 0,01 N a 0,5 N, respectivamente, usando o estilete diamantado cônico-esférico com raio de ponta de 500 μm e 20 μm.

Vinte testes de Microindentação foram realizados na amostra padrão de aço a 4 N mostrando a repetibilidade superior dos resultados do Micro Module que contrastam o desempenho dos testadores de dureza convencionais Vickers.

A: RECUO E ARRANHÃO SOB O MICROSCÓPIO (360X)

B: RECUO E ARRANHÃO SOB O MICROSCÓPIO (3000X)

FIGURA 2: Lotes de Carga vs Deslocamento em diferentes cargas máximas.

As curvas de carga-deslocamento durante a indentação em diferentes cargas máximas são mostradas em FIGURA 3. A dureza e o módulo elástico são resumidos e comparados no FIGURA 4. A amostra de aço apresenta um módulo elástico constante ao longo da carga de teste variando de 0,03 a 200 N (faixa possível de 0,003 a 400 N), resultando em um valor médio de ~211 GPa. A dureza apresenta um valor relativamente constante de ~6,5 GPa medido sob uma carga máxima acima de 100 N. Como a carga diminui para uma faixa de 2 a 10 N, mede-se uma dureza média de ~9 GPa.

FIGURA 3: Lotes de Carga vs Deslocamento em diferentes cargas máximas.

FIGURA 4: Dureza e módulo de Young da amostra de aço medido por diferentes cargas máximas.

RECUO DE 0,03 A 200 N

Vinte testes de microindentação foram realizados com carga máxima de 4N. As curvas de carga-deslocamento são exibidas em FIGURA 5 e a dureza Vickers resultante e o módulo de Young são mostrados em FIGURA 6.

FIGURA 5: Curvas de carga-deslocamento para testes de microindentação a 4 N.

FIGURA 6: Dureza Vickers e Módulo Young para 20 microindentações a 4 N.

As curvas de carga-deslocamento demonstram a superior repetibilidade do novo Micro Module. O padrão de aço possui uma dureza Vickers de 842±11 HV medida pelo novo Micro Module, comparada a 817±18 HV medida usando o testador de dureza convencional Vickers. O pequeno desvio padrão da medição da dureza garante uma caracterização confiável e reprodutível das propriedades mecânicas na P&D e no controle de qualidade dos materiais, tanto no setor industrial como na pesquisa acadêmica.

Além disso, um Módulo Young de 208±5 GPa é calculado a partir da curva de carga-deslocamento, que não está disponível para o testador de dureza convencional Vickers devido à falta de medição de profundidade durante a indentação. medida que a carga diminui e o tamanho do recuo diminui, o NANOVEA As vantagens do Micro Module em termos de repetibilidade em comparação com o Vickers Hardness Testers aumentam até que não seja mais possível medir o traço através da inspeção visual.

A vantagem de medir a profundidade para calcular a dureza também se torna evidente quando se lida com amostras mais ásperas ou quando as amostras são mais difíceis de serem observadas sob os microscópios padrão fornecidos nos testadores de dureza Vickers.

CONCLUSÃO

Neste estudo, mostramos como o novo Módulo Micro NANOVEA líder mundial (faixa de 200 N) realiza medições reproduzíveis e precisas de recuo e arranhão sob uma ampla faixa de carga de 0,03 a 200 N (3 gf a 20,4 kgf). Um Micro Module opcional de faixa inferior pode fornecer testes de 0,003 a 20 N (0,3 gf a 2 kgf). O alinhamento vertical único do motor Z, da célula de carga de alta força e do sensor de profundidade garante a máxima rigidez estrutural durante as medições. As reentrâncias medidas em diferentes cargas possuem todas uma forma quadrada simétrica na superfície da amostra. Uma raspagem reta de largura e profundidade progressivamente aumentada é criada no teste de raspagem de uma carga máxima de 200 N.

O novo Micro Module pode ser configurado no PB1000 (150 x 200 mm) ou na base mecânica CB500 (100 x 50 mm) com uma motorização z (faixa de 50 mm). Combinados com um poderoso sistema de câmera (precisão de posicionamento de 0,2 microns) os sistemas oferecem as melhores capacidades de automação e mapeamento do mercado. A NANOVEA também oferece uma função patenteada exclusiva (EP No. 30761530) que permite a verificação e calibração dos travessões Vickers realizando um único traço em toda a gama de cargas. Por outro lado, os Ensaios de Dureza Vickers padrão só podem fornecer calibração com uma única carga.

Além disso, o software NANOVEA permite ao usuário medir a dureza do Vickers através do método tradicional de medir as diagonais de travessão, se necessário (para ASTM E92 & E384). Como mostrado neste documento, os testes de dureza de profundidade versus carga (ASTM E2546 e ISO 14577) realizados por um Micro Módulo NANOVEA são precisos e reprodutíveis em comparação com os Ensaios de Dureza Tradicionais. Especialmente para amostras que não podem ser observadas/medidas com um microscópio.

Em conclusão, a maior precisão e repetibilidade do projeto do Micro Module com sua ampla gama de cargas e testes, alta automação e opções de mapeamento tornam os tradicionais testadores de dureza Vickers obsoletos. Mas, da mesma forma, com os testadores de arranhões e micro arranhões ainda oferecidos atualmente, mas projetados com falhas na década de 1980.

O contínuo desenvolvimento e aperfeiçoamento desta tecnologia faz da NANOVEA uma líder mundial em testes micro mecânicos.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Material multifásico usando Nanoindentação NANOVEA

Nanoindentação Metálica Multifásica

Estudo Metalúrgico de Material Multifásico utilizando Nanoindentação

Saiba mais

ESTUDO DA METALURGIA
DE MATERIAL MULTIFÁSICO

UTILIZANDO A NANOINDENTAÇÃO

Preparado por

DUANJIE LIPhD & ALEXIS CELESTIN

INTRODUÇÃO

A metalurgia estuda o comportamento físico e químico dos elementos metálicos, bem como seus compostos intermetálicos e ligas. Os metais que passam por processos de trabalho, tais como fundição, forjamento, laminação, extrusão e usinagem, experimentam mudanças em suas fases, microestrutura e textura. Estas mudanças resultam em propriedades físicas variadas, incluindo dureza, resistência, tenacidade, ductilidade e resistência ao desgaste do material. A metalografia é freqüentemente aplicada para aprender o mecanismo de formação de tais fases específicas, microestrutura e textura.

IMPORTÂNCIA DA MECÂNICA LOCAL PROPRIEDADES PARA PROJETO DE MATERIAIS

Os materiais avançados geralmente têm várias fases em uma microestrutura e textura especiais para atingir as propriedades mecânicas desejadas para aplicações-alvo na prática industrial. Nanoindentação é amplamente aplicado para medir o comportamento mecânico de materiais em pequenas escalas i ii. Entretanto, é desafiador e demorado selecionar com precisão locais específicos para indentação em uma área muito pequena. Um procedimento confiável e fácil de usar de testes de nanoindentação é exigido para determinar as propriedades mecânicas de diferentes fases de um material com alta precisão e medições oportunas.

OBJETIVO DA MEDIÇÃO

Nesta aplicação, medimos as propriedades mecânicas de uma amostra metalúrgica multifásica utilizando o Mais Poderoso Testador Mecânico: o NANOVEA PB1000.

Aqui, mostramos a capacidade do PB1000 em realizar medições de nanoindentação em múltiplas fases (grãos) de uma grande superfície de amostra com alta precisão e facilidade de uso, utilizando nosso Controlador de Posição Avançado.

NANOVEA

PB1000

CONDIÇÕES DE TESTE

Neste estudo, utilizamos uma amostra metalúrgica com múltiplas fases. A amostra tinha sido polida até um acabamento de superfície semelhante a um espelho antes dos testes de recuo. Quatro fases foram identificadas na amostra, a saber: FASE 1, FASE 2, FASE 3 e FASE 4, como mostrado abaixo.

O Controlador Avançado de Estágio é uma ferramenta intuitiva de navegação por amostragem que ajusta automaticamente a velocidade do movimento da amostra sob o microscópio ótico com base na posição do mouse. Quanto mais distante o mouse estiver do centro do campo de visão, mais rápido o estágio se move em direção à direção do mouse. Isto proporciona um método de fácil utilização para navegar por toda a superfície da amostra e selecionar o local pretendido para os testes mecânicos. As coordenadas dos locais de teste são salvas e numeradas, juntamente com suas configurações de teste individuais, tais como cargas, taxa de carga/descarga, número de testes em um mapa, etc. Tal procedimento de teste permite aos usuários examinar uma grande superfície de amostra para áreas específicas de interesse para indentação e realizar todos os testes de indentação em diferentes locais ao mesmo tempo, tornando-a uma ferramenta ideal para testes mecânicos de amostras metalúrgicas com múltiplas fases.

Neste estudo, localizamos as fases específicas da amostra sob o microscópio ótico integrado no NANOVEA Testador Mecânico, conforme numerado em FIGURA 1. As coordenadas dos locais selecionados são salvas, seguidas por testes automáticos de nanoindentação todos de uma só vez sob as condições de teste resumidas abaixo

FIGURA 1: SELECIONANDO O LOCAL DE NANOINDENTAÇÃO NA SUPERFÍCIE DA AMOSTRA.
RESULTADOS: NANOINDENTAÇÕES EM DIFERENTES FASES

As reentrâncias nas diferentes fases da amostra são exibidas abaixo. Demonstramos que o excelente controle de posição da fase da amostra na NANOVEA Testador Mecânico permite que os usuários identifiquem com precisão o local de destino para testes de propriedades mecânicas.

As curvas representativas de carga-deslocamento das reentrâncias são mostradas em FIGURA 2e a dureza correspondente e o módulo de Young calculado pelo método Oliver e Pharriii são resumidos e comparados em FIGURA 3.


O
FASES 1, 2, 3 e 4 possuem uma dureza média de ~5,4, 19,6, 16,2 e 7,2 GPa, respectivamente. O tamanho relativamente pequeno para FASE 2 contribui para seu maior desvio padrão da dureza e dos valores do módulo de Young.

FIGURA 2: CURVAS DE CARGA-DESLOCAMENTO
DAS NANOINDENTAÇÕES

FIGURA 3: DUREZA E MÓDULO DE JOVENS DE DIFERENTES FASES

CONCLUSÃO

Neste estudo, mostramos o NANOVEA Mechanical Tester realizando medições de nanoindentação em várias fases de uma grande amostra metalúrgica utilizando o Advanced Stage Controller. O controle preciso da posição permite aos usuários navegar facilmente por uma grande superfície de amostra e selecionar diretamente as áreas de interesse para as medições de nanoindentação.

As coordenadas de localização de todas as reentrâncias são salvas e então executadas consecutivamente. Tal procedimento de teste torna a medição das propriedades mecânicas locais em pequenas escalas, por exemplo, a amostra de metal multifásica neste estudo, substancialmente menos demorada e mais fácil de usar. As duras FASES 2, 3 e 4 melhoram as propriedades mecânicas da amostra, possuindo uma dureza média de ~19,6, 16,2 e 7,2 GPa, respectivamente, em comparação com ~5,4 GPa para a FASE 1.

Os módulos Nano, Micro ou Macro do instrumento incluem todos os modos de teste ISO e ASTM, de indentação, de raspagem e de desgaste, proporcionando a gama de testes mais ampla e mais amigável disponível em um único sistema. A gama inigualável do NANOVEA é uma solução ideal para determinar a gama completa de propriedades mecânicas de revestimentos finos ou grossos, macios ou duros, filmes e substratos, incluindo dureza, módulo Young, resistência à fratura, aderência, resistência ao desgaste e muitos outros.

i Oliver, W. C.; Pharr, G. M., Journal of Materials Research., Volume 19, Número 1, Jan 2004, pp.3-20
ii Schuh, C.A., Materials Today, Volume 9, Edição 5, Maio de 2006, pp. 32-40
iii Oliver, W. C.; Pharr, G. M., Journal of Materials Research, Volume 7, Número 6, junho de 1992, pp.1564-1583

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Análise Mecânica Dinâmica (DMA) Varredura de Frequência em Polímero

VARREDURA DE FREQÜÊNCIA DMA

SOBRE POLÍMEROS USANDO NANOINDENTAÇÃO

Preparado por

Duanjie Li, PhD

INTRODUÇÃO

IMPORTÂNCIA DA ANÁLISE MECÂNICA DINÂMICA TESTE DE VARREDURA DE FREQÜÊNCIA

A mudança na frequência da tensão muitas vezes leva a variações no módulo complexo, que é uma propriedade mecânica crítica dos polímeros. Por exemplo, os pneus estão sujeitos a elevadas deformações cíclicas quando os veículos circulam na estrada. A frequência da pressão e da deformação muda à medida que o carro acelera para velocidades mais altas. Tal alteração pode resultar em variação nas propriedades viscoelásticas do pneu, que são fatores importantes no desempenho do carro. É necessário um teste confiável e repetível do comportamento viscoelástico de polímeros em diferentes frequências. O módulo Nano da NANOVEA Testador Mecânico gera carga senoidal por um atuador piezoelétrico de alta precisão e mede diretamente a evolução da força e do deslocamento usando célula de carga ultrassensível e capacitor. A combinação de fácil configuração e alta precisão o torna uma ferramenta ideal para varredura de frequência de Análise Mecânica Dinâmica.

Os materiais viscoelásticos apresentam tanto características viscosas quanto elásticas quando submetidos a deformações. Longas cadeias moleculares em materiais poliméricos contribuem para suas propriedades viscoelásticas únicas, ou seja, uma combinação das características tanto de sólidos elásticos quanto de fluidos newtonianos. Estresse, temperatura, freqüência e outros fatores desempenham um papel nas propriedades viscoelásticas. A Análise Mecânica Dinâmica, também conhecida como DMA, estuda o comportamento viscoelástico e o módulo complexo do material, aplicando uma tensão sinusoidal e medindo a mudança de deformação.

OBJETIVO DA MEDIÇÃO

Nesta aplicação, estudamos as propriedades viscoelásticas de uma amostra de pneu polido em diferentes frequências de DMA usando o Testador Mecânico Mais Poderoso, NANOVEA PB1000, em Nanoindentação modo.

NANOVEA

PB1000

CONDIÇÕES DE TESTE

FREQUÊNCIAS (Hz):

0.1, 1.5, 10, 20

TEMPO DE ARREPIO EM CADA FREQ.

50 seg

TENSÃO DE OSCILAÇÃO

0.1 V

TENSÃO DE CARGA

1 V

tipo indenter

Spherical

Diamante | 100 μm

RESULTADOS & DISCUSSÃO

A varredura de freqüência da Análise Mecânica Dinâmica na carga máxima permite uma medição rápida e simples das características viscoelásticas da amostra em diferentes freqüências de carga em um teste. O deslocamento de fase e as amplitudes das ondas de carga e deslocamento em diferentes freqüências podem ser usados para calcular uma variedade de propriedades viscoelásticas fundamentais do material, incluindo Módulo de armazenamento, Módulo de perdas e Tan (δ) como resumido nos gráficos a seguir. 

As freqüências de 1, 5, 10 e 20 Hz neste estudo, correspondem a velocidades de cerca de 7, 33, 67 e 134 km por hora. Como a freqüência de teste aumenta de 0,1 a 20 Hz, pode-se observar que tanto o módulo de armazenamento quanto o módulo de perda aumentam progressivamente. Tan (δ) diminui de ~0,27 para 0,18 à medida que a freqüência aumenta de 0,1 para 1 Hz, e depois aumenta gradualmente para ~0,55 quando a freqüência de 20 Hz é atingida. A varredura de freqüência DMA permite medir as tendências do Módulo de Armazenamento, Módulo de Perda e Tan (δ), que fornecem informações sobre o movimento dos monômeros e reticulação, assim como a transição vítrea dos polímeros. Ao elevar a temperatura usando uma placa de aquecimento durante a varredura de freqüência, pode-se obter uma imagem mais completa da natureza do movimento molecular sob diferentes condições de teste.

EVOLUÇÃO DA CARGA E PROFUNDIDADE

DA VARREDURA TOTAL DE FREQÜÊNCIA DMA

Carga e Profundidade vs Tempo em DIFERENTES FREQUÊNCIAS

MÓDULO DE ARMAZENAMENTO

EM DIFERENTES FREQÜÊNCIAS

MÓDULO PERDIDO

EM DIFERENTES FREQÜÊNCIAS

TAN (δ)

EM DIFERENTES FREQÜÊNCIAS

CONCLUSÃO

Neste estudo, mostramos a capacidade do NANOVEA Mechanical Tester em realizar o teste de varredura de freqüência da Análise Mecânica Dinâmica em uma amostra de pneu. Este teste mede as propriedades viscoelásticas do pneu em diferentes freqüências de tensão. O pneu mostra maior módulo de armazenamento e perda à medida que a freqüência de carga aumenta de 0,1 para 20 Hz. Ele fornece informações úteis sobre os comportamentos viscoelásticos do pneu rodando em diferentes velocidades, o que é essencial para melhorar o desempenho dos pneus para passeios mais suaves e seguros. O teste de varredura de freqüência DMA pode ser realizado em várias temperaturas para imitar o ambiente de trabalho realista do pneu sob diferentes condições climáticas.

No Módulo Nano do Testador Mecânico NANOVEA, a aplicação de carga com o piezo rápido é independente da medição de carga feita por um strain gage separado de alta sensibilidade. Isto dá uma vantagem distinta durante a Análise Mecânica Dinâmica, pois a fase entre profundidade e carga é medida diretamente a partir dos dados coletados do sensor. O cálculo da fase é direto e não necessita de modelagem matemática que acrescenta imprecisão ao módulo de perda e armazenamento resultante. Este não é o caso de um sistema baseado em bobina.

Em conclusão, a DMA mede o módulo de perda e armazenamento, módulo complexo e Tan (δ) em função da profundidade, tempo e freqüência do contato. O estágio opcional de aquecimento permite determinar a temperatura de transição de fase dos materiais durante o DMA. Os testadores mecânicos NANOVEA fornecem módulos Nano e Micro multifuncionais inigualáveis em uma única plataforma. Ambos os módulos Nano e Micro incluem os modos de teste de arranhões, teste de dureza e teste de desgaste, proporcionando a mais ampla e amigável gama de testes disponíveis em um único módulo.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Micropartículas: Resistência à compressão e microindentação

MICROPARTICLES

RESISTÊNCIA À COMPRESSÃO E MICRO INDENTAÇÃO
TESTANDO OS SAIS

Autor:
Jorge Ramirez

Revisado por:
Jocelyn Esparza

INTRODUÇÃO

A resistência à compressão tornou-se vital para a medição do controle de qualidade no desenvolvimento e aperfeiçoamento de micropartículas e microcaracterísticas novas e existentes (pilares e esferas) vistas hoje em dia. As micropartículas têm várias formas, tamanhos e podem ser desenvolvidas a partir de cerâmicas, vidros, polímeros e metais. Os usos incluem o fornecimento de medicamentos, melhoria do sabor de alimentos, formulações de concreto, entre muitos outros. O controle das propriedades mecânicas das micropartículas ou microcaracterísticas é fundamental para seu sucesso e requer a capacidade de caracterizar quantitativamente sua integridade mecânica.  

IMPORTÂNCIA DA PROFUNDIDADE VERSUS RESISTÊNCIA À COMPRESSÃO DA CARGA

Os instrumentos de medição compressiva padrão não são capazes de cargas baixas e falham em fornecer o dados de profundidade para micropartículas. Ao usar Nano ou MicroindentaçãoCom o uso da tecnologia de compressão, a resistência à compressão de nano ou micropartículas (macias ou duras) pode ser medida com precisão e exatidão.  

OBJETIVO DA MEDIÇÃO

Nesta nota de aplicação, medimos  a força de compressão do sal com Testador Mecânico NANOVEA em modo micro indentação.

NANOVEA

CB500

CONDIÇÕES DE TESTE

força máxima

30 N

taxa de carga

60 N/min

taxa de descarga

60 N/min

tipo indenter

Perfurador plano

Aço | Diâmetro de 1mm

Curvas de carga vs profundidade

Resultados & Discussão

Altura, força de falha e resistência para Partícula 1 e Partícula 2

A falha de partículas foi determinada como sendo o ponto onde a inclinação inicial da curva força vs. profundidade começou a diminuir notavelmente. Este comportamento mostra que o material atingiu um ponto de rendimento e não é mais capaz de resistir às forças compressivas que estão sendo aplicadas. Uma vez ultrapassado o ponto de rendimento, a profundidade de recuo começa a aumentar exponencialmente pela duração do período de carga. Estes comportamentos podem ser vistos em Curvas de Carga vs Profundidade para ambas as amostras.

CONCLUSÃO

Em conclusão, mostramos como o NANOVEA Testador Mecânico em modo micro indentação é uma ótima ferramenta para testar a resistência à compressão de micropartículas. Embora as partículas testadas sejam feitas do mesmo material, suspeita-se que os diferentes pontos de falha medidos neste estudo foram provavelmente devido a micro fissuras pré-existentes nas partículas e tamanhos variados de partículas. Deve-se notar que para materiais frágeis, sensores de emissão acústica estão disponíveis para medir o início da propagação de fissuras durante um teste.


O
NANOVEA Testador Mecânico oferece resoluções de deslocamento de profundidade até o nível do sub nanômetro,
tornando-a também uma ótima ferramenta para o estudo de micropartículas ou características muito frágeis. Para partículas macias e frágeis
materiais, cargas até 0,1mN são possíveis com nosso módulo de nano indentação

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Cerâmica: Mapeamento rápido de nanoindentação para detecção de grãos

INTRODUÇÃO

 

Nanoindentação tornou-se uma técnica amplamente aplicada para medir comportamentos mecânicos de materiais em pequenas escalasi ii. As curvas de carga-deslocamento de alta resolução de uma medição de nanoindentação podem fornecer uma variedade de propriedades físico-mecânicas, incluindo dureza, módulo de Young, fluência, tenacidade à fratura e muitas outras.

 

 

Importância do recuo de mapeamento rápido

 

Um gargalo significativo para uma maior popularização da técnica de nanoindentação é o consumo de tempo. Um mapeamento de propriedades mecânicas por procedimento convencional de nanoindentação pode facilmente levar horas, o que dificulta a aplicação da técnica em indústrias de produção em massa, como semicondutores, aeroespacial, MEMS, produtos de consumo como revestimentos cerâmicos e muitos outros.

O mapeamento rápido pode ser essencial na indústria de fabricação de revestimentos cerâmicos. Os mapeamentos de dureza e módulo de Young em um único revestimento cerâmico podem apresentar uma distribuição de dados que indica o quão homogênea é a superfície. Regiões mais suaves em um bloco podem ser delineadas neste mapeamento e mostrar locais mais propensos a falhas devido a impactos físicos que acontecem no dia a dia na residência de alguém. Os mapeamentos podem ser feitos em diferentes tipos de ladrilhos para estudos comparativos e em um lote de ladrilhos semelhantes para medir a consistência dos ladrilhos em processos de controle de qualidade. A combinação de configurações de medições pode ser extensa, bem como precisa e eficiente com o método de mapeamento rápido.

 

OBJETIVO DA MEDIÇÃO

 

Neste estudo, a Nanovea Testador Mecânico, no modo FastMap é usado para mapear as propriedades mecânicas de um piso em altas velocidades. Demonstramos a capacidade do Nanovea Mechanical Tester em realizar dois mapeamentos rápidos de nanoindentação com alta precisão e reprodutibilidade.

 

Condições de teste

 

O Nanovea Mechanical Tester foi usado para realizar uma série de nanoindentações com o modo FastMap em um piso usando um penetrador Berkovich. Os parâmetros de teste estão resumidos abaixo para as duas matrizes de recuo criadas.

 

Tabela 1: Resumo dos parâmetros de teste.

 

RESULTADOS & DISCUSSÃO 

 

Figura 1: Visualização 2D e 3D do mapeamento de dureza de 625 recuos.

 

 

 

Figura 2: Micrografia de matriz de 625 travessões mostrando grãos.

 

 

Uma matriz de 625 indentações foi conduzida em uma matriz de 0,20mm2 área com grande grão visível presente. Este grão (Figura 2) apresentou dureza média inferior à superfície total da telha. O software Nanovea Mechanical permite ao usuário ver o mapa de distribuição de dureza nos modos 2D e 3D, representados na Figura 1. Usando o controle de posição de alta precisão do estágio de amostra, o software permite aos usuários direcionar áreas como essas para obter detalhes em profundidade. mapeamento de propriedades mecânicas.

Figura 3: Visualização 2D e 3D do mapeamento de dureza de 1600 recuos.

 

 

Figura 4: Micrografia da matriz de 1600 recuos.

 

 

Uma matriz de 1600 recuos também foi criada no mesmo ladrilho para medir a homogeneidade da superfície. Aqui, novamente, o usuário tem a capacidade de ver a distribuição de dureza no modo 3D ou 2D (Figura 3), bem como a imagem microscópica da superfície recortada. Com base na distribuição de dureza apresentada, pode-se concluir que o material é poroso devido à dispersão uniforme dos pontos de dados de alta e baixa dureza.

Comparado aos procedimentos convencionais de nanoindentação, o modo FastMap neste estudo consome substancialmente menos tempo e é mais econômico. Ele permite o mapeamento quantitativo rápido de propriedades mecânicas, incluindo Dureza e Módulo de Young, e fornece uma solução para detecção de grãos e consistência de material, o que é fundamental para o controle de qualidade de uma variedade de materiais na produção em massa.

 

 

CONCLUSÃO

 

Neste estudo, demonstramos a capacidade do Nanovea Mechanical Tester em realizar mapeamento de nanoindentação rápido e preciso usando o modo FastMap. Os mapas de propriedades mecânicas do revestimento cerâmico utilizam o controle de posição (com precisão de 0,2 µm) dos estágios e a sensibilidade do módulo de força para detectar grãos superficiais e medir a homogeneidade de uma superfície em alta velocidade.

Os parâmetros de teste utilizados neste estudo foram determinados com base no tamanho da matriz e do material da amostra. Uma variedade de parâmetros de teste pode ser escolhida para otimizar o tempo total do ciclo de indentação para 3 segundos por indentação (ou 30 segundos para cada 10 indentações).

Todos os módulos Nano e Micro do Testador Mecânico Nanovea incluem modos de teste de indentação, desgaste e desgaste em conformidade com ISO e ASTM, fornecendo a gama de testes mais ampla e fácil de usar disponível em um único sistema. A linha incomparável da Nanovea é uma solução ideal para determinar toda a gama de propriedades mecânicas de revestimentos, filmes e substratos finos ou espessos, macios ou duros, incluindo dureza, módulo de Young, tenacidade à fratura, adesão, resistência ao desgaste e muitos outros.

Além disso, o perfilador 3D sem contato opcional e o módulo AFM estão disponíveis para imagens 3D de alta resolução de indentação, arranhões e marcas de desgaste, além de outras medições de superfície, como rugosidade.

 

Autor: Duanjie Li, PhD Revisado por Pierre Leroux e Jocelyn Esparza

Melhorar os procedimentos de mineração com Microindendation

PESQUISA DE MICROINDENTAÇÃO E CONTROLE DE QUALIDADE

A mecânica das rochas é o estudo do comportamento mecânico dos maciços rochosos e é aplicada nas indústrias de mineração, perfuração, produção de reservatórios e construção civil. A instrumentação avançada com medição precisa das propriedades mecânicas permite a melhoria de peças e procedimentos dentro dessas indústrias. Procedimentos bem sucedidos de controle de qualidade são assegurados pela compreensão da mecânica de rochas na microescala.

Microindentação é uma ferramenta crucial usada para estudos relacionados à mecânica de rochas. Essas técnicas aprimoram as técnicas de escavação, fornecendo maior compreensão das propriedades da massa rochosa. A microindentação é usada para melhorar as cabeças de perfuração, o que aprimora os procedimentos de mineração. A microindentação tem sido usada para estudar a formação de giz e pó de minerais. Os estudos de microindentação podem incluir dureza, módulo de Young, fluência, tensão-deformação, resistência à fratura e compressão com um único instrumento.
 
 

OBJETIVO DA MEDIÇÃO

Nesta aplicação o Nanovea testador mecânico mede a dureza Vickers (Hv), o módulo de Young e a tenacidade à fratura de uma amostra de rocha mineral. A rocha é composta por biotita, feldspato e quartzo que formam o compósito granítico padrão. Cada um é testado separadamente.

 

RESULTADOS E DISCUSSÃO

Esta seção inclui uma tabela de resumo que compara os principais resultados numéricos para as diferentes amostras, seguida da lista completa dos resultados, incluindo cada indentação realizada, acompanhada por micrográficos da indentação, quando disponível. Estes resultados completos apresentam os valores medidos do módulo de Dureza e Young como a profundidade de penetração (Δd) com suas médias e desvios padrão. Deve-se considerar que pode ocorrer grande variação nos resultados caso a rugosidade superficial esteja na mesma faixa de tamanho que o recuo.


Tabela de resumo dos principais resultados numéricos para Dureza e Resistência à Fratura

 

CONCLUSÃO

O testador mecânico Nanovea demonstra reprodutibilidade e resultados precisos de indentação na superfície dura da rocha mineral. A dureza e o módulo de Young de cada material que forma o granito foi medido diretamente da profundidade versus curvas de carga. A superfície rugosa significou testes com cargas mais elevadas que podem ter causado micro fissuras. As micro fissuras explicariam algumas das variações observadas nas medições. As rachaduras não eram perceptíveis através da observação microscópica padrão por causa de uma superfície de amostra áspera. Portanto, não é possível calcular os números tradicionais de resistência à fratura que exigem medições do comprimento das fissuras. Em vez disso, utilizamos o sistema para detectar a iniciação de fissuras através dos deslocamentos na profundidade versus curvas de carga enquanto aumentava as cargas.

As cargas de limite de fraturas foram relatadas em cargas onde ocorreram falhas. Ao contrário dos testes tradicionais de resistência à fratura que medem simplesmente o comprimento da fratura, obtém-se uma carga na qual se inicia a fratura do limiar. Além disso, o ambiente controlado e monitorado de perto permite que a medição da dureza seja usada como um valor quantitativo para comparar uma variedade de amostras.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Avaliação da Dureza Biológica do Tecido usando Nanoindentação

Importância da Nanoindentação Biológica de Tecidos

Os testes mecânicos tradicionais (dureza, aderência, compressão, punção, resistência à ruptura, etc.) exigem maior precisão e confiabilidade nos ambientes atuais de controle de qualidade com uma ampla gama de materiais avançados, desde tecidos até materiais frágeis. A instrumentação mecânica tradicional não fornece o controle de carga sensível e a resolução necessária para materiais avançados. Os desafios associados aos biomateriais exigem o desenvolvimento de testes mecânicos capazes de controlar com precisão a carga de materiais extremamente macios. Estes materiais exigem cargas de teste sub mN muito baixas com grande alcance de profundidade para garantir a medição adequada das propriedades. Além disso, muitos tipos diferentes de testes mecânicos podem ser realizados em um único sistema, permitindo uma maior funcionalidade. Isto fornece uma gama de medições importantes sobre biomateriais, incluindo dureza, módulo elástico, módulo de perda e armazenamento, além de resistência a arranhões e pontos de ruptura de resistência ao escoamento.

 

Objetivo da medição

Nesta aplicação o testador mecânico Nanovea em modo nanoindentação é usado para estudar a dureza e o módulo elástico de 3 áreas separadas de um substituto de biomaterial em regiões de gordura, carne clara e carne escura de prosciutto.

A nanoindentação é baseada nas normas de indentação instrumentada ASTM E2546 e ISO 14577. Ela usa métodos estabelecidos onde uma ponta de indentação de geometria conhecida é conduzida para um local específico do material de teste com uma carga normal crescente controlada. Ao atingir uma profundidade máxima pré-estabelecida, a carga normal é reduzida até que ocorra um relaxamento completo. A carga é aplicada por um atuador piezo e medida em um laço controlado com uma célula de carga de alta sensibilidade. Durante os experimentos, a posição de indentro em relação à superfície da amostra é monitorada com um sensor capacitivo de alta precisão. As curvas de carga e deslocamento resultantes fornecem dados específicos para a natureza mecânica do material testado. Os modelos estabelecidos calculam a dureza quantitativa e os valores de módulo com os dados medidos. A nanoindentação é adequada para medições de baixa carga e profundidade de penetração em escalas nanométricas.

Resultados e Discussão

Estas tabelas abaixo apresentam valores medidos de dureza e módulo de Young com médias e desvios padrão. A elevada rugosidade superficial pode causar grandes variações nos resultados devido ao pequeno tamanho do recuo.

A área de gordura tinha cerca da metade da dureza das áreas de carne. O tratamento da carne fez com que a área mais escura da carne fosse mais dura do que a área mais clara. O módulo elástico e a dureza estão em relação direta com a sensação de mastigabilidade da boca das áreas de gordura e de carne. A área de gordura e de carne clara tem rastejamento continuando a uma taxa maior do que a de carne escura após 60 segundos.

Resultados detalhados - Gordura

Resultados detalhados - Carne leve

Resultados detalhados - Carne escura

Conclusão

Nesta aplicação, o Nanovea testador mecânico no modo de nanoindentação, determinou de forma confiável as propriedades mecânicas das áreas de gordura e carne, ao mesmo tempo em que superou a alta rugosidade da superfície da amostra. Isto demonstrou a ampla e incomparável capacidade do testador mecânico da Nanovea. O sistema fornece simultaneamente medições precisas de propriedades mecânicas em materiais extremamente duros e tecidos biológicos moles.

A célula de carga em circuito fechado com a mesa piezoelétrica garante a medição precisa de materiais em gel duros ou moles de 1 a 5kPa. Usando o mesmo sistema, é possível testar biomateriais com cargas mais altas de até 400N. A carga de múltiplos ciclos pode ser usada para testes de fadiga e as informações de resistência ao escoamento em cada zona podem ser obtidas usando uma ponta cilíndrica plana de diamante. Além disso, com a Análise Mecânica Dinâmica (DMA), a perda de propriedades viscoelásticas e os módulos de armazenamento podem ser avaliados com alta precisão usando o controle de carga em circuito fechado. Testes em várias temperaturas e sob líquidos também estão disponíveis no mesmo sistema.

O testador mecânico da Nanovea continua sendo a ferramenta superior para aplicações biológicas e de polímeros moles/gel.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Avaliação da dureza dos dentes utilizando a nanoindentação

Importância da nanoindentação para materiais biológicos

 
Com muitos testes mecânicos tradicionais (dureza, adesão, compressão, perfuração, resistência ao escoamento, etc.), os ambientes de controle de qualidade atuais com materiais sensíveis avançados, de géis a materiais frágeis, agora exigem maior precisão e controle de confiabilidade. A instrumentação mecânica tradicional não consegue fornecer o controle de carga sensível e a resolução necessários, pois foi projetada para ser usada em materiais a granel. Como o tamanho do material que está sendo testado tornou-se de maior interesse, o desenvolvimento de Nanoindentação forneceu um método confiável para obter informações mecânicas essenciais sobre superfícies menores, como a pesquisa que está sendo feita com biomateriais. Os desafios especificamente associados aos biomateriais exigiram o desenvolvimento de testes mecânicos capazes de controlar com precisão a carga em materiais extremamente macios e frágeis. Além disso, são necessários vários instrumentos para realizar diversos testes mecânicos que agora podem ser realizados em um único sistema. A nanoindentação oferece uma ampla gama de medições com resolução precisa em cargas nano controladas para aplicações sensíveis.

 

 

Objetivo da medição

Nesta aplicação, a Nanovea Testador Mecânico, no modo Nanoindentação, é usado para estudar a dureza e o módulo de elasticidade da dentina, cárie e polpa de um dente. O aspecto mais crítico do teste de nanoindentação é proteger a amostra. Aqui pegamos um dente fatiado e montado em epóxi, deixando todas as três áreas de interesse expostas para teste.

 

 

Resultados e Discussão

Esta seção inclui uma tabela de resumo que compara os principais resultados numéricos para as diferentes amostras, seguida da lista completa dos resultados, incluindo cada indentação realizada, acompanhada por micrográficos da indentação, quando disponível. Estes resultados completos apresentam os valores medidos do módulo de Dureza e do módulo Young como a profundidade de penetração com suas médias e desvios padrão. Deve-se considerar que grande variação nos resultados pode ocorrer caso a rugosidade superficial esteja na mesma faixa de tamanho que o recuo.

Tabela de resumo dos principais resultados numéricos:

 

 

Conclusão

Em conclusão, mostramos como o Testador Mecânico Nanovea, no modo Nanoindentação, proporciona uma medição precisa das propriedades mecânicas de um dente. Os dados podem ser utilizados no desenvolvimento de obturações que melhor se adaptam às características mecânicas de um dente real. A capacidade de posicionamento do Nanovea Mechanical Tester permite o mapeamento completo da dureza dos dentes através das várias zonas.

Usando o mesmo sistema, é possível testar a resistência à fratura do material dos dentes com cargas mais altas de até 200N. Um teste de carga de múltiplos ciclos pode ser usado em materiais mais porosos para avaliar o nível restante de elasticidade. O uso de uma ponta cilíndrica plana de diamante pode dar informações sobre a resistência à ruptura em cada zona. Além disso, com a "Análise Mecânica Dinâmica" da DMA, as propriedades viscoelásticas, incluindo perda e modulação de armazenamento, podem ser avaliadas.

O módulo Nanovea nano é ideal para estes testes porque utiliza uma resposta de feedback única para controlar precisamente a carga aplicada. Devido a isso, o módulo nano pode também ser usado para fazer testes precisos de nano arranhões. O estudo da resistência a arranhões e desgaste do material do dente e materiais de preenchimento aumenta a utilidade geral do testador mecânico. A utilização de uma ponta afiada de 2 mícrons para comparar quantitativamente a marcação em materiais de preenchimento permitirá uma melhor previsão do comportamento em aplicações reais. Os testes de desgaste multi-passe ou de desgaste rotativo direto também são testes comuns que fornecem informações importantes sobre a viabilidade a longo prazo.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO