USA/GLOBALE: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTATTACI

Categoria: Test meccanici

 

Deformazione a scorrimento dei polimeri mediante nanoindentazione

Deformazione a scorrimento dei polimeri mediante nanoindentazione

Per saperne di più

DEFORMAZIONE PER SCORRIMENTO

DEI POLIMERI MEDIANTE NANOINDENTAZIONE

Preparato da

DUANJIE LI, Dottore di ricerca

INTRODUZIONE

In quanto materiali viscoelastici, i polimeri spesso subiscono una deformazione dipendente dal tempo sotto un determinato carico applicato, nota anche come creep. Il creep diventa un fattore critico quando le parti polimeriche sono progettate per essere esposte a sollecitazioni continue, come i componenti strutturali, i raccordi e i recipienti a pressione idrostatica.

IMPORTANZA DELLA MISURAZIONE DEL CREEP PER POLIMERI

La natura intrinseca della viscoelasticità gioca un ruolo vitale nelle prestazioni dei polimeri e influenza direttamente la loro affidabilità di servizio. Le condizioni ambientali come il carico e la temperatura influenzano il comportamento al creep dei polimeri. I guasti al creep si verificano spesso a causa della mancanza di attenzione al comportamento al creep dipendente dal tempo dei materiali polimerici utilizzati in condizioni di servizio specifiche. Di conseguenza, è importante sviluppare un test affidabile e quantitativo dei comportamenti meccanici viscoelastici dei polimeri. Il modulo Nano della NANOVEA Tester Meccanici applica il carico con un piezoelettrico ad alta precisione e misura direttamente l'evoluzione della forza e dello spostamento in situ. La combinazione di precisione e ripetibilità lo rende uno strumento ideale per la misurazione del creep.

OBIETTIVO DI MISURAZIONE

In questa applicazione, abbiamo dimostrato che
il tester meccanico NANOVEA PB1000
in Nanoindentazione è uno strumento ideale
per lo studio delle proprietà meccaniche viscoelastiche
compresa la durezza, il modulo di Young
e creep dei materiali polimerici.

NANOVEA

PB1000

CONDIZIONI DI PROVA

Otto diversi campioni di polimero sono stati testati con la tecnica della nanoindentazione utilizzando il tester meccanico NANOVEA PB1000. Con l'aumento lineare del carico da 0 a 40 mN, la profondità è aumentata progressivamente durante la fase di carico. Il creep è stato misurato in base alla variazione della profondità di indentazione al carico massimo di 40 mN per 30 secondi.

CARICO MASSIMO 40 mN
TASSO DI CARICO
80 mN/min
TASSO DI SCARICO 80 mN/min
TEMPO DI CREEP
30 s

TIPO DI INDENTERO

Berkovich

Diamante

*impostazione del test di nanoindentazione

RISULTATI E DISCUSSIONE

L'andamento del carico rispetto allo spostamento dei test di nanoindentazione su diversi campioni di polimero è mostrato in FIGURA 1 e le curve di creep sono confrontate in FIGURA 2. La durezza e il modulo di Young sono riassunti in FIGURA 3 e la profondità di creep è mostrata in FIGURA 4. La durezza e il modulo di Young sono riassunti in FIGURA 3, mentre la profondità di scorrimento è mostrata in FIGURA 4. Come esempio in FIGURA 1, le porzioni AB, BC e CD della curva carico-spostamento per la misura di nanoindentazione rappresentano rispettivamente i processi di carico, creep e scarico.

Il Delrin e il PVC presentano la durezza più elevata, rispettivamente di 0,23 e 0,22 GPa, mentre l'LDPE possiede la durezza più bassa, pari a 0,026 GPa, tra i polimeri testati. In generale, i polimeri più duri mostrano tassi di scorrimento inferiori. L'LDPE più morbido ha la più alta profondità di scorrimento di 798 nm, rispetto ai ~120 nm del Delrin.

Le proprietà di creep dei polimeri sono fondamentali quando vengono utilizzati in parti strutturali. Misurando con precisione la durezza e il creep dei polimeri, è possibile ottenere una migliore comprensione dell'affidabilità dei polimeri in funzione del tempo. Il creep, ovvero la variazione dello spostamento a un determinato carico, può essere misurato anche a diverse temperature e umidità elevate utilizzando il tester meccanico NANOVEA PB1000, fornendo uno strumento ideale per misurare in modo quantitativo e affidabile i comportamenti meccanici viscoelastici dei polimeri.
nell'ambiente applicativo realistico simulato.

FIGURA 1: I grafici di carico e spostamento
di diversi polimeri.

FIGURA 2: Creeping a un carico massimo di 40 mN per 30 s.

FIGURA 3: Durezza e modulo di Young dei polimeri.

FIGURA 4: Profondità di scorrimento dei polimeri.

CONCLUSIONE

In questo studio abbiamo dimostrato che il NANOVEA PB1000
I tester meccanici misurano le proprietà meccaniche di diversi polimeri, tra cui durezza, modulo di Young e creep. Tali proprietà meccaniche sono essenziali per selezionare il materiale polimerico più adatto alle applicazioni previste. Il Derlin e il PVC presentano la durezza più elevata, rispettivamente di 0,23 e 0,22 GPa, mentre l'LDPE possiede la durezza più bassa, pari a 0,026 GPa, tra i polimeri testati. In generale, i polimeri più duri presentano tassi di scorrimento inferiori. L'LDPE più morbido mostra la più alta profondità di scorrimento, pari a 798 nm, rispetto ai ~120 nm del Derlin.

I tester meccanici NANOVEA offrono moduli Nano e Micro multifunzione ineguagliabili su un'unica piattaforma. Entrambi i moduli Nano e Micro includono le modalità di scratch tester, hardness tester e wear tester, offrendo la più ampia e semplice gamma di test disponibili su un unico sistema.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Materiale multifase usando la nanoindentazione NANOVEA

Nanoindentazione multifase dei metalli

Studio metallurgico di materiale multifase usando la nanoindentazione

Per saperne di più

STUDIO DELLA METALLURGIA
DI MATERIALE MULTIFASE

UTILIZZANDO LA NANOINDENTAZIONE

Preparato da

DUANJIE LI, Dottore di ricerca & ALESSIO CELESTINO

INTRODUZIONE

La metallurgia studia il comportamento fisico e chimico degli elementi metallici, nonché dei loro composti intermetallici e delle leghe. I metalli sottoposti a processi di lavorazione, come la fusione, la forgiatura, la laminazione, l'estrusione e la lavorazione, subiscono cambiamenti nelle loro fasi, nella microstruttura e nella struttura. Questi cambiamenti si traducono in proprietà fisiche diverse, tra cui durezza, forza, tenacità, duttilità e resistenza all'usura del materiale. La metallografia viene spesso applicata per conoscere il meccanismo di formazione di tali fasi, microstrutture e strutture specifiche.

IMPORTANZA DELLE PROPRIETÀ MECCANICHE LOCALI PROPRIETÀ MECCANICHE LOCALI PER LA PROGETTAZIONE DEI MATERIALI

I materiali avanzati spesso presentano fasi multiple in una microstruttura e una struttura speciali per ottenere le proprietà meccaniche desiderate per le applicazioni mirate nella pratica industriale. Nanoindentazione è ampiamente applicato per misurare i comportamenti meccanici dei materiali a piccole scale i ii. Tuttavia, è impegnativo e richiede tempo selezionare con precisione punti specifici per l'indentazione in un'area molto piccola. Per determinare le proprietà meccaniche di diverse fasi di un materiale con elevata precisione e misure tempestive, è necessaria una procedura affidabile e di facile utilizzo per i test di nanoindentazione.

OBIETTIVO DI MISURAZIONE

In questa applicazione, misuriamo le proprietà meccaniche di un campione metallurgico multifase utilizzando il più potente tester meccanico: il NANOVEA PB1000.

Qui mostriamo la capacità del PB1000 di eseguire misure di nanoindentazione su più fasi (grani) di una grande superficie di campione con elevata precisione e facilità d'uso, utilizzando il nostro Advanced Position Controller.

NANOVEA

PB1000

CONDIZIONI DI PROVA

In questo studio utilizziamo un campione metallurgico con fasi multiple. Il campione è stato lucidato a specchio prima dei test di indentazione. Nel campione sono state identificate quattro fasi: FASE 1, FASE 2, FASE 3 e FASE 4, come mostrato di seguito.

L'Advanced Stage Controller è uno strumento intuitivo per la navigazione dei campioni che regola automaticamente la velocità di movimento dei campioni nel microscopio ottico in base alla posizione del mouse. Più il mouse si allontana dal centro del campo visivo, più il palcoscenico si sposta velocemente verso la direzione del mouse. In questo modo si ottiene un metodo facile da usare per navigare sull'intera superficie del campione e selezionare la posizione prevista per i test meccanici. Le coordinate delle posizioni di prova vengono salvate e numerate, insieme alle singole impostazioni di prova, come i carichi, la velocità di carico/scarico, il numero di prove in una mappa, ecc. Questa procedura di test consente agli utenti di esaminare un'ampia superficie del campione per individuare aree specifiche di interesse per l'indentazione e di eseguire tutte le prove di indentazione in diverse posizioni in una sola volta, rendendolo uno strumento ideale per le prove meccaniche di campioni metallurgici con fasi multiple.

In questo studio, abbiamo localizzato le fasi specifiche del campione sotto il microscopio ottico integrato nel NANOVEA Tester meccanico come numerato su FIGURA 1. Le coordinate delle posizioni selezionate vengono salvate, quindi vengono eseguiti test automatici di nanoindentazione tutti in una volta nelle condizioni di prova riassunte di seguito.

FIGURA 1: SELEZIONE DELLA POSIZIONE DI NANOINDENTAZIONE SULLA SUPERFICIE DEL CAMPIONE.
RISULTATI: NANOINDENTAZIONI SU DIVERSE FASI

Di seguito sono riportate le indentature nelle diverse fasi del campione. Dimostriamo che l'eccellente controllo della posizione dello stadio del campione nella NANOVEA Collaudatore meccanico consente agli utenti di individuare con precisione la posizione target per i test delle proprietà meccaniche.

Le curve di carico-spostamento rappresentative delle indentazioni sono mostrate in FIGURA 2e la corrispondente durezza e modulo di Young calcolati con il metodo di Oliver e Pharr.iii sono riassunti e confrontati in FIGURA 3.


Il
FASI 1, 2, 3 e 4 possiedono una durezza media di ~5,4, 19,6, 16,2 e 7,2 GPa, rispettivamente. Le dimensioni relativamente piccole per FASI 2 contribuisce alla maggiore deviazione standard dei valori di durezza e modulo di Young.

FIGURA 2: CURVE CARICO-SPOSTAMENTO
DELLE NANOINDENTAZIONI

FIGURA 3: DUREZZA E MODULO DI YOUNG DI DIVERSE FASI

CONCLUSIONE

In questo studio abbiamo mostrato il tester meccanico NANOVEA che esegue misure di nanoindentazione su più fasi di un campione metallurgico di grandi dimensioni utilizzando il controller avanzato dello stadio. Il preciso controllo della posizione consente agli utenti di navigare facilmente su un'ampia superficie del campione e di selezionare direttamente le aree di interesse per le misure di nanoindentazione.

Le coordinate di posizione di tutte le indentature vengono salvate e poi eseguite consecutivamente. Questa procedura di prova rende la misurazione delle proprietà meccaniche locali su piccola scala, come nel caso del campione metallico multifase di questo studio, sostanzialmente meno dispendiosa in termini di tempo e più facile da usare. Le FASI 2, 3 e 4 dure migliorano le proprietà meccaniche del campione, con una durezza media di ~19,6, 16,2 e 7,2 GPa, rispettivamente, rispetto ai ~5,4 GPa della FASE 1.

I moduli Nano, Micro o Macro dello strumento includono tutti modalità di indentazione, graffio e usura conformi agli standard ISO e ASTM, fornendo la più ampia e semplice gamma di test disponibili in un unico sistema. L'impareggiabile gamma di NANOVEA è la soluzione ideale per determinare l'intera gamma di proprietà meccaniche di rivestimenti, film e substrati sottili o spessi, morbidi o duri, tra cui durezza, modulo di Young, tenacità alla frattura, adesione, resistenza all'usura e molte altre.

i Oliver, W. C.; Pharr, G. M., Journal of Materials Research, volume 19, numero 1, gennaio 2004, pagg. 3-20.
ii Schuh, C.A., Materiali Oggi, Volume 9, Numero 5, Maggio 2006, pp. 32-40
iii Oliver, W. C.; Pharr, G. M., Journal of Materials Research, Volume 7, Numero 6, Giugno 1992, pp.1564-1583

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Analisi meccanica dinamica (DMA) Sweep di frequenza su polimero

SWEEP DI FREQUENZA DMA

SUL POLIMERO UTILIZZANDO LA NANOINDENTAZIONE

Preparato da

Duanjie Li, PhD

INTRODUZIONE

IMPORTANZA DELL'ANALISI MECCANICA DINAMICA TEST DI FREQUENZA

La frequenza variabile dello stress porta spesso a variazioni nel modulo complesso, che è una proprietà meccanica critica dei polimeri. Ad esempio, i pneumatici sono soggetti a elevate deformazioni cicliche quando i veicoli circolano su strada. La frequenza della pressione e della deformazione cambia man mano che l'auto accelera a velocità più elevate. Un tale cambiamento può comportare una variazione delle proprietà viscoelastiche del pneumatico, che sono fattori importanti per le prestazioni dell'auto. È necessario un test affidabile e ripetibile del comportamento viscoelastico dei polimeri a diverse frequenze. Il modulo Nano della NANOVEA Collaudatore meccanico genera un carico sinusoidale mediante un attuatore piezoelettrico ad alta precisione e misura direttamente l'evoluzione della forza e dello spostamento utilizzando cella di carico e condensatore ultrasensibili. La combinazione di facilità di configurazione ed elevata precisione lo rende uno strumento ideale per la scansione della frequenza dell'analisi meccanica dinamica.

I materiali viscoelastici presentano caratteristiche sia viscose che elastiche quando subiscono una deformazione. Le lunghe catene molecolari nei materiali polimerici contribuiscono alle loro proprietà viscoelastiche uniche, ovvero una combinazione delle caratteristiche dei solidi elastici e dei fluidi newtoniani. Le sollecitazioni, la temperatura, la frequenza e altri fattori giocano un ruolo importante nelle proprietà viscoelastiche. L'analisi meccanica dinamica, nota anche come DMA, studia il comportamento viscoelastico e il modulo complesso del materiale applicando una sollecitazione sinusoidale e misurando la variazione della deformazione.

OBIETTIVO DI MISURAZIONE

In questa applicazione, studiamo le proprietà viscoelastiche di un campione di pneumatico lucidato a diverse frequenze DMA utilizzando il tester meccanico più potente, NANOVEA PB1000, in Nanoindentazione modalità.

NANOVEA

PB1000

CONDIZIONI DI PROVA

FREQUENZE (Hz):

0.1, 1.5, 10, 20

TEMPO DI SCORRIMENTO A CIASCUNA FREQUENZA.

50 sec

TENSIONE DI OSCILLAZIONE

0.1 V

TENSIONE DI CARICO

1 V

tipo di penetratore

Sferico

Diamante | 100 μm

RISULTATI E DISCUSSIONE

Lo sweep di frequenza dell'analisi meccanica dinamica al carico massimo consente di misurare in modo rapido e semplice le caratteristiche viscoelastiche del campione a diverse frequenze di carico in un unico test. Lo spostamento di fase e le ampiezze delle onde di carico e di spostamento a diverse frequenze possono essere utilizzati per calcolare una serie di proprietà viscoelastiche fondamentali del materiale, tra cui Modulo di stoccaggio, Modulo di perdita e Abbronzatura (δ) come riassunto nei grafici seguenti. 

Le frequenze di 1, 5, 10 e 20 Hz in questo studio corrispondono a velocità di circa 7, 33, 67 e 134 km all'ora. All'aumentare della frequenza di prova da 0,1 a 20 Hz, si può osservare che sia il modulo di accumulo che il modulo di perdita aumentano progressivamente. Tan (δ) diminuisce da ~0,27 a 0,18 con l'aumento della frequenza da 0,1 a 1 Hz, per poi aumentare gradualmente fino a ~0,55 quando si raggiunge la frequenza di 20 Hz. Lo sweep di frequenza del DMA consente di misurare l'andamento del modulo di accumulo, del modulo di perdita e del Tan (δ), che forniscono informazioni sul movimento dei monomeri e sulla reticolazione, nonché sulla transizione vetrosa dei polimeri. Aumentando la temperatura con una piastra riscaldante durante lo sweep di frequenza, è possibile ottenere un quadro più completo della natura del movimento molecolare in diverse condizioni di test.

EVOLUZIONE DEL CARICO E DELLA PROFONDITÀ

DELL'INTERO SWEEP DI FREQUENZA DMA

CARICO E PROFONDITÀ vs. TEMPO A DIVERSE FREQUENZE

MODULO DI ACCUMULO

A DIVERSE FREQUENZE

MODULO DI PERDITA

A DIVERSE FREQUENZE

TAN (δ)

A DIVERSE FREQUENZE

CONCLUSIONE

In questo studio, abbiamo dimostrato la capacità del tester meccanico NANOVEA di eseguire il test di analisi meccanica dinamica (frequency sweep) su un campione di pneumatico. Questo test misura le proprietà viscoelastiche del pneumatico a diverse frequenze di sollecitazione. Il pneumatico mostra un aumento del modulo di accumulo e di perdita all'aumentare della frequenza di carico da 0,1 a 20 Hz. Il test fornisce informazioni utili sul comportamento viscoelastico del pneumatico a diverse velocità, essenziali per migliorare le prestazioni dei pneumatici e ottenere una guida più fluida e sicura. Il test DMA frequency sweep può essere eseguito a varie temperature per simulare l'ambiente di lavoro realistico del pneumatico in condizioni climatiche diverse.

Nel modulo Nano del tester meccanico NANOVEA, l'applicazione del carico con il piezo veloce è indipendente dalla misurazione del carico effettuata da un estensimetro separato ad alta sensibilità. Ciò offre un netto vantaggio durante l'analisi meccanica dinamica, poiché la fase tra profondità e carico viene misurata direttamente dai dati raccolti dal sensore. Il calcolo della fase è diretto e non richiede una modellazione matematica che aggiunge imprecisione alla perdita risultante e al modulo di accumulo. Questo non è il caso di un sistema a bobina.

In conclusione, la DMA misura il modulo di perdita e di accumulo, il modulo complesso e il Tan (δ) in funzione della profondità di contatto, del tempo e della frequenza. Lo stadio di riscaldamento opzionale consente di determinare la temperatura di transizione di fase dei materiali durante il DMA. I tester meccanici NANOVEA offrono moduli Nano e Micro multifunzione ineguagliabili su un'unica piattaforma. Entrambi i moduli Nano e Micro includono le modalità scratch tester, hardness tester e wear tester, offrendo la più ampia e semplice gamma di test disponibili su un singolo modulo.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Microparticelle: Forza di compressione e microindentazione

MICROPARTICELLE

RESISTENZA ALLA COMPRESSIONE E MICROINDENTAZIONE
ATTRAVERSO L'ANALISI DEI SALI

Autore:
Jorge Ramirez

Revisionato da:
Jocelyn Esparza

INTRODUZIONE

La resistenza alla compressione è diventata fondamentale per le misure di controllo della qualità nello sviluppo e nel miglioramento delle microparticelle e dei microelementi (pilastri e sfere) nuovi ed esistenti. Le microparticelle hanno forme e dimensioni diverse e possono essere sviluppate a partire da ceramica, vetro, polimeri e metalli. Gli usi includono la somministrazione di farmaci, l'esaltazione del sapore degli alimenti, le formulazioni di calcestruzzo e molti altri. Il controllo delle proprietà meccaniche delle microparticelle o delle microcaratteristiche è fondamentale per il loro successo e richiede la capacità di caratterizzare quantitativamente la loro integrità meccanica.  

IMPORTANZA DELLA PROFONDITÀ RISPETTO ALLA RESISTENZA ALLA COMPRESSIONE DEL CARICO

Gli strumenti standard per la misurazione della compressione non sono in grado di sopportare carichi ridotti e non riescono a fornire un'adeguata dati di profondità per le microparticelle. Utilizzando i dati di profondità per le microparticelle. MicroindentazioneLa resistenza alla compressione di nano o microparticelle (morbide o dure) può essere misurata con precisione e accuratezza.  

OBIETTIVO DI MISURAZIONE

In questa nota applicativa misuriamo  la resistenza alla compressione del sale con il Tester meccanico NANOVEA in modalità microindentazione.

NANOVEA

CB500

CONDIZIONI DI PROVA

forza massima

30 N

tasso di carico

60 N/min

tasso di scarico

60 N/min

tipo di penetratore

Punzone piatto

Acciaio | Diametro 1 mm

Curve carico/profondità

Risultati e discussione

Altezza, forza di rottura e resistenza per la particella 1 e la particella 2

Il cedimento delle particelle è stato determinato come il punto in cui la pendenza iniziale della curva forza/profondità ha iniziato a diminuire sensibilmente. Questo comportamento indica che il materiale ha raggiunto un punto di snervamento e non è più in grado di resistere alle forze di compressione applicate. Una volta superato il punto di snervamento, la profondità di penetrazione inizia ad aumentare esponenzialmente per tutta la durata del periodo di carico. Questi comportamenti possono essere osservati in Curve di carico in funzione della profondità per entrambi i campioni.

CONCLUSIONE

In conclusione, abbiamo mostrato come il NANOVEA Collaudatore meccanico in modalità di microindentazione è un ottimo strumento per testare la resistenza alla compressione delle microparticelle. Sebbene le particelle testate siano fatte dello stesso materiale, si sospetta che i diversi punti di rottura misurati in questo studio siano probabilmente dovuti a microcricche preesistenti nelle particelle e a dimensioni diverse delle stesse. Va notato che per i materiali fragili sono disponibili sensori di emissione acustica per misurare l'inizio della propagazione della cricca durante una prova.


Il
NANOVEA Collaudatore meccanico offre risoluzioni di spostamento in profondità fino al livello sub nanometrico,
che lo rende un ottimo strumento per lo studio di microparticelle o elementi molto fragili. Per i materiali morbidi e fragili
materiali, con il nostro modulo di nano-indentazione è possibile ottenere carichi fino a 0,1 mN.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Ceramica: Mappatura veloce di nanoindentazione per il rilevamento dei grani

INTRODUZIONE

 

Nanoindentazione è diventata una tecnica ampiamente applicata per misurare il comportamento meccanico dei materiali su piccola scalai ii. Le curve di spostamento del carico ad alta risoluzione derivanti da una misurazione di nanoindentazione possono fornire una varietà di proprietà fisico-meccaniche, tra cui durezza, modulo di Young, scorrimento, resistenza alla frattura e molte altre.

 

 

Importanza dell'indentazione della mappatura rapida

 

Un ostacolo significativo per l’ulteriore divulgazione della tecnica di nanoindentazione è il consumo di tempo. Una mappatura delle proprietà meccaniche mediante la procedura di nanoindentazione convenzionale può facilmente richiedere ore, il che ostacola l'applicazione della tecnica nei settori della produzione di massa, come quello dei semiconduttori, aerospaziale, MEMS, prodotti di consumo come piastrelle di ceramica e molti altri.

La mappatura rapida può rivelarsi essenziale nel settore della produzione di piastrelle di ceramica. Le mappature dei moduli di Durezza e Young su una singola piastrella di ceramica possono presentare una distribuzione di dati che indica quanto omogenea sia la superficie. In questa mappatura è possibile delineare le regioni più morbide su un riquadro e mostrare le posizioni più soggette a guasti a causa degli impatti fisici che si verificano quotidianamente nella residenza di qualcuno. È possibile effettuare mappature su diversi tipi di piastrelle per studi comparativi e su un lotto di piastrelle simili per misurarne la consistenza nei processi di controllo qualità. La combinazione di configurazioni di misurazione può essere ampia, nonché accurata ed efficiente con il metodo di mappatura rapida.

 

OBIETTIVO DI MISURAZIONE

 

In questo studio, la Nanovea Collaudatore meccanico, in modalità FastMap viene utilizzato per mappare le proprietà meccaniche di una piastrella ad alta velocità. Mostriamo la capacità del Nanovea Mechanical Tester di eseguire due veloci mappature di nanoindentazione con elevata precisione e riproducibilità.

 

Condizioni di prova

 

Il Nanovea Mechanical Tester è stato utilizzato per eseguire una serie di nanoindentazioni con la modalità FastMap su una piastrella del pavimento utilizzando un penetratore Berkovich. I parametri del test sono riepilogati di seguito per le due matrici di rientro create.

 

Tabella 1: riepilogo dei parametri del test.

 

RISULTATI E DISCUSSIONE 

 

Figura 1: vista 2D e 3D della mappatura della durezza a 625 rientranze.

 

 

 

Figura 2: Micrografia della matrice a 625 rientranze che mostra la grana.

 

 

Una matrice da 625 rientranti è stata condotta su uno spessore di 0,20 mm2 area con una grande grana visibile presente. Questa grana (Figura 2) aveva una durezza media inferiore alla superficie complessiva della piastrella. Il software Nanovea Mechanical consente all'utente di vedere la mappa di distribuzione della durezza in modalità 2D e 3D, illustrata nella Figura 1. Utilizzando il controllo della posizione ad alta precisione del tavolino campione, il software consente agli utenti di individuare aree come queste in modo approfondito mappatura delle proprietà meccaniche.

Figura 3: vista 2D e 3D della mappatura della durezza a 1600 trattini.

 

 

Figura 4: Micrografia della matrice a 1600 rientranze.

 

 

Sulla stessa piastrella è stata inoltre creata una matrice da 1600 denti per misurare l'omogeneità della superficie. Anche in questo caso l'utente ha la possibilità di vedere la distribuzione della durezza in modalità 3D o 2D (Figura 3) nonché l'immagine al microscopio della superficie dentellata. Sulla base della distribuzione della durezza presentata, si può concludere che il materiale è poroso a causa della distribuzione uniforme dei punti dati di durezza alta e bassa.

Rispetto alle procedure convenzionali di nanoindentazione, la modalità FastMap in questo studio richiede sostanzialmente meno tempo ed è più economica. Consente una rapida mappatura quantitativa delle proprietà meccaniche, tra cui la durezza e il modulo di Young, e fornisce una soluzione per il rilevamento dei grani e della consistenza dei materiali, che è fondamentale per il controllo di qualità di una varietà di materiali nella produzione di massa.

 

 

CONCLUSIONE

 

In questo studio, abbiamo dimostrato la capacità del Nanovea Mechanical Tester nell'eseguire una mappatura della nanoindentazione rapida e precisa utilizzando la modalità FastMap. Le mappe delle proprietà meccaniche sulla piastrella in ceramica utilizzano il controllo della posizione (con precisione di 0,2 µm) degli stadi e la sensibilità del modulo di forza per rilevare i grani superficiali e misurare l'omogeneità di una superficie ad alta velocità.

I parametri di test utilizzati in questo studio sono stati determinati in base alle dimensioni della matrice e del materiale campione. È possibile scegliere una varietà di parametri di test per ottimizzare il tempo totale del ciclo di rientranza a 3 secondi per rientranza (o 30 secondi per ogni 10 rientranze).

I moduli Nano e Micro del Nanovea Mechanical Tester includono tutti modalità di test di indentazione, graffiatura e usura conformi ISO e ASTM, fornendo la gamma di test più ampia e intuitiva disponibile in un unico sistema. L'impareggiabile gamma di Nanovea è una soluzione ideale per determinare l'intera gamma di proprietà meccaniche di rivestimenti, pellicole e substrati sottili o spessi, morbidi o duri, tra cui durezza, modulo di Young, tenacità alla frattura, adesione, resistenza all'usura e molti altri.

Inoltre, sono disponibili un profilatore 3D senza contatto opzionale e un modulo AFM per l'imaging 3D ad alta risoluzione di rientranze, graffi e tracce di usura oltre ad altre misurazioni superficiali come la rugosità.

 

Autore: Duanjie Li, PhD Rivisto da Pierre Leroux e Jocelyn Esparza

Migliorare le procedure di estrazione con la microindicazione

RICERCA SULLA MICROINDENTAZIONE E CONTROLLO DI QUALITÀ

La meccanica delle rocce è lo studio del comportamento meccanico delle masse rocciose e trova applicazione nei settori dell'estrazione mineraria, della perforazione, della produzione di giacimenti e delle costruzioni civili. La strumentazione avanzata, che consente di misurare con precisione le proprietà meccaniche, permette di migliorare i pezzi e le procedure in questi settori. Il successo delle procedure di controllo della qualità è garantito dalla comprensione della meccanica delle rocce a livello microscopico.

Microindentazione è uno strumento fondamentale utilizzato per gli studi relativi alla meccanica delle rocce. Queste tecniche fanno progredire le tecniche di scavo, fornendo un'ulteriore comprensione delle proprietà della massa rocciosa. La microindentazione viene utilizzata per migliorare le teste di perforazione e quindi le procedure di estrazione. La microindentazione è stata utilizzata per studiare la formazione di gesso e polvere dai minerali. Gli studi di microindentazione possono includere durezza, modulo di Young, creep, stress-strain, tenacità alla frattura e compressione con un unico strumento.
 
 

OBIETTIVO DI MISURAZIONE

In questa applicazione la Nanovea tester meccanico misura la durezza Vickers (Hv), il modulo di Young e la resistenza alla frattura di un campione di roccia minerale. La roccia è costituita da biotite, feldspato e quarzo che formano il composito standard del granito. Ciascuno viene testato separatamente.

 

RISULTATI E DISCUSSIONE

Questa sezione comprende una tabella riassuntiva che confronta i principali risultati numerici per i diversi campioni, seguita dall'elenco completo dei risultati, che include ogni indentazione eseguita, accompagnata dalle micrografie dell'indentazione, quando disponibili. Questi risultati completi presentano i valori misurati di durezza e modulo di Young e la profondità di penetrazione (Δd) con le loro medie e deviazioni standard. Si deve considerare che una grande variazione nei risultati può verificarsi nel caso in cui la rugosità della superficie sia nella stessa gamma di dimensioni dell'indentazione.


Tabella riassuntiva dei principali risultati numerici per la durezza e la tenacità alla frattura

 

CONCLUSIONE

Il tester meccanico Nanovea ha dimostrato riproducibilità e precisione dei risultati di indentazione sulla superficie dura delle rocce minerali. La durezza e il modulo di Young di ciascun materiale che compone il granito sono stati misurati direttamente dalle curve di profondità rispetto al carico. La superficie ruvida ha comportato l'esecuzione di prove con carichi più elevati che potrebbero aver causato microfessurazioni. Le microfessurazioni spiegherebbero alcune delle variazioni osservate nelle misurazioni. Le fessure non erano percepibili attraverso l'osservazione al microscopio standard a causa della superficie ruvida del campione. Pertanto, non è possibile calcolare i numeri tradizionali di tenacità alla frattura, che richiedono la misurazione della lunghezza delle cricche. Invece, abbiamo usato il sistema per rilevare l'inizio delle cricche attraverso le dislocazioni nelle curve di profondità rispetto al carico, aumentando i carichi.

I carichi soglia di frattura sono stati riportati ai carichi in cui si sono verificati i cedimenti. A differenza dei test tradizionali di tenacità alla frattura, che misurano semplicemente la lunghezza della cricca, si ottiene un carico al quale inizia la soglia di frattura. Inoltre, l'ambiente controllato e strettamente monitorato consente di misurare la durezza come valore quantitativo per confrontare una varietà di campioni.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Valutazione della durezza dei tessuti biologici con la nanoindentazione

Importanza della nanoindentazione dei tessuti biologici

I test meccanici tradizionali (durezza, adesione, compressione, perforazione, resistenza allo snervamento, ecc.) richiedono maggiore precisione e affidabilità negli attuali ambienti di controllo qualità con un'ampia gamma di materiali avanzati, dai tessuti ai materiali fragili. La strumentazione meccanica tradizionale non è in grado di fornire il controllo sensibile del carico e la risoluzione necessari per i materiali avanzati. Le sfide associate ai biomateriali richiedono lo sviluppo di test meccanici in grado di controllare accuratamente il carico su materiali estremamente morbidi. Questi materiali richiedono carichi di prova molto bassi, inferiori al mN, con un ampio intervallo di profondità per garantire una misurazione corretta delle proprietà. Inoltre, molti tipi di test meccanici diversi possono essere eseguiti su un singolo sistema, consentendo una maggiore funzionalità. Ciò consente di effettuare una serie di importanti misurazioni sui biomateriali, tra cui la durezza, il modulo elastico, il modulo di perdita e di accumulo e il creep, oltre alla resistenza ai graffi e ai punti di rottura dello snervamento.

 

Obiettivo di misurazione

In questa applicazione il tester meccanico di Nanovea in modalità di nanoindentazione viene utilizzato per studiare la durezza e il modulo elastico di 3 aree separate di un sostituto biomateriale su regioni di grasso, carne chiara e carne scura del prosciutto.

La nanoindentazione si basa sugli standard di indentazione strumentale ASTM E2546 e ISO 14577. Utilizza metodi consolidati in cui una punta di penetrazione di geometria nota viene conficcata in un punto specifico del materiale di prova con un carico normale controllato e crescente. Quando si raggiunge una profondità massima prestabilita, il carico normale viene ridotto fino al completo rilassamento. Il carico viene applicato da un attuatore piezoelettrico e misurato in un ciclo controllato con una cella di carico ad alta sensibilità. Durante gli esperimenti, la posizione del penetratore rispetto alla superficie del campione viene monitorata con un sensore capacitivo ad alta precisione. Le curve di carico e spostamento risultanti forniscono dati specifici sulla natura meccanica del materiale testato. Modelli consolidati calcolano i valori quantitativi di durezza e modulo con i dati misurati. La nanoindentazione è adatta a misurazioni a basso carico e profondità di penetrazione su scala nanometrica.

Risultati e discussione

Le tabelle seguenti presentano i valori misurati di durezza e modulo di Young con medie e deviazioni standard. Un'elevata rugosità superficiale può causare grandi variazioni nei risultati a causa delle dimensioni ridotte dell'indentazione.

L'area del grasso presentava una durezza pari a circa la metà di quella delle aree della carne. Il trattamento della carne ha fatto sì che la zona scura della carne fosse più dura di quella chiara. Il modulo elastico e la durezza sono in relazione diretta con la masticabilità al tatto delle aree del grasso e della carne. L'area del grasso e della carne chiara ha continuato a scorrere in misura maggiore rispetto alla carne scura dopo 60 secondi.

Risultati dettagliati - Grasso

Risultati dettagliati - Carne leggera

Risultati dettagliati - Carne scura

Conclusione

In questa applicazione, Nanovea tester meccanico in modalità nanoindentazione hanno determinato in modo affidabile le proprietà meccaniche delle aree di grasso e carne, superando l'elevata ruvidità della superficie del campione. Ciò ha dimostrato l'ampia e ineguagliata capacità del tester meccanico di Nanovea. Il sistema fornisce contemporaneamente misurazioni precise delle proprietà meccaniche su materiali estremamente duri e tessuti biologici molli.

La cella di carico in controllo ad anello chiuso con la tavola piezoelettrica assicura una misurazione precisa di materiali in gel duri o morbidi da 1 a 5kPa. Utilizzando lo stesso sistema, è possibile testare i biomateriali a carichi più elevati, fino a 400N. Per le prove di fatica è possibile utilizzare un carico a più cicli e ottenere informazioni sulla resistenza allo snervamento in ogni zona utilizzando una punta di diamante cilindrica piatta. Inoltre, con l'analisi meccanica dinamica (DMA), le proprietà viscoelastiche, la perdita e il modulo di accumulo possono essere valutati con elevata precisione grazie al controllo del carico ad anello chiuso. Sullo stesso sistema sono disponibili anche prove a varie temperature e sotto liquidi.

Il tester meccanico di Nanovea continua a essere lo strumento superiore per le applicazioni biologiche e di polimeri/gel morbidi.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Valutazione dell'usura e del graffio di fili di rame trattati superficialmente

Importanza della valutazione dell'usura e dei graffi dei fili di rame

Il rame ha una lunga storia di utilizzo nel cablaggio elettrico fin dall'invenzione dell'elettromagnete e del telegrafo. I fili di rame sono utilizzati in un'ampia gamma di apparecchiature elettroniche, come pannelli, contatori, computer, macchine commerciali ed elettrodomestici, grazie alla loro resistenza alla corrosione, alla saldabilità e alle prestazioni a temperature elevate, fino a 150°C. Circa la metà di tutto il rame estratto viene utilizzato per la produzione di conduttori di fili e cavi elettrici.

La qualità della superficie dei fili di rame è fondamentale per le prestazioni e la durata delle applicazioni. I micro difetti nei fili possono portare a un'usura eccessiva, all'innesco e alla propagazione di cricche, a una diminuzione della conduttività e a un'inadeguata saldabilità. Un adeguato trattamento superficiale dei fili di rame rimuove i difetti superficiali generati durante la trafilatura, migliorando la resistenza alla corrosione, ai graffi e all'usura. Molte applicazioni aerospaziali con fili di rame richiedono un comportamento controllato per evitare guasti imprevisti alle apparecchiature. Per valutare correttamente la resistenza all'usura e ai graffi della superficie del filo di rame sono necessarie misure quantificabili e affidabili.

 
 

 

Obiettivo di misurazione

In questa applicazione simuliamo un processo di usura controllata di diversi trattamenti superficiali del filo di rame. Test di graffiatura misura il carico necessario a causare la rottura dello strato superficiale trattato. Questo studio mette in mostra la Nanovea Tribometro e Collaudatore meccanico come strumenti ideali per la valutazione e il controllo qualità dei cavi elettrici.

 

 

Procedura di test e procedure

Il coefficiente di attrito (COF) e la resistenza all'usura di due diversi trattamenti superficiali sui fili di rame (filo A e filo B) sono stati valutati dal tribometro Nanovea utilizzando un modulo di usura alternativo lineare. Una sfera Al₂O₃ (6 mm di diametro) è il contromateriale utilizzato in questa applicazione. La traccia di usura è stata esaminata utilizzando Nanovea Profilometro 3D senza contatto. I parametri del test sono riepilogati nella Tabella 1.

In questo studio è stata utilizzata come esempio una sfera liscia di Al₂O₃ come materiale di contrasto. È possibile applicare qualsiasi materiale solido con forma e finitura superficiale diverse, utilizzando un dispositivo personalizzato per simulare la situazione di applicazione reale.

 

 

Il tester meccanico di Nanovea, dotato di uno stilo in diamante Rockwell C (raggio di 100 μm), ha eseguito prove di graffiatura a carico progressivo sui fili rivestiti utilizzando la modalità micrograffio. I parametri del test di graffiatura e la geometria della punta sono riportati nella Tabella 2.
 

 

 

 

Risultati e discussione

Usura del filo di rame:

La Figura 2 mostra l'evoluzione della COF dei fili di rame durante i test di usura. Il filo A mostra un COF stabile di ~0,4 per tutta la durata del test di usura, mentre il filo B presenta un COF di ~0,35 nei primi 100 giri e aumenta progressivamente fino a ~0,4.

 

La Figura 3 confronta le tracce di usura dei fili di rame dopo i test. Il profilometro 3D senza contatto di Nanovea ha offerto un'analisi superiore della morfologia dettagliata delle tracce di usura. Consente una determinazione diretta e accurata del volume delle tracce di usura, fornendo una comprensione fondamentale del meccanismo di usura. La superficie del filo B presenta danni significativi alle tracce di usura dopo un test di usura a 600 giri. La vista 3D del profilometro mostra che lo strato trattato in superficie del filo B è stato completamente rimosso, accelerando in modo sostanziale il processo di usura. Ciò ha lasciato una traccia di usura appiattita sul filo B dove è esposto il substrato di rame. Ciò può comportare una riduzione significativa della durata di vita delle apparecchiature elettriche in cui viene utilizzato il filo B. In confronto, il filo A presenta un'usura relativamente lieve, evidenziata da una traccia di usura poco profonda sulla superficie. Lo strato trattato in superficie sul filo A non si è rimosso come quello sul filo B nelle stesse condizioni.

Resistenza ai graffi della superficie del filo di rame:

La Figura 4 mostra le tracce di graffi sui fili dopo il test. Lo strato protettivo del filo A mostra un'ottima resistenza ai graffi. Si delamina a un carico di ~12,6 N. In confronto, lo strato protettivo del filo B si è rotto a un carico di ~1,0 N. Una differenza così significativa nella resistenza ai graffi di questi fili contribuisce alle loro prestazioni all'usura, dove il filo A possiede una resistenza all'usura sostanzialmente superiore. L'evoluzione della forza normale, della COF e della profondità durante i test di graffiatura mostrati nella Fig. 5 fornisce ulteriori informazioni sul cedimento del rivestimento durante i test.

Conclusione

In questo studio controllato abbiamo presentato il tribometro Nanovea che effettua una valutazione quantitativa della resistenza all'usura dei fili di rame trattati superficialmente e il tester meccanico Nanovea che fornisce una valutazione affidabile della resistenza ai graffi dei fili di rame. Il trattamento superficiale del filo gioca un ruolo fondamentale nelle proprietà tribomeccaniche durante la sua vita. Un trattamento superficiale adeguato del filo A ha migliorato significativamente la resistenza all'usura e ai graffi, fondamentale per le prestazioni e la durata dei fili elettrici in ambienti difficili.

Il tribometro di Nanovea offre test di usura e attrito precisi e ripetibili utilizzando modalità rotative e lineari conformi agli standard ISO e ASTM, con moduli opzionali per l'usura ad alta temperatura, la lubrificazione e la tribocorrosione disponibili in un unico sistema pre-integrato. La gamma impareggiabile di Nanovea è la soluzione ideale per determinare l'intera gamma di proprietà tribologiche di rivestimenti, film e substrati sottili o spessi, morbidi o duri.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Resistenza allo snervamento e alla trazione di acciaio e alluminio

Importanza della misurazione del carico di snervamento e del carico di rottura con l'indentazione

Tradizionalmente, il carico di snervamento e il carico di rottura sono stati testati utilizzando una macchina per prove di trazione di grandi dimensioni, che richiede una forza enorme per staccare i campioni di prova. È costoso e dispendioso in termini di tempo lavorare adeguatamente molti tagliandi di prova per un materiale in cui ogni campione può essere testato solo una volta. Piccoli difetti nel campione creano una notevole variazione nei risultati delle prove. Le diverse configurazioni e allineamenti dei tester di trazione presenti sul mercato spesso comportano variazioni sostanziali nella meccanica e nei risultati delle prove.

L'innovativo metodo di indentazione di Nanovea fornisce direttamente valori di resistenza allo snervamento e di resistenza alla trazione finale paragonabili ai valori misurati dai test di trazione convenzionali. Questa misurazione apre un nuovo campo di possibilità di test per tutti i settori industriali. Il semplice setup sperimentale riduce significativamente i tempi e i costi di preparazione dei campioni rispetto alla complessa forma delle cedole richiesta per le prove di trazione. Grazie alle dimensioni ridotte dell'indentazione, è possibile eseguire più misure su un singolo campione. Questo sistema evita l'influenza dei difetti che si riscontrano nelle cedole per prove di trazione create durante la lavorazione del campione. Le misure di YS e UTS su piccoli campioni in aree localizzate consentono la mappatura e l'individuazione di difetti locali in tubazioni o strutture auto.
 
 

Obiettivo di misurazione

In questa applicazione, il sistema Nanovea Collaudatore meccanico misura il carico di snervamento e il carico di rottura a trazione di campioni di acciaio inossidabile SS304 e lega metallica di alluminio Al6061. I campioni sono stati scelti per i valori di resistenza allo snervamento e di resistenza alla trazione comunemente riconosciuti, che dimostrano l'affidabilità dei metodi di indentazione di Nanovea.

Procedura di test e procedure

Le prove di resistenza allo snervamento e di resistenza alla trazione finale sono state eseguite con il tester meccanico Nanovea nel Microindentazione modalità. Per questa applicazione è stata utilizzata una punta di diamante cilindrica piatta di 200 μm di diametro. Le leghe SS304 e Al6061 sono state selezionate per la loro vasta applicazione industriale e per i valori di resistenza allo snervamento e resistenza alla trazione finale comunemente riconosciuti, al fine di dimostrare il grande potenziale e l'affidabilità del metodo di indentazione. I campioni sono stati lucidati meccanicamente a specchio prima delle prove per evitare che la rugosità della superficie o i difetti influenzassero i risultati. Le condizioni di prova sono elencate nella Tabella 1. Sono state eseguite più di dieci prove su ciascun campione per garantire la ripetibilità dei valori di prova.

Risultati e discussione

Le curve di carico-spostamento dei campioni di lega SS304 e Al6061 sono mostrate nella Figura 3 con le impronte del penetratore piatto sui campioni di prova. L'analisi della curva di carico a forma di "S", utilizzando speciali algoritmi sviluppati da Nanovea, calcola il carico di snervamento e il carico di rottura. I valori sono calcolati automaticamente dal software, come riassunto nella Tabella 1. I valori di Yield Strength e Ultimate Tensile Strength ottenuti con prove di trazione convenzionali sono elencati per confronto.

 

Conclusione

In questo studio, abbiamo mostrato la capacità del Nanovea Mechanical Tester nel valutare la resistenza allo snervamento e la resistenza alla trazione finale di campioni di fogli di acciaio inossidabile e leghe di alluminio. La semplice configurazione sperimentale riduce significativamente i tempi e i costi per la preparazione dei campioni necessari per le prove di trazione. La dimensione ridotta della rientranza consente di eseguire misurazioni multiple su un singolo campione. Questo metodo consente misurazioni YS/UTS su piccoli campioni e aree localizzate, fornendo una soluzione per la mappatura YS/UTS e il rilevamento locale dei difetti di tubazioni o strutture automobilistiche.

I moduli Nano, Micro o Macro del Nanovea Mechanical Tester includono tutti modalità di test di indentazione, graffiatura e usura conformi ISO e ASTM, fornendo la gamma di test più ampia e intuitiva disponibile in un unico sistema. L'impareggiabile gamma di Nanovea è una soluzione ideale per determinare l'intera gamma di proprietà meccaniche di rivestimenti, pellicole e substrati sottili o spessi, morbidi o duri, tra cui durezza, modulo di Young, tenacità alla frattura, adesione, resistenza all'usura e molti altri. Inoltre, sono disponibili un profilatore 3D senza contatto opzionale e un modulo AFM per l'imaging 3D ad alta risoluzione di rientranze, graffi e tracce di usura oltre ad altre misurazioni superficiali come la rugosità.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Valutazione della durezza del dente con la nanoindentazione

Importanza della nanoindentazione per i materiali biologici

 
Con molti test meccanici tradizionali (durezza, adesione, compressione, perforazione, resistenza allo snervamento, ecc.), gli odierni ambienti di controllo qualità con materiali sensibili avanzati, dai gel ai materiali fragili, richiedono ora un controllo di maggiore precisione e affidabilità. La strumentazione meccanica tradizionale non è in grado di fornire il controllo del carico sensibile e la risoluzione richiesta; è stata progettata per essere utilizzata per materiali sfusi. Poiché le dimensioni del materiale da testare sono diventate di maggiore interesse, lo sviluppo di Nanoindentazione ha fornito un metodo affidabile per ottenere informazioni meccaniche essenziali su superfici di dimensioni ridotte, come nel caso della ricerca sui biomateriali. Le sfide specificamente associate ai biomateriali hanno richiesto lo sviluppo di test meccanici in grado di controllare accuratamente il carico su materiali estremamente morbidi o fragili. Inoltre, sono necessari più strumenti per eseguire vari test meccanici che ora possono essere eseguiti con un unico sistema. La nanoindentazione offre un'ampia gamma di misurazioni con una risoluzione precisa a carichi nanocontrollati per applicazioni sensibili.

 

 

Obiettivo di misurazione

In questa applicazione, il sistema Nanovea Collaudatore meccanico, in modalità Nanoindentazione, viene utilizzato per studiare la durezza e il modulo elastico della dentina, della carie e della polpa di un dente. L'aspetto più critico con il test di nanoindentazione è la protezione del campione, qui abbiamo preso un dente tagliato e montato con resina epossidica lasciando tutte e tre le aree di interesse esposte per il test.

 

 

Risultati e discussione

Questa sezione comprende una tabella riassuntiva che confronta i principali risultati numerici per i diversi campioni, seguita dall'elenco completo dei risultati, che include ogni indentazione eseguita, accompagnata da micrografie dell'indentazione, quando disponibili. Questi risultati completi presentano i valori misurati di durezza e modulo di Young e la profondità di penetrazione con le loro medie e deviazioni standard. Si deve considerare che i risultati possono variare notevolmente nel caso in cui la rugosità superficiale sia della stessa dimensione dell'indentazione.

Tabella riassuntiva dei principali risultati numerici:

 

 

Conclusione

In conclusione, abbiamo mostrato come il Nanovea Mechanical Tester, in modalità di nanoindentazione, fornisca una misura precisa delle proprietà meccaniche di un dente. I dati possono essere utilizzati per lo sviluppo di otturazioni che corrispondano meglio alle caratteristiche meccaniche di un dente reale. La capacità di posizionamento del Nanovea Mechanical Tester consente una mappatura completa della durezza dei denti nelle varie zone.

Utilizzando lo stesso sistema, è possibile testare la tenacità alla frattura dei denti a carichi più elevati, fino a 200N. Un test di carico a più cicli può essere utilizzato su materiali più porosi per valutare il livello di elasticità rimanente. L'uso di una punta di diamante cilindrica piatta può fornire informazioni sulla resistenza allo snervamento in ogni zona. Inoltre, con l'analisi meccanica dinamica (DMA) è possibile valutare le proprietà viscoelastiche, compresi i moduli di perdita e di accumulo.

Il modulo Nanovea nano è ideale per questi test perché utilizza una risposta di feedback unica per controllare con precisione il carico applicato. Per questo motivo, il modulo nanovea può essere utilizzato anche per eseguire accurati test di graffiatura. Lo studio della resistenza al graffio e all'usura del materiale dentale e dei materiali da otturazione si aggiunge all'utilità complessiva del tester meccanico. L'uso di una punta affilata da 2 micron per confrontare quantitativamente le rigature sui materiali da otturazione consentirà di prevedere meglio il comportamento nelle applicazioni reali. Anche i test di usura multi-pass o di usura rotativa diretta sono test comuni e forniscono informazioni importanti sulla durata a lungo termine.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE