EE.UU./GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTACTO

Propiedades mecánicas del hidrogel

PROPIEDADES MECÁNICAS DEL HIDROGEL

USO DE LA NANOINDENTACIÓN

PROPIEDADES MECÁNICAS DEL HIDROGEL

Preparado por

DUANJIE LI, Doctor y JORGE RAMÍREZ

INTRODUCCIÓN

El hidrogel es conocido por su gran capacidad de absorción de agua, lo que le permite tener una flexibilidad muy similar a la de los tejidos naturales. Esta similitud ha convertido al hidrogel en una opción habitual no solo en biomateriales, sino también en aplicaciones electrónicas, medioambientales y de bienes de consumo, como las lentes de contacto. Cada aplicación específica requiere propiedades mecánicas concretas del hidrogel.

IMPORTANCIA DE LA NANOINDENTACIÓN PARA EL HIDROGEL

Los hidrogeles plantean retos únicos para la nanoindentación, como la selección de los parámetros de prueba y la preparación de las muestras. Muchos sistemas de nanoindentación tienen limitaciones importantes, ya que no fueron diseñados originalmente para materiales tan blandos. Algunos de los sistemas de nanoindentación utilizan un conjunto de bobina/imán para aplicar fuerza sobre la muestra. No se realiza una medición real de la fuerza, lo que da lugar a una carga inexacta y no lineal al realizar ensayos con materiales blandos. materiales. Determinar el punto de contacto es extremadamente difícil, ya que el La profundidad es el único parámetro que realmente se mide. Es casi imposible observar el cambio de pendiente en el Profundidad frente a tiempo trama durante el período en el que la punta del penetrador se aproxima al material hidrogel.

Con el fin de superar las limitaciones de estos sistemas, el nanomódulo del NANOVEA Comprobador mecánico mide la retroalimentación de fuerza con una célula de carga individual para garantizar una alta precisión en todo tipo de materiales, ya sean blandos o duros. El desplazamiento controlado por piezoeléctricos es extremadamente preciso y rápido. Esto permite una medición inigualable de las propiedades viscoelásticas, ya que elimina muchas suposiciones teóricas que deben tener en cuenta los sistemas con un conjunto de bobina/imán y sin retroalimentación de fuerza.

OBJETIVO DE MEDICIÓN

En esta aplicación, el NANOVEA El probador mecánico, en modo nanoindentación, se utiliza para estudiar la dureza, el módulo elástico y la fluencia de una muestra de hidrogel.

NANOVEA PB1000 Comprobador mecánico

CONDICIONES DE ENSAYO

Se analizó una muestra de hidrogel colocada sobre un portaobjetos de vidrio mediante la técnica de nanoindentación utilizando un NANOVEA Probador mecánico. Para este material blando se utilizó una punta esférica de 3 mm de diámetro. La carga aumentó linealmente de 0,06 a 10 mN durante el periodo de carga. A continuación, se midió la fluencia mediante el cambio de la profundidad de la indentación a la carga máxima de 10 mN durante 70 segundos.

VELOCIDAD DE APROXIMACIÓN: 100 μm/min

CARGA DE CONTACTO
0,06 mN
CARGA MÁXIMA
10 mN
VELOCIDAD DE CARGA

20 mN/min

CREEP
70 s
Prueba de indentación con hidrogel

RESULTADOS Y DEBATE

La evolución de la carga y la profundidad en función del tiempo se muestra en FIGURA 1. Se puede observar que en el gráfico de la Profundidad frente a tiempo, es muy difícil determinar el punto de cambio de pendiente al inicio del periodo de carga, que suele servir como indicación del momento en que el penetrador comienza a entrar en contacto con el material blando. Sin embargo, el gráfico de la Carga frente a tiempo muestra el comportamiento peculiar del hidrogel bajo una carga aplicada. Cuando el hidrogel comienza a entrar en contacto con el penetrador de bola, el hidrogel tira del penetrador debido a su tensión superficial, que tiende a disminuir el área superficial. Este comportamiento da lugar a una carga medida negativa al comienzo de la etapa de carga. La carga aumenta progresivamente a medida que el penetrador se hunde en el hidrogel, y luego se controla para que se mantenga constante a la carga máxima de 10 mN durante 70 segundos para estudiar el comportamiento de fluencia del hidrogel.

caracterización del hidrogel
nanoindentación de hidrogeles

FIGURA 1: Evolución de la carga y la profundidad en función del tiempo.

La trama de la Profundidad de fluencia frente al tiempo se muestra en FIGURA 2, y el Carga frente a desplazamiento El gráfico de la prueba de nanoindentación se muestra en FIGURA 3. El hidrogel utilizado en este estudio tiene una dureza de 16,9 kPa y un módulo de Young de 160,2 kPa, calculados a partir de la curva de desplazamiento de carga utilizando el método Oliver-Pharr.

La fluencia es un factor importante para el estudio de las propiedades mecánicas de un hidrogel. El control de retroalimentación de bucle cerrado entre el piezoeléctrico y la célula de carga ultrasensible garantiza una carga constante real durante el tiempo de fluencia a la carga máxima. Como se muestra en FIGURA 2, El hidrogel se hunde ~42 μm como resultado de la fluencia en 70 segundos bajo la carga máxima de 10 mN aplicada por la punta de bola de 3 mm.

pruebas mecánicas de hidrogeles

FIGURA 2: Desplazamiento lento con una carga máxima de 10 mN durante 70 segundos.

prueba de durabilidad del hidrogel

FIGURA 3: Gráfico de carga frente a desplazamiento del hidrogel.

CONCLUSIÓN

En este estudio, demostramos que el NANOVEA El probador mecánico, en modo nanoindentación, proporciona una medición precisa y repetible de las propiedades mecánicas de un hidrogel, incluyendo la dureza, el módulo de Young y la fluencia. La punta de bola grande de 3 mm garantiza un contacto adecuado con la superficie del hidrogel. La plataforma motorizada de alta precisión permite posicionar con precisión la cara plana de la muestra de hidrogel bajo la punta de bola. El hidrogel de este estudio presenta una dureza de 16,9 KPa y un módulo de Young de 160,2 KPa. La profundidad de fluencia es de ~42 μm bajo una carga de 10 mN durante 70 segundos.

NANOVEA Los probadores mecánicos ofrecen módulos nano y micro multifuncionales sin igual en una sola plataforma. Ambos módulos incluyen un probador de rayaduras, un probador de dureza y un modo de probador de desgaste, lo que ofrece la gama de pruebas más amplia y fácil de usar disponible en un solo dispositivo.
sistema.

Pruebas de desgaste del pistón

PRUEBAS DE DESGASTE DE PISTONESUTILIZANDO EL TRIBÓMETRO NANOVEA

Pruebas de desgaste del pistón utilizando el tribómetro NANOVEA en condiciones lubricadas.

Preparado por

FRANK LIU

¿Qué es la prueba de desgaste de pistones?

Las pruebas de desgaste de pistones evalúan la fricción, la lubricación y la durabilidad de los materiales entre las faldas de pistón y las camisas de cilindro en condiciones controladas de laboratorio. Utilizando un tribómetroLos ingenieros pueden reproducir el movimiento alternativo real y medir con precisión el coeficiente de fricción, la tasa de desgaste y la topografía de la superficie en 3D. Estos resultados proporcionan información clave sobre el comportamiento tribológico de los revestimientos, lubricantes y aleaciones utilizados en los pistones de los motores, ayudando a optimizar el rendimiento, la eficiencia del combustible y la fiabilidad a largo plazo.

esquema de la interfaz de lubricación de la falda del pistón y la camisa del cilindro durante las pruebas de desgaste

 Esquema del sistema de cilindros de potencia e interfaces falda del pistón-lubricante-guarnición del cilindro.

💡 ¿Desea cuantificar la tasa de desgaste y la fricción de sus propias muestras? Solicite una prueba tribológica personalizada adaptada a su aplicación.

Por qué son importantes las pruebas de desgaste del pistón en el desarrollo de motores

El aceite de motor es un lubricante bien diseñado para su aplicación. Además del aceite base, se añaden aditivos como detergentes, dispersantes, mejoradores de la viscosidad (VI), agentes antidesgaste/antifricción e inhibidores de la corrosión para mejorar su rendimiento. Estos aditivos afectan al comportamiento del aceite en diferentes condiciones de funcionamiento. El comportamiento del aceite afecta a las interfaces P-L-C y determina si se produce un desgaste significativo por contacto metal-metal o si se produce lubricación hidrodinámica (muy poco desgaste).

Es difícil comprender las interfaces P-L-C sin aislar la zona de las variables externas. Resulta más práctico simular el suceso con condiciones representativas de su aplicación en la vida real. El sitio NANOVEA Tribometer es ideal para ello. Equipado con múltiples sensores de fuerza, sensor de profundidad, un módulo de lubricante gota a gota y una etapa lineal alternativa, el NANOVEA T2000 es capaz de imitar de cerca los acontecimientos que se producen en el interior de un bloque motor y obtener datos valiosos para comprender mejor las interfaces P-L-C.

nanovea tribometer piston wear and friction testing module setup

Módulo de líquido en el tribómetro NANOVEA T2000

El módulo gota a gota es crucial para este estudio. Dado que los pistones pueden moverse a gran velocidad (más de 3.000 rpm), es difícil crear una fina película de lubricante sumergiendo la muestra. Para solucionar este problema, el módulo gota a gota es capaz de aplicar una cantidad constante de lubricante sobre la superficie de la falda del pistón.

La aplicación de lubricante fresco también elimina la preocupación de que los contaminantes de desgaste desalojados influyan en las propiedades del lubricante.

Cómo simulan los tribómetros
Desgaste real de la camisa del pistón

En este informe se estudiarán las interfaces falda del pistón-lubricante- camisa del cilindro. Las interfaces se reproducirán mediante la realización de un movimiento alternativo lineal. prueba de desgaste con módulo de lubricante gota a gota.

El lubricante se aplicará a temperatura ambiente y en condiciones de calentamiento para comparar el arranque en frío y las condiciones óptimas de funcionamiento. Se observará el COF y la tasa de desgaste para comprender mejor cómo se comportan las interfaces en aplicaciones reales.

NANOVEA T2000
Tribómetro de alta carga

Parámetros y configuración de la prueba de desgaste del pistón

CARGAR ............................ 100 N

DURACIÓN DE LA PRUEBA ............................ 30 minutos

VELOCIDAD ............................ 2000 rpm

AMPLITUD ............................ 10 mm

DISTANCIA TOTAL ............................ 1200 m

REVESTIMIENTO DE LA FALDA ............................ Moly-grafito

PIN MATERIAL ............................ Aleación de aluminio 5052

DIÁMETRO DEL PIN ............................ 10 mm

LUBRICANTE ............................ Aceite de motor (10W-30)

CAUDAL APROX. CAUDAL ............................ 60 mL/min

TEMPERATURA ............................ Temperatura ambiente y 90°C

Relevancia real de
Pruebas de desgaste del pistón

Las pruebas de desgaste de pistones basadas en tribómetros proporcionan una visión crítica de cómo las elecciones de materiales y las estrategias de lubricación afectan a la fiabilidad real del motor. En lugar de depender de costosas pruebas en motores completos, los laboratorios pueden evaluar revestimientos, aceites y superficies de aleación en condiciones realistas de carga mecánica y temperatura. NANOVEA Perfilometría 3D y los módulos de tribología permiten cartografiar con precisión la profundidad de desgaste y la estabilidad de la fricción, lo que ayuda a los equipos de I+D a optimizar el rendimiento y reducir los ciclos de desarrollo.

Resultados y análisis de las pruebas de desgaste del pistón

comparación de la cicatriz de desgaste del pistón a partir de la prueba de desgaste lubricada por tribómetro

En este experimento, se utilizó A5052 como contramaterial. Aunque los bloques de motor suelen estar hechos de aluminio fundido, como el A356, el A5052 tiene propiedades mecánicas similares al A356 para este ensayo de simulación [1].

En las condiciones de ensayo, se observó un desgaste significativo en la falda del pistón a temperatura ambiente en comparación con 90°C. Los profundos arañazos observados en las muestras sugieren que el contacto entre el material estático y la falda del pistón se produce con frecuencia a lo largo de la prueba. La alta viscosidad a temperatura ambiente puede impedir que el aceite llene completamente los huecos en las interfaces y cree contacto metal-metal. A mayor temperatura, el aceite se diluye y puede fluir entre el bulón y el pistón. Como resultado, se observa un desgaste significativamente menor a mayor temperatura. La FIGURA 5 muestra que un lado de la cicatriz de desgaste se desgasta mucho menos que el otro. Esto se debe probablemente a la ubicación de la salida de aceite. El espesor de la película lubricante era mayor en un lado que en el otro, lo que provocó un desgaste desigual.

[1] "Aluminio 5052 frente a aluminio 356.0". MakeItFrom.com, makeitfrom.com/compare/5052-O-Aluminum/A356.0-SG70B-A13560-Cast-Aluminum

El COF de los ensayos tribológicos alternativos lineales puede dividirse en paso alto y paso bajo. El paso alto se refiere a la muestra que se mueve en la dirección de avance, o positiva, y el paso bajo se refiere a la muestra que se mueve en la dirección de retroceso, o negativa. Se observó que el COF medio del aceite RT era inferior a 0,1 en ambas direcciones. El COF medio entre pasadas fue de 0,072 y 0,080. Se observó que el COF medio del aceite a 90°C era diferente entre pasadas. Se observaron valores medios de COF de 0,167 y 0,09. La diferencia en el COF es una prueba adicional de que el aceite sólo fue capaz de humedecer correctamente un lado del pasador. Se obtuvo un COF elevado cuando se formó una película gruesa entre el bulón y la falda del pistón debido a que se produjo una lubricación hidrodinámica. Se observa un COF más bajo en la otra dirección cuando se produce una lubricación mixta. Para obtener más información sobre la lubricación hidrodinámica y la lubricación mixta, visite nuestra nota de aplicación en Curvas Stribeck.
resultados del coeficiente de fricción y del índice de desgaste de la prueba de desgaste del pistón lubricado

Cuadro 1: Resultados de la prueba de desgaste de pistones lubricados.

gráficos del coeficiente de fricción para la prueba de desgaste del pistón a temperatura ambiente que muestran los perfiles de paso alto y bajo en bruto

FIGURA 1: Gráficos COF para la prueba de desgaste del aceite a temperatura ambiente A perfil bruto B paso alto C paso bajo.

gráficos del coeficiente de fricción para la prueba de desgaste del pistón a 90 grados centígrados que muestran los perfiles de paso alto y bajo en bruto

FIGURA 2: Gráficos COF para la prueba de aceite de desgaste a 90°C A perfil bruto B paso alto C paso bajo.

imagen al microscopio óptico de la cicatriz de desgaste del pistón en la prueba de desgaste del aceite de motor a temperatura ambiente

FIGURA 3: Imagen óptica de la cicatriz de desgaste de la prueba de desgaste del aceite de motor RT.

superficie del pistón con cicatriz de desgaste localizada resaltada para el análisis tribológico
análisis de volumen y profundidad de la cicatriz de desgaste del pistón a partir de la prueba del tribómetro

FIGURA 4: Volumen de un análisis del agujero de la cicatriz de desgaste de la prueba de desgaste del aceite de motor RT.

Perfilometría de superficie 3D de la cicatriz de desgaste del pistón que muestra la profundidad de desgaste y la rugosidad

FIGURA 5: Escaneado perfilométrico de la cicatriz de desgaste de la prueba de desgaste del aceite de motor RT.

imagen al microscopio óptico de la cicatriz de desgaste del pistón en la prueba de desgaste del aceite de motor a 90 grados

FIGURA 6: Imagen óptica de la cicatriz de desgaste de la prueba de desgaste de aceite de motor a 90°C

falda del pistón mostrando la zona de desgaste analizada durante la prueba de desgaste del pistón tribómetro
medición del volumen y la profundidad de la cicatriz de desgaste del pistón a partir de la prueba del tribómetro de aceite de motor de 90 grados

FIGURA 7: Volumen de un análisis de agujero de la cicatriz de desgaste de la prueba de desgaste de aceite de motor a 90°C.

Escaneado de perfilometría de superficie 3D de la cicatriz de desgaste del pistón de una prueba de desgaste de aceite de motor de 90 grados que muestra la profundidad y la textura del desgaste.

FIGURA 8: Escaneado perfilométrico de la cicatriz de desgaste de la prueba de desgaste de aceite de motor a 90°C.

Conclusiones: Evaluación del desgaste del motor con tribómetros NANOVEA

Se realizaron pruebas de desgaste alternativo lineal lubricado en un pistón para simular lo que ocurre en un motor operativo real. La interfaz entre la falda del pistón, el lubricante y la camisa del cilindro es crucial para el funcionamiento de un motor. El espesor del lubricante en la interfaz es responsable de la pérdida de energía debida a la fricción o al desgaste entre la falda del pistón y la camisa del cilindro. Para optimizar el motor, el espesor de la película debe ser lo más fino posible sin permitir que la falda del pistón y la camisa del cilindro se toquen. El reto, sin embargo, es cómo afectarán los cambios de temperatura, velocidad y fuerza a las interfaces P-L-C.

Con su amplio rango de carga (hasta 2000 N) y velocidad (hasta 15000 rpm), el tribómetro NANOVEA T2000 es capaz de simular diferentes condiciones posibles en un motor. Los posibles estudios futuros sobre este tema incluyen cómo se comportarán las interfaces P-L-C bajo diferentes cargas constantes, cargas oscilantes, temperatura del lubricante, velocidad y método de aplicación del lubricante. Estos parámetros pueden ajustarse fácilmente con el tribómetro NANOVEA T2000 para obtener una comprensión completa de los mecanismos de las interfaces falda del pistón-lubricante-guarnición del cilindro.

ℹ️ ¿Le interesa probar las pastillas de freno? Más información comprobador de fricción de frenos para pastillas, revestimientos e I+D en automoción.