USA/GLOBALE: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTATTACI

Categoria: Profilometria | Struttura e grana

 

Analisi della superficie pallinata

ANALISI DELLA SUPERFICIE PALLINATA

UTILIZZO DEL PROFILOMETRO 3D SENZA CONTATTO

Preparato da

CRAIG LEISING

INTRODUZIONE

La pallinatura è un processo in cui un substrato viene bombardato con sfere sferiche di metallo, vetro o ceramica, comunemente denominate "sparate", con una forza destinata a indurre plasticità sulla superficie. L'analisi delle caratteristiche prima e dopo la martellatura fornisce spunti cruciali per migliorare la comprensione e il controllo del processo. La rugosità superficiale e l'area di copertura delle fossette lasciate dallo sparo sono aspetti di interesse particolarmente degni di nota.

Importanza del profilometro 3D senza contatto per l'analisi della superficie pallinata

A differenza dei profilometri a contatto tradizionali, tradizionalmente utilizzati per l'analisi delle superfici pallinate, la misurazione 3D senza contatto fornisce un'immagine 3D completa per offrire una comprensione più completa dell'area di copertura e della topografia della superficie. Senza funzionalità 3D, un'ispezione si baserà esclusivamente su informazioni 2D, che non sono sufficienti per caratterizzare una superficie. Comprendere la topografia, l'area di copertura e la rugosità in 3D è l'approccio migliore per controllare o migliorare il processo di pallinatura. di NANOVEA Profilometri 3D senza contatto utilizzano la tecnologia della luce cromatica con una capacità unica di misurare gli angoli ripidi riscontrati su superfici lavorate e pallinate. Inoltre, quando altre tecniche non riescono a fornire dati affidabili a causa del contatto della sonda, della variazione della superficie, dell'angolo o della riflettività, i profilometri NANOVEA riescono.

OBIETTIVO DI MISURAZIONE

In questa applicazione, il profilometro senza contatto NANOVEA ST400 viene utilizzato per misurare la materia prima e due superfici martellate in modo diverso per una revisione comparativa. C'è un elenco infinito di parametri di superficie che possono essere calcolati automaticamente dopo la scansione della superficie 3D. Qui esamineremo la superficie 3D e selezioneremo le aree di interesse per ulteriori analisi, inclusa la quantificazione e l'analisi della rugosità, delle fossette e dell'area della superficie.

NANOVEA

ST400

IL CAMPIONE

RISULTATI

SUPERFICIE IN ACCIAIO

ISO 25178 PARAMETRI DI RUGOSITÀ 3D

S.A 0,399 micron Rugosità media
Sq 0,516 micron Rugosità RMS
Sz 5,686 micron Massimo picco-valle
Sp 2,976 micron Altezza massima del picco
Sv 2,711 micron Profondità massima della fossa
Cod 3.9344 Curtosi
Ssk -0.0113 Skewness
Sal 0,0028 mm Lunghezza di correlazione automatica
str 0.0613 Proporzioni della trama
Sdar 26,539 mm² Superficie
Svk 0,589 micron Profondità della valle ridotta
 

RISULTATI

SUPERFICIE MARRELLATA 1

COPERTURA DELLA SUPERFICIE
98.105%

ISO 25178 PARAMETRI DI RUGOSITÀ 3D

Sa 4,102 micron Rugosità media
Sq 5,153 micron Rugosità RMS
Sz 44,975 micron Massimo picco-valle
Sp 24,332 micron Altezza massima del picco
Sv 20,644 micron Profondità massima della fossa
Cod 3.0187 Curtosi
Ssk 0.0625 Skewness
Sal 0,0976 mm Lunghezza di correlazione automatica
str 0.9278 Proporzioni della trama
Sdar 29.451mm² Superficie
Svk 5,008 micron Profondità della valle ridotta

RISULTATI

SUPERFICIE MARRELLATA 2

COPERTURA DELLA SUPERFICIE 97.366%

ISO 25178 PARAMETRI DI RUGOSITÀ 3D

Sa 4.330 micron Rugosità media
Sq 5,455 micron Rugosità RMS
Sz 54,013 micron Massimo picco-valle
Sp 25,908 micron Altezza massima del picco
Sv 28,105 micron Profondità massima della fossa
Cod 3.0642 Curtosi
Ssk 0.1108 Skewness
Sal 0,1034 mm Lunghezza di correlazione automatica
str 0.9733 Proporzioni della trama
Sdar 29,623 mm² Superficie
Svk 5,167 micron Profondità della valle ridotta

CONCLUSIONE

In questa applicazione di analisi della superficie pallinata, abbiamo dimostrato come il profilatore 3D senza contatto NANOVEA ST400 caratterizzi con precisione sia la topografia che i dettagli nanometrici di una superficie pallinata. È evidente che sia Surface 1 che Surface 2 hanno un impatto significativo su tutti i parametri qui riportati rispetto alla materia prima. Un semplice esame visivo delle immagini rivela le differenze tra le superfici. Ciò è ulteriormente confermato dall'osservazione dell'area di copertura e dei parametri elencati. Rispetto alla superficie 2, la superficie 1 presenta una rugosità media inferiore (Sa), ammaccature meno profonde (Sv) e un'area superficiale ridotta (Sdar), ma un'area di copertura leggermente superiore.

Da queste misurazioni della superficie 3D, le aree di interesse possono essere facilmente identificate e sottoposte a una gamma completa di misurazioni, tra cui rugosità, finitura, consistenza, forma, topografia, planarità, deformazione, planarità, volume, altezza del gradino e altre. È possibile scegliere rapidamente una sezione trasversale 2D per un'analisi dettagliata. Queste informazioni consentono un'analisi completa delle superfici martellate, utilizzando una gamma completa di risorse per la misurazione della superficie. Aree di interesse specifiche potrebbero essere ulteriormente esaminate con un modulo AFM integrato. I profilometri 3D NANOVEA offrono velocità fino a 200 mm/s. Possono essere personalizzati in termini di dimensioni, velocità, capacità di scansione e possono persino essere conformi agli standard delle camere bianche di classe 1. Sono inoltre disponibili opzioni come Indexing Conveyor e integrazione per l'utilizzo in linea o online.

Un ringraziamento speciale a Mr. Hayden della IMF per aver fornito il campione mostrato in questa nota. Industrial Metal Finishing Inc. | www.indmetfin.com

Morfologia della superficie della vernice

MORFOLOGIA DELLA SUPERFICIE DELLA PITTURA

MONITORAGGIO AUTOMATIZZATO DELL'EVOLUZIONE IN TEMPO REALE
UTILIZZO DEL PROFILOMETRO NANOVEA 3D

Preparato da

DUANJIE LI, PhD

INTRODUZIONE

Le proprietà protettive e decorative della vernice svolgono un ruolo significativo in una varietà di settori, tra cui quello automobilistico, marittimo, militare e delle costruzioni. Per ottenere le proprietà desiderate, come la resistenza alla corrosione, la protezione dai raggi UV e la resistenza all'abrasione, le formule e le architetture delle vernici vengono attentamente analizzate, modificate e ottimizzate.

IMPORTANZA DEL PROFILOMETRO 3D SENZA CONTATTO PER L'ANALISI DELLA MORFOLOGIA DELLA SUPERFICIE DELLA VERNICE A SECCO

La vernice viene solitamente applicata in forma liquida e subisce un processo di essiccazione, che prevede l'evaporazione dei solventi e la trasformazione della vernice liquida in una pellicola solida. Durante il processo di essiccazione, la superficie verniciata cambia progressivamente forma e consistenza. È possibile sviluppare diverse finiture superficiali e trame utilizzando additivi per modificare la tensione superficiale e le proprietà di flusso della vernice. Tuttavia, in caso di una ricetta di vernice mal formulata o di un trattamento superficiale improprio, possono verificarsi cedimenti indesiderati della superficie della vernice.

Un accurato monitoraggio in situ della morfologia della superficie della vernice durante il periodo di essiccazione può fornire una visione diretta del meccanismo di essiccazione. Inoltre, l’evoluzione in tempo reale delle morfologie superficiali è un’informazione molto utile in varie applicazioni, come la stampa 3D. La NANOVEA Profilometri 3D senza contatto misurare la morfologia superficiale della vernice dei materiali senza toccare il campione, evitando qualsiasi alterazione della forma che potrebbe essere causata da tecnologie di contatto come uno stilo scorrevole.

OBIETTIVO DI MISURAZIONE

In questa applicazione, il profilometro senza contatto NANOVEA ST500, dotato di un sensore ottico a linea ad alta velocità, viene utilizzato per monitorare la morfologia della superficie della vernice durante il suo periodo di asciugatura di 1 ora. Mostriamo la capacità del profilometro senza contatto NANOVEA di fornire la misurazione automatica in tempo reale del profilo 3D dei materiali con un continuo cambiamento di forma.

NANOVEA

ST500

RISULTATI E DISCUSSIONE

La vernice è stata applicata sulla superficie di una lamiera, seguita immediatamente da misurazioni automatizzate dell'evoluzione morfologica della vernice in essiccazione in situ utilizzando il profilometro senza contatto NANOVEA ST500 dotato di un sensore di linea ad alta velocità. Una macro era stata programmata per misurare e registrare automaticamente la morfologia della superficie 3D a intervalli di tempo specifici: 0, 5, 10, 20, 30, 40, 50 e 60 min. Questa procedura di scansione automatizzata consente agli utenti di eseguire le attività di scansione automaticamente eseguendo le procedure impostate in sequenza, riducendo notevolmente lo sforzo, il tempo e i possibili errori dell'utente rispetto ai test manuali o alle scansioni ripetute. Questa automazione si rivela estremamente utile per misurazioni a lungo termine che comportano più scansioni a diversi intervalli di tempo.

Il sensore di linea ottica genera una linea luminosa composta da 192 punti, come mostrato nella FIGURA 1. Questi 192 punti luminosi scansionano simultaneamente la superficie del campione, aumentando significativamente la velocità di scansione. Ciò garantisce che ogni scansione 3D venga completata rapidamente per evitare cambiamenti sostanziali della superficie durante ogni singola scansione.

FIGURA 1: Sensore a linea ottica che scansiona la superficie della vernice in essiccazione.

La vista in falsi colori, la vista 3D e il profilo 2D della topografia della vernice essiccata in momenti rappresentativi sono mostrati rispettivamente nella FIGURA 2, FIGURA 3 e FIGURA 4. Il falso colore nelle immagini facilita il rilevamento di caratteristiche che non sono facilmente distinguibili. I diversi colori rappresentano le variazioni di altezza nelle diverse aree della superficie del campione. La vista 3D fornisce uno strumento ideale per gli utenti per osservare la superficie della vernice da diverse angolazioni. Durante i primi 30 minuti del test, i falsi colori sulla superficie della vernice cambiano gradualmente da toni più caldi a toni più freddi, indicando una progressiva diminuzione dell'altezza nel tempo in questo periodo. Questo processo rallenta, come dimostra il lieve cambiamento di colore confrontando la vernice a 30 e 60 minuti.

L'altezza media del campione e i valori di rugosità Sa in funzione del tempo di asciugatura della vernice sono riportati nella FIGURA 5. L'analisi completa della rugosità della vernice dopo 0, 30 e 60 minuti di asciugatura è elencata nella TABELLA 1. Si può osservare che l'altezza media della superficie pittorica diminuisce rapidamente da 471 a 329 µm nei primi 30 minuti di asciugatura. La trama superficiale si sviluppa contemporaneamente alla vaporizzazione del solvente, portando ad un aumento del valore di rugosità Sa da 7,19 a 22,6 µm. Successivamente il processo di essiccazione della vernice rallenta, determinando una graduale diminuzione dell'altezza del campione e del valore Sa a 317 µm e 19,6 µm, rispettivamente, a 60 min.

Questo studio evidenzia le capacità del profilometro senza contatto 3D NANOVEA nel monitorare i cambiamenti della superficie 3D della vernice in essiccazione in tempo reale, fornendo preziose informazioni sul processo di essiccazione della vernice. Misurando la morfologia della superficie senza toccare il campione, il profilometro evita di introdurre alterazioni di forma alla vernice non essiccata, che possono verificarsi con tecnologie di contatto come lo stilo scorrevole. Questo approccio senza contatto garantisce un'analisi accurata e affidabile della morfologia della superficie della vernice in essiccazione.

FIGURA 2: Evoluzione della morfologia superficiale della vernice in essiccazione in tempi diversi.

FIGURA 3: Vista 3D dell'evoluzione della superficie della vernice a diversi tempi di essiccazione.

FIGURA 4: Profilo 2D attraverso il campione di vernice dopo diversi tempi di asciugatura.

FIGURA 5: Evoluzione dell'altezza media del campione e del valore di rugosità Sa in funzione del tempo di asciugatura della vernice.

ISO 25178

Tempo di asciugatura (min) 0 5 10 20 30 40 50 60
Quadrato (µm) 7.91 9.4 10.8 20.9 22.6 20.6 19.9 19.6
Cod 26.3 19.8 14.6 11.9 10.5 9.87 9.83 9.82
Sp (µm) 97.4 105 108 116 125 118 114 112
Sv (µm) 127 70.2 116 164 168 138 130 128
Sz (µm) 224 175 224 280 294 256 244 241
Sa (µm) 4.4 5.44 6.42 12.2 13.3 12.2 11.9 11.8

mq – Altezza quadratica media | Codice – Curtosi | Sp – Altezza massima del picco | Sv – Altezza massima fossa | Tg – Altezza massima | Sv – Altezza media aritmetica

TABELLA 1: Rugosità della vernice a diversi tempi di asciugatura.

CONCLUSIONE

In questa applicazione, abbiamo mostrato le capacità del profilometro 3D senza contatto NANOVEA ST500 nel monitorare l'evoluzione della morfologia della superficie della vernice durante il processo di essiccazione. Il sensore di linea ottica ad alta velocità, che genera una linea con 192 punti luminosi che scansionano simultaneamente la superficie del campione, ha reso lo studio efficiente in termini di tempo, garantendo al tempo stesso una precisione senza pari.

La funzione macro del software di acquisizione consente di programmare misurazioni automatizzate della morfologia della superficie 3D in situ, rendendolo particolarmente utile per misurazioni a lungo termine che coinvolgono più scansioni a specifici intervalli di tempo target. Riduce significativamente il tempo, lo sforzo e il potenziale di errori dell'utente. I progressivi cambiamenti nella morfologia della superficie vengono continuamente monitorati e registrati in tempo reale mentre la vernice si asciuga, fornendo preziose informazioni sul meccanismo di asciugatura della vernice.

I dati mostrati qui rappresentano solo una frazione dei calcoli disponibili nel software di analisi. I profilometri NANOVEA sono in grado di misurare praticamente qualsiasi superficie, sia essa trasparente, scura, riflettente o opaca.

 

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Analisi della frattografia con la profilometria 3D

ANALISI DELLA FRATTOGRAFIA

USANDO LA PROFILOMETRIA 3D

Preparato da

CRAIG LEISING

INTRODUZIONE

La frattografia è lo studio delle caratteristiche sulle superfici fratturate ed è stata storicamente studiata tramite microscopio o SEM. A seconda delle dimensioni dell'elemento, per l'analisi della superficie viene selezionato un microscopio (macro caratteristiche) o un SEM (nano e micro caratteristiche). Entrambi consentono in definitiva di identificare il tipo di meccanismo di frattura. Sebbene efficace, il microscopio presenta chiari limiti e il SEM nella maggior parte dei casi, oltre all’analisi a livello atomico, non è pratico per la misurazione della superficie della frattura e manca di una più ampia capacità di utilizzo. Con i progressi nella tecnologia di misurazione ottica, NANOVEA Profilometro 3D senza contatto è ora considerato lo strumento preferito, con la sua capacità di fornire misurazioni di superfici 2D e 3D su scala nanometrica e macrometrica

IMPORTANZA DEL PROFILOMETRO 3D SENZA CONTATTO PER L'ISPEZIONE DELLE FRATTURE

A differenza di un SEM, un profilometro 3D senza contatto può misurare quasi tutte le superfici, le dimensioni del campione, con una preparazione minima del campione, il tutto offrendo dimensioni verticali e orizzontali superiori a quelle di un SEM. Con un profilatore, le caratteristiche da nano a macro gamma sono catturate in una singola misurazione con zero influenza dalla riflettività del campione. Misura facilmente qualsiasi materiale: trasparente, opaco, speculare, diffusivo, lucido, ruvido, ecc. Il profilometro 3D senza contatto fornisce una capacità ampia e facile da usare per massimizzare gli studi sulla frattura della superficie ad una frazione del costo di un SEM.

OBIETTIVO DI MISURAZIONE

In questa applicazione, il NANOVEA ST400 viene utilizzato per misurare la superficie fratturata di un campione di acciaio. In questo studio, mostreremo un'area 3D, l'estrazione del profilo 2D e la mappa direzionale della superficie.

NANOVEA

ST400

RISULTATI

SUPERFICIE SUPERIORE

Direzione della texture della superficie 3D

Isotropia51.26%
Prima direzione123.2º
Seconda direzione116.3º
Terza direzione0.1725º

Area superficiale, volume, rugosità e molti altri possono essere calcolati automaticamente da questa estrazione.

Estrazione del profilo 2D

RISULTATI

SUPERFICIE LATERALE

Direzione della texture della superficie 3D

Isotropia15.55%
Prima direzione0.1617º
Seconda direzione110.5º
Terza direzione171.5º

Area superficiale, volume, rugosità e molti altri possono essere calcolati automaticamente da questa estrazione.

Estrazione del profilo 2D

CONCLUSIONE

In questa applicazione, abbiamo mostrato come il NANOVEA ST400 3D Non-Contact Profilometer può caratterizzare con precisione la topografia completa (nano, micro e macro caratteristiche) di una superficie fratturata. Dall'area 3D, la superficie può essere chiaramente identificata e le sottoaree o i profili/sezioni trasversali possono essere rapidamente estratti e analizzati con una lista infinita di calcoli della superficie. Le caratteristiche superficiali sub nanometriche possono essere ulteriormente analizzate con un modulo AFM integrato.

Inoltre, NANOVEA ha incluso una versione portatile alla sua linea di profilometri, particolarmente importante per gli studi sul campo dove la superficie di frattura è immobile. Con questo ampio elenco di capacità di misurazione della superficie, l'analisi della superficie di frattura non è mai stata così facile e conveniente con un unico strumento.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Topografia della superficie della vetroresina con la profilometria 3D

TOPOGRAFIA DELLA SUPERFICIE IN VETRORESINA

USANDO LA PROFILOMETRIA 3D

Preparato da

CRAIG LEISING

INTRODUZIONE

La fibra di vetro è un materiale costituito da fibre di vetro estremamente sottili. Viene utilizzata come agente di rinforzo per molti prodotti polimerici; il materiale composito risultante, propriamente noto come polimero rinforzato con fibre (FRP) o plastica rinforzata con vetro (GRP), è chiamato "fibra di vetro" nell'uso popolare.

IMPORTANZA DELL'ISPEZIONE METROLOGICA DELLE SUPERFICI PER IL CONTROLLO DI QUALITÀ

Sebbene gli usi del rinforzo in fibra di vetro siano molteplici, nella maggior parte delle applicazioni è fondamentale che siano il più resistenti possibile. I compositi in fibra di vetro hanno uno dei più alti rapporti tra resistenza e peso disponibili e in alcuni casi, libbra per libbra, sono più resistenti dell'acciaio. Oltre all'elevata resistenza, è importante che la superficie esposta sia la più ridotta possibile. Ampie superfici in vetroresina possono rendere la struttura più vulnerabile agli attacchi chimici ed eventualmente all'espansione del materiale. Pertanto, l'ispezione delle superfici è fondamentale per il controllo della qualità della produzione.

OBIETTIVO DI MISURAZIONE

In questa applicazione, il NANOVEA ST400 viene utilizzato per misurare la rugosità e la planarità della superficie di un composito in fibra di vetro. Quantificando queste caratteristiche della superficie è possibile creare o ottimizzare un materiale composito in fibra di vetro più resistente e duraturo.

NANOVEA

ST400

PARAMETRI DI MISURA

SONDA 1 mm
TASSO DI ACQUISIZIONE300 Hz
MEDIA1
SUPERFICIE MISURATA5 mm x 2 mm
DIMENSIONE DEL PASSO5 µm x 5 µm
MODALITÀ DI SCANSIONEVelocità costante

SPECIFICHE DELLA SONDA

MISURA GAMMA1 mm
Z RISOLUZIONE 25 nm
Z ACCURATEZZA200 nm
RISOLUZIONE LATERALE 2 μm

RISULTATI

VISTA A FALSI COLORI

Piattezza della superficie 3D

Rugosità superficiale 3D

Sa15,716 μmAltezza media aritmetica
Sq19,905 μmAltezza quadratica media
Sp116,74 μmAltezza massima del picco
Sv136,09 μmAltezza massima della fossa
Sz252,83 μmAltezza massima
Ssk0.556Skewness
Ssu3.654Curtosi

CONCLUSIONE

Come mostrato nei risultati, il NANOVEA ST400 Optical Profilatore è stato in grado di misurare con precisione la rugosità e la planarità della superficie composita in fibra di vetro. I dati possono essere misurati su più lotti di compositi in fibra e/o un determinato periodo di tempo per fornire informazioni cruciali sui diversi processi di produzione della fibra di vetro e su come reagiscono nel tempo. Pertanto, l’ST400 è una valida opzione per rafforzare il processo di controllo qualità dei materiali compositi in fibra di vetro.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Usura e attrito dei nastri polimerici con il tribometro

CINGHIE IN POLIMERO

USURA E FRITTURA CON UN TRIBOMETRO

Preparato da

DUANJIE LI, PhD

INTRODUZIONE

La trasmissione a cinghia trasmette potenza e traccia il movimento relativo tra due o più alberi rotanti. Essendo una soluzione semplice ed economica con una manutenzione minima, le trasmissioni a cinghia sono ampiamente utilizzate in una varietà di applicazioni, come seghe, segherie, trebbiatrici, soffiatori di silo e trasportatori. Le trasmissioni a cinghia possono proteggere i macchinari dal sovraccarico e smorzare e isolare le vibrazioni.

IMPORTANZA DELLA VALUTAZIONE DELL'USURA PER LE TRASMISSIONI A CINGHIA

Attrito e usura sono inevitabili per le cinghie di una macchina a cinghia. Un attrito sufficiente garantisce una trasmissione efficace della potenza senza slittamenti, ma un attrito eccessivo può usurare rapidamente la cinghia. Durante il funzionamento della trasmissione a cinghia si verificano diversi tipi di usura, come la fatica, l'abrasione e l'attrito. Per prolungare la durata della cinghia e ridurre i costi e i tempi di riparazione e sostituzione, è auspicabile una valutazione affidabile delle prestazioni di usura delle cinghie per migliorarne la durata, l'efficienza produttiva e le prestazioni applicative. La misurazione accurata del coefficiente di attrito e del tasso di usura della cinghia facilita la ricerca e lo sviluppo e il controllo di qualità della produzione di cinghie.

OBIETTIVO DI MISURAZIONE

In questo studio abbiamo simulato e confrontato il comportamento all'usura di cinghie con diverse texture superficiali per mostrare la capacità del NANOVEA Il tribometro T2000 simula il processo di usura del nastro in modo controllato e monitorato.

NANOVEA

T2000

PROCEDURE DI TEST

Il coefficiente di attrito, COF, e la resistenza all'usura di due cinghie con diversa rugosità e struttura della superficie sono stati valutati con il metodo del NANOVEA Carico elevato Tribometro utilizzando il modulo di usura reciprocante lineare. Come contromateriale è stata utilizzata una sfera in acciaio 440 (diametro 10 mm). La rugosità superficiale e le tracce di usura sono state esaminate utilizzando un integrato Profilometro 3D senza contatto. Il tasso di usura, Kè stato valutato con la formula K=Vl(Fxs), dove V è il volume consumato, F è il carico normale e s è la distanza di scorrimento.

 

Si noti che in questo studio è stata utilizzata come esempio una sfera liscia in acciaio 440, ma è possibile applicare qualsiasi materiale solido con forme e finiture superficiali diverse utilizzando dispositivi personalizzati per simulare la situazione applicativa reale.

RISULTATI E DISCUSSIONE

Il nastro testurizzato e il nastro liscio presentano una rugosità superficiale Ra di 33,5 e 8,7 um, rispettivamente, secondo i profili superficiali analizzati presi con un NANOVEA Profilatore ottico 3D senza contatto. Il COF e il tasso di usura delle due cinghie testate sono stati misurati rispettivamente a 10 N e 100 N, per confrontare il comportamento di usura delle cinghie a carichi diversi.

FIGURA 1 mostra l'evoluzione del COF delle cinghie durante i test di usura. Le cinghie con texture diverse mostrano comportamenti di usura sostanzialmente diversi. È interessante notare che dopo il periodo di rodaggio, durante il quale il COF aumenta progressivamente, il nastro testurizzato raggiunge un COF inferiore, pari a ~0,5, in entrambe le prove condotte con carichi di 10 N e 100 N. In confronto, il nastro liscio testato con un carico di 10 N mostra un COF significativamente più alto, pari a ~1,4, quando il COF si stabilizza e si mantiene al di sopra di questo valore per il resto della prova. La cinghia liscia testata con un carico di 100 N è stata rapidamente consumata dalla sfera in acciaio 440 e ha formato un'ampia traccia di usura. La prova è stata quindi interrotta a 220 giri.

FIGURA 1: Evoluzione della COF dei nastri a diversi carichi.

La FIGURA 2 confronta le immagini 3D delle tracce di usura dopo i test a 100 N. Il profilometro 3D senza contatto NANOVEA offre uno strumento per analizzare la morfologia dettagliata delle tracce di usura, fornendo maggiori informazioni sulla comprensione fondamentale del meccanismo di usura.

TABELLA 1: Risultato dell'analisi delle tracce di usura.

FIGURA 2:  Vista 3D dei due nastri
dopo le prove a 100 N.

Il profilo tridimensionale della pista di usura consente di determinare direttamente e con precisione il volume della pista di usura calcolato dal software di analisi avanzata, come mostrato nella TABELLA 1. In un test di usura di 220 giri, il nastro liscio presenta una traccia di usura molto più ampia e profonda, con un volume di 75,7 mm3 , rispetto a un volume di usura di 14,0 mm3 per il nastro testurizzato dopo un test di usura di 600 giri. L'attrito significativamente più elevato del nastro liscio contro la sfera d'acciaio porta a un tasso di usura 15 volte superiore rispetto al nastro testurizzato.

 

Una differenza così drastica di COF tra il nastro testurizzato e il nastro liscio è probabilmente legata alla dimensione dell'area di contatto tra il nastro e la sfera d'acciaio, che porta anche a prestazioni di usura diverse. La FIGURA 3 mostra le tracce di usura dei due nastri al microscopio ottico. L'esame delle tracce di usura è in accordo con l'osservazione dell'evoluzione della COF: La cinghia testurizzata, che mantiene un basso COF di ~0,5, non mostra alcun segno di usura dopo il test di usura con un carico di 10 N. La cinghia liscia mostra una piccola traccia di usura a 10 N. I test di usura eseguiti a 100 N creano tracce di usura sostanzialmente più grandi sia sulla cinghia testurizzata che su quella liscia, e il tasso di usura sarà calcolato utilizzando profili 3D come verrà discusso nel paragrafo successivo.

FIGURA 3:  Tracce di usura al microscopio ottico.

CONCLUSIONE

In questo studio abbiamo dimostrato la capacità del tribometro NANOVEA T2000 di valutare il coefficiente di attrito e il tasso di usura delle cinghie in modo ben controllato e quantitativo. La struttura della superficie gioca un ruolo fondamentale nella resistenza all'attrito e all'usura delle cinghie durante il loro funzionamento. Il nastro testurizzato presenta un coefficiente di attrito stabile di ~0,5 e possiede una lunga durata, che si traduce in una riduzione dei tempi e dei costi di riparazione o sostituzione degli utensili. In confronto, l'attrito eccessivo del nastro liscio contro la sfera d'acciaio consuma rapidamente il nastro. Inoltre, il carico sul nastro è un fattore fondamentale per la sua durata. Il sovraccarico crea un attrito molto elevato, che porta a un'usura accelerata del nastro.

Il tribometro NANOVEA T2000 offre test di usura e attrito precisi e ripetibili utilizzando modalità rotative e lineari conformi alle norme ISO e ASTM, con moduli opzionali per l'usura ad alta temperatura, la lubrificazione e la tribocorrosione disponibili in un unico sistema pre-integrato. NANOVEA è la soluzione ideale per determinare l'intera gamma di proprietà tribologiche di rivestimenti, film e substrati sottili o spessi, morbidi o duri.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Microstruttura dei fossili con la profilometria 3D

MICROSTRUTTURA FOSSILE

USANDO LA PROFILOMETRIA 3D

Preparato da

DUANJIE LI, PhD

INTRODUZIONE

I fossili sono i resti conservati di tracce di piante, animali e altri organismi sepolti nei sedimenti di antichi mari, laghi e fiumi. I tessuti molli del corpo di solito si decompongono dopo la morte, ma i gusci duri, le ossa e i denti si fossilizzano. Le caratteristiche superficiali della microstruttura sono spesso conservate quando avviene la sostituzione minerale dei gusci e delle ossa originali, il che fornisce una visione dell'evoluzione del tempo e del meccanismo di formazione dei fossili.

IMPORTANZA DI UN PROFILOMETRO 3D SENZA CONTATTO PER L'ESAME DEI FOSSILI

I profili 3D del fossile ci permettono di osservare da vicino le caratteristiche superficiali dettagliate del campione fossile. L'alta risoluzione e la precisione del profilometro NANOVEA potrebbero non essere distinguibili ad occhio nudo. Il software di analisi del profilometro offre un'ampia gamma di studi applicabili a queste superfici uniche. A differenza di altre tecniche come i tastatori, la NANOVEA Profilometro 3D senza contatto misura le caratteristiche della superficie senza toccare il campione. Ciò consente di preservare le vere caratteristiche superficiali di alcuni delicati campioni fossili. Inoltre, il profilometro portatile modello Jr25 consente la misurazione 3D su siti fossili, il che facilita sostanzialmente l'analisi dei fossili e la protezione dopo lo scavo.

OBIETTIVO DI MISURAZIONE

In questo studio, il profilometro NANOVEA Jr25 è stato utilizzato per misurare la superficie di due campioni fossili rappresentativi. L'intera superficie di ciascun fossile è stata scansionata e analizzata per caratterizzarne le caratteristiche superficiali, tra cui rugosità, contorno e direzione della texture.

NANOVEA

Jr25

FOSSILE DI BRACHIOPODE

Il primo campione fossile presentato in questa relazione è un Brachiopode fossile, proveniente da un animale marino dotato di "valvole" (gusci) dure sulla superficie superiore e inferiore. La loro prima comparsa risale al periodo Cambriano, più di 550 milioni di anni fa.

La vista 3D della scansione è mostrata in FIGURA 1 e la vista in falsi colori è mostrata in FIGURA 2. 

FIGURA 1: Vista 3D del campione fossile di brachiopode.

FIGURA 2: Vista in falsi colori del campione fossile di brachiopode.

La forma complessiva è stata poi rimossa dalla superficie per indagare la morfologia superficiale locale e il contorno del fossile di brachiopode, come mostrato nella FIGURA 3. Sul campione di Brachiopode fossile si può ora osservare una particolare texture di scanalature divergenti.

FIGURA 3: Vista False Color e Vista Linee di contorno dopo la rimozione della forma.

Un profilo di linea viene estratto dall'area testurizzata per mostrare una vista trasversale della superficie fossile in FIGURA 4. Lo studio dell'altezza del gradino misura le dimensioni precise delle caratteristiche della superficie. I solchi hanno una larghezza media di ~0,38 mm e una profondità di ~0,25 mm.

FIGURA 4: Studi sul profilo delle linee e sull'altezza dei gradini della superficie strutturata.

FOSSILE DI STELO DI CRINOIDE

Il secondo campione fossile è un fossile di stelo di crinoide. I crinoidi sono comparsi per la prima volta nei mari del periodo Cambriano medio, circa 300 milioni di anni prima dei dinosauri. 

 

La vista 3D della scansione è mostrata nella FIGURA 5 e la vista in falsi colori è mostrata nella FIGURA 6. 

FIGURA 5: Vista 3D del campione fossile di crinoide.

L'isotropia e la rugosità della texture superficiale del fossile del crinoide sono analizzate nella FIGURA 7. 

 Questo fossile ha una direzione preferenziale della tessitura nell'angolo vicino a 90°, che porta all'isotropia della tessitura di 69%.

FIGURA 6: Vista a falsi colori del Gambo di crinoide campione.

 

FIGURA 7: Isotropia della texture superficiale e rugosità del gambo fossile di Crinoide.

Il profilo 2D lungo la direzione assiale del fossile di crinoide è illustrato nella FIGURA 8. 

La dimensione dei picchi della texture superficiale è abbastanza uniforme.

FIGURA 8: Analisi del profilo 2D del fossile del fusto di crinoide.

CONCLUSIONE

In questa applicazione, abbiamo studiato in modo esaustivo le caratteristiche superficiali 3D di un fossile di Brachiopode e di un Crinoide utilizzando il profilometro portatile senza contatto NANOVEA Jr25. Abbiamo dimostrato che lo strumento è in grado di caratterizzare con precisione la morfologia 3D dei campioni fossili. Le interessanti caratteristiche superficiali e la texture dei campioni vengono poi analizzate ulteriormente. Il campione di brachiopode possiede una struttura a scanalature divergenti, mentre il fossile di stelo di crinoide mostra un'isotropia preferenziale della struttura. Le scansioni 3D dettagliate e precise della superficie si rivelano strumenti ideali per paleontologi e geologi per studiare l'evoluzione della vita e la formazione dei fossili.

I dati qui riportati rappresentano solo una parte dei calcoli disponibili nel software di analisi. I profilometri NANOVEA misurano virtualmente qualsiasi superficie in campi come quello dei semiconduttori, della microelettronica, del solare, delle fibre ottiche, dell'automotive, dell'aerospaziale, della metallurgia, della lavorazione, dei rivestimenti, del farmaceutico, del biomedicale, dell'ambientale e molti altri.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Finitura superficiale della pelle lavorata utilizzando la profilometria 3D

PELLE LAVORATA

FINITURA SUPERFICIALE CON LA PROFILOMETRIA 3D

Preparato da

CRAIG LEISING

INTRODUZIONE

Una volta completato il processo di concia della pelle, la superficie della pelle può essere sottoposta a diversi processi di rifinitura per ottenere un aspetto e un tocco diversi. Questi processi meccanici possono includere stiratura, smerigliatura, levigatura, goffratura, rivestimento, ecc. A seconda dell'uso finale della pelle, alcuni di essi possono richiedere una lavorazione più precisa, controllata e ripetibile.

IMPORTANZA DELL'ISPEZIONE PROFILOMETRICA PER LA RICERCA E LO SVILUPPO E IL CONTROLLO QUALITÀ

A causa dell'ampia variazione e dell'inaffidabilità dei metodi di ispezione visiva, gli strumenti in grado di quantificare con precisione le caratteristiche della micro e nano-scala possono migliorare i processi di rifinizione della pelle. La comprensione della finitura superficiale della pelle in un senso quantificabile può portare a una migliore selezione dei processi di lavorazione della superficie basata sui dati per ottenere risultati di finitura ottimali. NANOVEA 3D senza contatto Profilometri utilizzano la tecnologia confocale cromatica per misurare le superfici in pelle finite e offrono la massima ripetibilità e precisione sul mercato. Dove altre tecniche non riescono a fornire dati affidabili, a causa del contatto con la sonda, della variazione della superficie, dell'angolo, dell'assorbimento o della riflettività, i profilometri NANOVEA hanno successo.

OBIETTIVO DI MISURAZIONE

In questa applicazione, il NANOVEA ST400 viene utilizzato per misurare e confrontare la finitura superficiale di due campioni di pelle diversi ma lavorati da vicino. Dal profilo della superficie vengono calcolati automaticamente diversi parametri superficiali.

In questa sede ci concentreremo sulla rugosità superficiale, sulla profondità della fossetta, sul passo della fossetta e sul diametro della fossetta per una valutazione comparativa.

NANOVEA

ST400

RISULTATI: CAMPIONE 1

ISO 25178

PARAMETRI DI ALTEZZA

ALTRI PARAMETRI 3D

RISULTATI: CAMPIONE 2

ISO 25178

PARAMETRI DI ALTEZZA

ALTRI PARAMETRI 3D

PROFONDITÀ COMPARATIVA

Distribuzione della profondità per ogni campione.
Un gran numero di fossette profonde è stato osservato in
CAMPIONE 1.

PASSO COMPARATIVO

Passo tra le fossette su CAMPIONE 1 è leggermente più piccolo
di
CAMPIONE 2, ma entrambi hanno una distribuzione simile

 DIAMETRO MEDIO COMPARATIVO

Distribuzioni simili del diametro medio delle fossette,
con
CAMPIONE 1 che mostrano in media diametri medi leggermente inferiori.

CONCLUSIONE

In questa applicazione abbiamo dimostrato come il profilometro 3D NANOVEA ST400 possa caratterizzare con precisione la finitura superficiale della pelle lavorata. In questo studio, la capacità di misurare la rugosità superficiale, la profondità delle fossette, il passo delle fossette e il diametro delle fossette ci ha permesso di quantificare le differenze tra la finitura e la qualità dei due campioni che potrebbero non essere evidenti con un'ispezione visiva.

Complessivamente non sono state riscontrate differenze visibili nell'aspetto delle scansioni 3D tra il CAMPIONE 1 e il CAMPIONE 2. Tuttavia, nell'analisi statistica si nota una chiara distinzione tra i due campioni. Il CAMPIONE 1 contiene una maggiore quantità di fossette con diametri più piccoli, profondità maggiori e passo da fossetta a fossetta più piccolo rispetto al CAMPIONE 2.

Sono disponibili ulteriori studi. Aree di interesse particolari potrebbero essere ulteriormente analizzate con un modulo AFM o microscopio integrato. Le velocità del profilometro 3D NANOVEA vanno da 20 mm/s a 1 m/s per il laboratorio o la ricerca, per soddisfare le esigenze di ispezione ad alta velocità; può essere costruito con dimensioni, velocità, capacità di scansione personalizzate, conformità alla camera bianca di Classe 1, trasportatore di indicizzazione o per l'integrazione in linea o online.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Topografia della superficie organica con un profilometro 3D portatile

TOPOGRAFIA ORGANICA DELLA SUPERFICIE

UTILIZZANDO UN PROFILOMETRO 3D PORTATILE

Preparato da

CRAIG LEISING

INTRODUZIONE

La natura è diventata una fonte di ispirazione vitale per lo sviluppo di strutture superficiali migliorate. La comprensione delle strutture superficiali presenti in natura ha portato a studi di adesione basati sulle zampe di geco, studi di resistenza basati sulla variazione della struttura di un cetriolo di mare e studi di repellenza basati sulle foglie, oltre a molti altri. Queste superfici hanno una serie di potenziali applicazioni, dal settore biomedico a quello dell'abbigliamento e automobilistico. Affinché queste superfici abbiano successo, è necessario sviluppare tecniche di fabbricazione che consentano di imitare e riprodurre le caratteristiche della superficie. È questo processo che richiede identificazione e controllo.

IMPORTANZA DEL PROFILATORE OTTICO PORTATILE 3D SENZA CONTATTO PER LE SUPERFICI ORGANICHE

Utilizzando la tecnologia Chromatic Light, NANOVEA Jr25 Portable Profilatore ottico ha una capacità superiore di misurare quasi tutti i materiali. Ciò include gli angoli unici e ripidi, le superfici riflettenti e assorbenti che si trovano nell'ampia gamma di caratteristiche superficiali della natura. Le misurazioni 3D senza contatto forniscono un'immagine 3D completa per fornire una comprensione più completa delle caratteristiche della superficie. Senza funzionalità 3D, l’identificazione delle superfici naturali si baserebbe esclusivamente sulle informazioni 2D o sull’imaging al microscopio, che non fornisce informazioni sufficienti per imitare adeguatamente la superficie studiata. Comprendere l'intera gamma delle caratteristiche della superficie, tra cui struttura, forma, dimensione, tra molte altre, sarà fondamentale per il successo della fabbricazione.

La possibilità di ottenere facilmente sul campo risultati di qualità da laboratorio apre le porte a nuove opportunità di ricerca.

OBIETTIVO DI MISURAZIONE

In questa applicazione, il NANOVEA Jr25 viene utilizzato per misurare la superficie di una foglia. Esiste un elenco infinito di parametri di superficie che possono essere calcolati automaticamente dopo la scansione 3D della superficie.

Qui si esamina la superficie 3D e si seleziona
aree di interesse da analizzare ulteriormente, tra cui
quantificare e studiare la rugosità, i canali e la topografia della superficie

NANOVEA

JR25

CONDIZIONI DI PROVA

PROFONDITÀ DELL'ALETTA

Densità media dei solchi: 16,471 cm/cm2
Profondità media dei solchi: 97,428 μm
Profondità massima: 359,769 μm

CONCLUSIONE

In questa applicazione, abbiamo mostrato come il NANOVEA Il Profilatore ottico 3D senza contatto portatile Jr25 è in grado di caratterizzare con precisione sia la topografia che i dettagli su scala nanometrica di una superficie fogliare sul campo. Da queste misurazioni 3D della superficie, è possibile identificare rapidamente le aree di interesse e analizzarle con un elenco di studi infinito (Dimensione, Ruvidità Finitura Struttura, Forma Topografia, Planarità Curvatura Planarità, Area Volume, Altezza Passo e altri). Una sezione trasversale 2D può essere facilmente scelta per analizzare ulteriori dettagli. Grazie a queste informazioni, le superfici organiche possono essere ampiamente studiate con un set completo di risorse per la misurazione delle superfici. Aree speciali di interesse possono essere ulteriormente analizzate con un modulo AFM integrato su modelli da tavolo.

NANOVEA offre anche profilometri portatili ad alta velocità per la ricerca sul campo e un'ampia gamma di sistemi da laboratorio, oltre a fornire servizi di laboratorio.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Profilo della rugosità della carta vetrata

Carta vetrata: Analisi della rugosità e del diametro delle particelle

Carta vetrata: Analisi della rugosità e del diametro delle particelle

Per saperne di più

CARTA VETRATA

Analisi della rugosità e del diametro delle particelle

Preparato da

FRANK LIU

INTRODUZIONE

La carta vetrata è un prodotto comunemente disponibile in commercio utilizzato come abrasivo. L'uso più comune della carta vetrata è quello di rimuovere i rivestimenti o di lucidare una superficie grazie alle sue proprietà abrasive. Queste proprietà abrasive sono classificate in grane, ognuna delle quali si riferisce a quanto è liscia o
finitura superficiale che si otterrà. Per ottenere le proprietà abrasive desiderate, i produttori di carta vetrata devono garantire che le particelle abrasive abbiano una dimensione specifica e una deviazione minima. Per quantificare la qualità della carta vetrata, il sistema 3D senza contatto di NANOVEA Profilometro può essere utilizzato per ottenere il parametro dell'altezza media aritmetica (Sa) e il diametro medio delle particelle di un'area campione.

IMPORTANZA DEL PROFILATORE OTTICO 3D SENZA CONTATTO PROFILATORE PER CARTA VETRATA

Quando si usa la carta vetrata, l'interazione tra le particelle abrasive e la superficie da levigare deve essere uniforme per ottenere finiture superficiali coerenti. Per quantificare questo aspetto, la superficie della carta vetrata può essere osservata con il profilatore ottico 3D senza contatto di NANOVEA per vedere le deviazioni nelle dimensioni, nell'altezza e nella distanza delle particelle.

OBIETTIVO DI MISURAZIONE

In questo studio, cinque diverse grane di carta vetrata (120,
180, 320, 800 e 2000) vengono scannerizzati con l'apparecchio
Profilatore ottico senza contatto NANOVEA ST400 3D.
La Sa viene estratta dalla scansione e la particella
La dimensione viene calcolata conducendo un'analisi dei Motifs per
trovare il loro diametro equivalente

NANOVEA

ST400

RISULTATI E DISCUSSIONE

La carta vetrata diminuisce la rugosità superficiale (Sa) e la dimensione delle particelle all'aumentare della grana, come previsto. La Sa varia da 42,37 μm a 3,639 μm. La dimensione delle particelle varia da 127 ± 48,7 a 21,27 ± 8,35. Le particelle più grandi e le alte variazioni di altezza creano un'azione abrasiva più forte sulle superfici rispetto alle particelle più piccole con basse variazioni di altezza.
Tutte le definizioni dei parametri di altezza indicati sono riportate a pagina A.1.

TABELLA 1: Confronto tra le grane della carta vetrata e i parametri di altezza.

TABELLA 2: Confronto tra le grane della carta vetrata e il diametro delle particelle.

VISTA 2D E 3D DELLA CARTA VETRATA 

Di seguito sono riportate le viste in falso colore e in 3D dei campioni di carta vetrata.
Per rimuovere la forma o l'ondulazione è stato utilizzato un filtro gaussiano di 0,8 mm.

ANALISI DEL MOTIVO

Per individuare con precisione le particelle in superficie, la soglia della scala di altezza è stata ridefinita per mostrare solo lo strato superiore della carta vetrata. È stata quindi condotta un'analisi dei motivi per individuare i picchi.

CONCLUSIONE

Il profilatore ottico 3D senza contatto di NANOVEA è stato utilizzato per ispezionare le proprietà superficiali di varie grane di carta vetrata, grazie alla sua capacità di scansionare con precisione superfici con caratteristiche micro e nano.

I parametri di altezza superficiale e i diametri equivalenti delle particelle sono stati ottenuti da ciascuno dei campioni di carta vetrata utilizzando un software avanzato per analizzare le scansioni 3D. È stato osservato che, all'aumentare della grana, la rugosità superficiale (Sa) e la dimensione delle particelle sono diminuite, come previsto.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Profilometria di misurazione dei confini della superficie di polistirolo

Misura del confine di superficie

Misurazione dei confini di superficie con la profilometria 3D

Per saperne di più

MISURAZIONE DEI CONFINI DELLA SUPERFICIE

USANDO LA PROFILOMETRIA 3D

Preparato da

Craig Leising

INTRODUZIONE

Negli studi in cui l'interfaccia di caratteristiche superficiali, modelli, forme ecc. viene valutata per l'orientamento, sarà utile identificare rapidamente le aree di interesse sull'intero profilo di misura. Segmentando una superficie in aree significative, l'utente può valutare rapidamente i confini, i picchi, le fosse, le aree, i volumi e molti altri elementi per comprendere il loro ruolo funzionale nell'intero profilo della superficie in esame. Ad esempio, come nel caso dell'imaging dei confini dei grani dei metalli, l'importanza dell'analisi è l'interfaccia di molte strutture e il loro orientamento complessivo. La comprensione di ciascuna area di interesse consente di identificare difetti o anomalie all'interno dell'area complessiva. Sebbene l'imaging dei bordi dei grani sia tipicamente studiato a una distanza superiore alle capacità del Profilometro e sia solo un'analisi di immagini 2D, è un utile riferimento per illustrare il concetto di ciò che verrà mostrato qui su una scala più ampia, insieme ai vantaggi della misurazione di superfici 3D.

IMPORTANZA DEL PROFILOMETRO 3D NON A CONTATTO PER LO STUDIO DELLA SEPARAZIONE DELLE SUPERFICI

A differenza di altre tecniche come i tastatori o l'interferometria, il Profilometro 3D senza contatto, utilizzando il cromatismo assiale, può misurare quasi tutte le superfici, le dimensioni dei campioni possono variare ampiamente a causa della stadiazione aperta e non è necessaria alcuna preparazione del campione. L'intervallo da nano a macro si ottiene durante la misurazione del profilo di superficie senza alcuna influenza da parte della riflettività o dell'assorbimento del campione, ha una capacità avanzata di misurare angoli superficiali elevati e non è prevista alcuna manipolazione dei risultati da parte del software. Misura facilmente qualsiasi materiale: trasparente, opaco, speculare, diffusivo, lucido, ruvido ecc. La tecnica del profilometro senza contatto fornisce una capacità ideale, ampia e facile da usare per massimizzare gli studi di superficie quando sarà necessaria l'analisi dei confini della superficie; insieme ai vantaggi della funzionalità combinata 2D e 3D.

OBIETTIVO DI MISURAZIONE

In questa applicazione il profilometro Nanovea ST400 viene utilizzato per misurare l'area superficiale del polistirolo. I confini sono stati stabiliti combinando un file di intensità riflessa con la topografia, acquisiti simultaneamente con il NANOVEA ST400. Questi dati sono stati poi utilizzati per calcolare diverse informazioni sulla forma e sulle dimensioni di ciascun "granello" di polistirolo.

NANOVEA

ST400

RISULTATI E DISCUSSIONE: Misura del limite di superficie 2D

Immagine topografica (sotto a sinistra) mascherata dall'immagine dell'intensità riflessa (sotto a destra) per definire chiaramente i confini dei grani. Tutti i grani di diametro inferiore a 565 µm sono stati ignorati applicando il filtro.

Numero totale di grani: 167
Area totale di proiezione occupata dai grani: 166,917 mm² (64,5962 %)
Area totale prevista occupata dai confini: (35.4038 %)
Densità dei grani: 0,646285 grani / mm2

Area = 0,999500 mm² +/- 0,491846 mm²
Perimetro = 9114,15 µm +/- 4570,38 µm
Diametro equivalente = 1098,61 µm +/- 256,235 µm
Diametro medio = 945,373 µm +/- 248,344 µm
Diametro minimo = 675,898 µm +/- 246,850 µm
Diametro massimo = 1312,43 µm +/- 295,258 µm

RISULTATI E DISCUSSIONE: Misurazione dei confini della superficie 3D

Utilizzando i dati topografici 3D ottenuti, è possibile analizzare il volume, l'altezza, il picco, il rapporto d'aspetto e le informazioni generali sulla forma di ciascun grano. Area 3D totale occupata: 2,525 mm3

CONCLUSIONE

In questa applicazione, abbiamo dimostrato come il profilometro senza contatto NANOVEA 3D possa caratterizzare con precisione la superficie del polistirolo. È possibile ottenere informazioni statistiche sull'intera superficie di interesse o su singoli grani, siano essi picchi o buchi. In questo esempio sono stati utilizzati tutti i grani più grandi di una dimensione definita dall'utente per mostrare l'area, il perimetro, il diametro e l'altezza. Le caratteristiche qui illustrate possono essere fondamentali per la ricerca e il controllo di qualità di superfici naturali e pre-fabbricate che spaziano dalle applicazioni bio-mediche a quelle di microlavorazione, oltre a molte altre. 

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE