Categoria: Prove di profilometria
Ispezione della rugosità superficiale delle compresse farmaceutiche
Compresse farmaceutiche
Ispezione della rugosità con i profilometri 3D
Autore:
Jocelyn Esparza
Introduzione
Le compresse farmaceutiche sono il dosaggio medicinale più diffuso oggi. Ogni compressa è costituita da una combinazione di sostanze attive (le sostanze chimiche che producono l'effetto farmacologico) e di sostanze inattive (disintegrante, legante, lubrificante, diluente - di solito sotto forma di polvere). Le sostanze attive e inattive vengono poi compresse o modellate in un solido. In seguito, a seconda delle specifiche del produttore, le compresse sono rivestite o non rivestite.
Per essere efficaci, i rivestimenti delle compresse devono seguire i contorni sottili dei loghi o dei caratteri in rilievo sulle compresse, devono essere sufficientemente stabili e robusti da sopravvivere alla manipolazione della compressa e non devono far sì che le compresse si attacchino l'una all'altra durante il processo di rivestimento. Le compresse attuali hanno in genere un rivestimento a base di polisaccaridi e polimeri che includono sostanze come pigmenti e plastificanti. I due tipi più comuni di rivestimenti da tavola sono i rivestimenti in pellicola e i rivestimenti in zucchero. Rispetto ai rivestimenti di zucchero, i rivestimenti in pellicola sono meno ingombranti, più durevoli e richiedono meno tempo per la preparazione e l'applicazione. Tuttavia, i rivestimenti in pellicola hanno maggiori difficoltà a nascondere l'aspetto delle compresse.
I rivestimenti delle compresse sono essenziali per proteggere dall'umidità, mascherare il sapore degli ingredienti e rendere le compresse più facili da deglutire. Ma soprattutto, il rivestimento della compressa controlla la posizione e la velocità di rilascio del farmaco.
OBIETTIVO DI MISURAZIONE
In questa applicazione, si utilizza il metodo Profilatore ottico NANOVEA e il software Mountains avanzato per misurare e quantificare la topografia di varie pillole pressate di marca (1 rivestita e 2 non rivestite) per confrontare la loro rugosità superficiale.
Si presume che Advil (rivestito) abbia la rugosità superficiale più bassa grazie al rivestimento protettivo di cui è dotato.
NANOVEA
HS2000
Condizioni di prova
Tre lotti di compresse pressate di marche farmaceutiche sono stati scansionati con Nanovea HS2000.
utilizzando il sensore di linea ad alta velocità per misurare vari parametri di rugosità superficiale secondo la norma ISO 25178.
Area di scansione
2 x 2 mm
Risoluzione della scansione laterale
5 x 5 μm
Tempo di scansione
4 secondi
Campioni
Risultati e discussione
Dopo la scansione delle compresse, è stato condotto uno studio della rugosità superficiale con il software avanzato di analisi Mountains per calcolare la media della superficie, il quadrato medio e l'altezza massima di ogni compressa.
I valori calcolati supportano l'ipotesi che Advil abbia una rugosità superficiale inferiore a causa del rivestimento protettivo che racchiude i suoi ingredienti. Tylenol presenta la rugosità superficiale più elevata di tutte e tre le compresse misurate.
È stata prodotta una mappa di altezza 2D e 3D della topografia della superficie di ciascuna tavoletta, che mostra le distribuzioni di altezza misurate. Una delle cinque tavolette è stata selezionata per rappresentare le mappe di altezza di ciascun marchio. Queste mappe di altezza sono un ottimo strumento per individuare visivamente le caratteristiche della superficie, come buche o picchi.
Conclusione
In questo studio abbiamo analizzato e confrontato la rugosità superficiale di tre pillole farmaceutiche pressate di marca: Advil, Tylenol ed Excedrin. Advil ha dimostrato di avere la rugosità superficiale media più bassa. Ciò può essere attribuito alla presenza del rivestimento arancione che ricopre il farmaco. Al contrario, sia Excedrin che Tylenol sono privi di rivestimento, ma la loro rugosità superficiale è comunque diversa. Tylenol ha dimostrato di avere la rugosità superficiale media più alta tra tutte le compresse studiate.
Utilizzando il NANOVEA HS2000 con sensore di linea ad alta velocità, siamo stati in grado di misurare 5 compresse in meno di 1 minuto. Questo può rivelarsi utile per il controllo di qualità di centinaia di pillole in una produzione odierna.
PARLIAMO ORA DELLA VOSTRA APPLICAZIONE
Strumenti dentali: Analisi dimensionale e della rugosità superficiale
INTRODUZIONE
Avere dimensioni precise e rugosità superficiale ottimale sono vitali per la funzionalità delle viti dentali. Molte dimensioni delle viti dentali richiedono un'elevata precisione come raggi, angoli, distanze e altezze dei gradini. Comprendere la ruvidità della superficie locale è inoltre estremamente importante per qualsiasi strumento medico o parte inserita all'interno del corpo umano per ridurre al minimo l'attrito radente.
PROFILOMETRIA SENZA CONTATTO PER LO STUDIO DIMENSIONALE
Nanovea Profilatori 3D senza contatto utilizzano una tecnologia basata sulla luce cromatica per misurare qualsiasi superficie materiale: trasparente, opaca, speculare, diffusiva, lucida o ruvida. A differenza della tecnica con tastatore a contatto, la tecnica senza contatto può misurare all'interno di aree ristrette e non aggiunge errori intrinseci dovuti alla deformazione causata dalla pressione della punta su un materiale plastico più morbido. La tecnologia basata sulla luce cromatica offre inoltre una precisione laterale e di altezza superiore rispetto alla tecnologia di variazione della messa a fuoco. I Nanovea Profiler possono scansionare grandi superfici direttamente senza cuciture e profilare la lunghezza di una parte in pochi secondi. È possibile misurare caratteristiche superficiali della gamma da nano a macro e angoli di superficie elevati grazie alla capacità del profilatore di misurare le superfici senza che alcun algoritmo complesso manipoli i risultati.
OBIETTIVO DI MISURAZIONE
In questa applicazione, il profilatore ottico Nanovea ST400 è stato utilizzato per misurare una vite dentale lungo le caratteristiche piatte e filettate in un'unica misurazione. La rugosità superficiale è stata calcolata dall'area piana e sono state determinate le varie dimensioni delle caratteristiche filettate.
Campione di vite dentale analizzato da NANOVEA Profilatore ottico.
Campione di vite dentale analizzato.
RISULTATI
Superficie 3D
La vista 3D e la vista in falsi colori della vite dentale mostrano un'area piatta con filettatura che inizia su entrambi i lati. Fornisce agli utenti uno strumento semplice per osservare direttamente la morfologia della vite da diverse angolazioni. L'area piatta è stata estratta dalla scansione completa per misurarne la rugosità superficiale.
Analisi della superficie 2D
I profili lineari possono anche essere estratti dalla superficie per mostrare una vista in sezione trasversale della vite. L'analisi del contorno e gli studi sull'altezza del gradino sono stati utilizzati per misurare dimensioni precise in una determinata posizione sulla vite.
CONCLUSIONE
In questa applicazione, abbiamo mostrato la capacità del profilatore senza contatto Nanovea 3D di calcolare con precisione la rugosità superficiale locale e misurare caratteristiche di grandi dimensioni in un'unica scansione.
I dati mostrano una rugosità superficiale locale di 0,9637 μm. Il raggio della vite tra le filettature è risultato essere di 1,729 mm e le filettature avevano un'altezza media di 0,413 mm. L'angolo medio tra i fili è stato determinato pari a 61,3°.
I dati qui riportati rappresentano solo una parte dei calcoli disponibili nel software di analisi.
Preparato da
Duanjie Li, PhD., Jonathan Thomas e Pierre Leroux
Ispezione della rugosità in linea
Per saperne di più
IMPORTANZA DEL PROFILATORE SENZA CONTATTO PER L'ISPEZIONE DELLA RUGOSITÀ IN LINEA
I difetti superficiali derivano dalla lavorazione dei materiali e dalla fabbricazione del prodotto. L'ispezione della qualità della superficie in linea garantisce il controllo di qualità più rigoroso dei prodotti finali. La Nanovea Profilometri 3D senza contatto utilizzano la tecnologia confocale cromatica con una capacità unica di determinare la ruvidità di un campione senza contatto. È possibile installare più sensori profilatori per monitorare contemporaneamente la rugosità e la struttura di diverse aree del prodotto. La soglia di rugosità calcolata in tempo reale dal software di analisi funge da strumento pass/fail veloce e affidabile.
OBIETTIVO DI MISURAZIONE
In questo studio, il sistema di trasporto per l'ispezione della rugosità Nanovea, dotato di un sensore puntiforme, viene utilizzato per ispezionare la rugosità superficiale dei campioni di acrilico e carta vetrata. Si dimostra la capacità del profilometro senza contatto Nanovea di fornire un'ispezione della rugosità in linea rapida e affidabile in una linea di produzione in tempo reale.
RISULTATI E DISCUSSIONE
Il sistema di profilatura a nastro può funzionare in due modalità: modalità Trigger e modalità continua. Come illustrato nella Figura 2, la rugosità superficiale dei campioni viene misurata quando passano sotto le teste del profilatore ottico in modalità Trigger. La modalità continua, invece, consente di misurare ininterrottamente la rugosità superficiale di un campione continuo, come lamiere e tessuti. È possibile installare più sensori del profilatore ottico per monitorare e registrare la rugosità di diverse aree del campione.
Durante la misurazione della rugosità in tempo reale, le finestre del software visualizzano gli avvisi di superamento e di insuccesso, come mostrato nelle Figure 4 e 5. Quando il valore della rugosità rientra nelle soglie stabilite, la rugosità misurata è evidenziata in verde. Quando il valore della rugosità rientra nelle soglie stabilite, la rugosità misurata è evidenziata in verde. Tuttavia, l'evidenziazione diventa rossa quando la rugosità della superficie misurata è al di fuori dell'intervallo dei valori di soglia impostati. Ciò fornisce all'utente uno strumento per determinare la qualità della finitura superficiale di un prodotto.
Nelle sezioni seguenti, vengono utilizzati due tipi di campioni, ad esempio acrilico e carta vetrata, per dimostrare le modalità Trigger e Continuous del sistema di ispezione.
Modalità Trigger: Ispezione della superficie del campione acrilico
Una serie di campioni acrilici sono allineati sul nastro trasportatore e si muovono sotto la testa del profilatore ottico, come illustrato nella Figura 1. La vista in falsi colori della Figura 6 mostra la variazione dell'altezza della superficie. Alcuni dei campioni acrilici finiti a specchio sono stati levigati per creare una struttura superficiale ruvida, come mostrato nella Figura 6b.
Mentre i campioni acrilici si muovono a velocità costante sotto la testa del profilatore ottico, viene misurato il profilo della superficie, come illustrato nelle Figure 7 e 8. Il valore di rugosità del profilo misurato viene calcolato contemporaneamente e confrontato con i valori di soglia. L'allarme rosso viene lanciato quando il valore di rugosità supera la soglia impostata, consentendo agli utenti di individuare immediatamente il prodotto difettoso sulla linea di produzione.
Modalità continua: Ispezione della superficie del campione di carta vetrata
Mappa dell'altezza della superficie, mappa della distribuzione della rugosità e mappa della soglia di passaggio/errore della rugosità della superficie del campione di carta vetrata, come mostrato nella Figura 9. Il campione di carta vetrata presenta un paio di picchi più alti nella parte utilizzata, come mostrato nella mappa dell'altezza della superficie. I diversi colori nella palette della Figura 9C rappresentano il valore di rugosità della superficie locale. La mappa della rugosità mostra una rugosità omogenea nell'area intatta del campione di carta vetrata, mentre l'area usata è evidenziata in colore blu scuro, a indicare il valore ridotto della rugosità in questa regione. È possibile impostare una soglia di rugosità Pass/Fail per individuare tali regioni, come mostrato nella Figura 9D.
Mentre la carta vetrata passa continuamente sotto il sensore del profilatore in linea, il valore di rugosità locale in tempo reale viene calcolato e registrato, come illustrato nella Figura 10. Gli avvisi di superamento/errore vengono visualizzati sullo schermo del software in base ai valori soglia di rugosità impostati, fungendo da strumento rapido e affidabile per il controllo della qualità. La qualità della superficie del prodotto nella linea di produzione viene ispezionata in loco per scoprire in tempo le aree difettose.
In questa applicazione, abbiamo dimostrato che il profilometro per nastri trasportatori Nanovea, dotato di un sensore ottico di profilazione senza contatto, funziona come strumento affidabile di controllo della qualità in linea in modo efficace ed efficiente.
Il sistema di ispezione può essere installato nella linea di produzione per monitorare la qualità superficiale dei prodotti in loco. La soglia di rugosità funziona come criterio affidabile per determinare la qualità della superficie dei prodotti, consentendo agli utenti di notare in tempo i prodotti difettosi. Sono previste due modalità di ispezione, la modalità Trigger e la modalità continua, per soddisfare le esigenze di ispezione su diversi tipi di prodotti.
I dati qui riportati rappresentano solo una parte dei calcoli disponibili nel software di analisi. I profilometri Nanovea misurano virtualmente qualsiasi superficie in campi come quello dei semiconduttori, della microelettronica, del solare, delle fibre, dell'ottica, dell'automotive, dell'aerospaziale, della metallurgia, della lavorazione, dei rivestimenti, del farmaceutico, del biomedicale, dell'ambientale e molti altri.
PARLIAMO ORA DELLA VOSTRA APPLICAZIONE
Test di usura del blocco sull'anello
IMPORTANZA DELLA VALUTAZIONE DELL'USURA DEL BLOCCO SULL'ANELLO
Il test Block-on-Ring (ASTM G77) è una tecnica ampiamente utilizzata che valuta il comportamento di usura da scorrimento dei materiali in diverse condizioni simulate, consente una classificazione affidabile delle coppie di materiali per specifiche applicazioni tribologiche.
OBIETTIVO DI MISURAZIONE
In questa applicazione, il tester meccanico Nanovea misura l'YS e l'UTS di campioni di acciaio inossidabile SS304 e di lega di alluminio Al6061. I campioni sono stati scelti per i loro valori YS e UTS comunemente riconosciuti, che dimostrano l'affidabilità dei metodi di indentazione di Nanovea.
Il comportamento di usura da scorrimento di un blocco H-30 su un anello S-10 è stato valutato dal tribometro di Nanovea utilizzando il modulo Block-on-Ring. Il blocco H-30 è realizzato in acciaio per utensili 01 con durezza 30HRC, mentre l'anello S-10 è in acciaio tipo 4620 con durezza superficiale da 58 a 63 HRC e diametro dell'anello di ~34,98 mm. I test Block-on-Ring sono stati eseguiti in ambienti asciutti e lubrificati per studiare l'effetto sul comportamento all'usura. I test di lubrificazione sono stati eseguiti con olio minerale pesante USP. La traccia di usura è stata esaminata utilizzando Nanovea Profilometro 3D senza contatto. I parametri del test sono riepilogati nella Tabella 1. Il tasso di usura (K), è stato valutato utilizzando la formula K=V/(F×s), dove V è il volume usurato, F è il carico normale, s è la distanza di scorrimento.
RISULTATI E DISCUSSIONE
La Figura 2 confronta il coefficiente di attrito (COF) dei test Block-on-Ring in ambienti asciutti e lubrificati. Il blocco ha un attrito significativamente maggiore in un ambiente asciutto rispetto a un ambiente lubrificato. COF
fluttua durante il periodo di rodaggio nei primi 50 giri e raggiunge un COF costante di ~0,8 per il resto del test di usura a 200 giri. In confronto, il test Block-on-Ring eseguito nella lubrificazione con olio minerale pesante USP mostra un COF costantemente basso di 0,09 durante il test di usura di 500.000 giri. Il lubrificante riduce significativamente il COF tra le superfici di ~90 volte.
Le figure 3 e 4 mostrano le immagini ottiche e i profili 2D in sezione trasversale delle tracce di usura sui blocchi dopo i test di usura a secco e lubrificati. I volumi delle tracce di usura e i tassi di usura sono riportati nella Tabella 2. Il blocco d'acciaio dopo la prova di usura a secco a una velocità di rotazione inferiore di 72 giri/min per 200 giri mostra un grande volume di cicatrici da usura di 9,45 mm˙. In confronto, la prova di usura eseguita a una velocità superiore di 197 giri/min per 500.000 giri con il lubrificante a base di olio minerale crea un volume della pista di usura sostanzialmente inferiore, pari a 0,03 mm˙.
Le immagini in ÿgura 3 mostrano che durante i test a secco si verifica una grave usura rispetto a quella lieve del test di usura lubrificato. L'elevato calore e le intense vibrazioni generate durante la prova di usura a secco favoriscono l'ossidazione dei detriti metallici, provocando una grave abrasione a tre corpi. Nella prova con lubrificazione, l'olio minerale riduce l'attrito e raffredda la superficie di contatto, oltre a trasportare i detriti abrasivi creati durante l'usura. Ciò porta a una significativa riduzione del tasso di usura di un fattore pari a ~8×10ˆ. Una differenza così sostanziale nella resistenza all'usura in ambienti diversi dimostra l'importanza di una corretta simulazione dell'usura da scorrimento in condizioni di servizio realistiche.
Il comportamento all'usura può cambiare drasticamente quando si introducono piccole variazioni nelle condizioni di prova. La versatilità del tribometro Nanovea consente di misurare l'usura in condizioni di alta temperatura, lubrificazione e tribocorrosione. L'accurato controllo della velocità e della posizione da parte del motore avanzato consente di eseguire test di usura a velocità comprese tra 0,001 e 5000 giri/minuto, rendendolo uno strumento ideale per i laboratori di ricerca/test per studiare l'usura in condizioni tribologiche diverse.
Le condizioni superficiali dei campioni sono state esaminate con il proÿlometro ottico senza contatto di Nanovea. La Figura 5 mostra la morfologia superficiale degli anelli dopo i test di usura. La forma del cilindro è stata rimossa per presentare meglio la morfologia superficiale e la rugosità creata dal processo di usura per scorrimento. Durante la prova di usura a secco di 200 giri si è verificato un significativo irruvidimento della superficie a causa del processo di abrasione a tre corpi. Il blocco e l'anello dopo la prova di usura a secco presentano una rugosità Ra di 14,1 e 18,1 µm, rispettivamente, rispetto a 5,7 e 9,1 µm per la prova di usura lubrificata a lungo termine di 500.000 giri a una velocità superiore. Questo test dimostra l'importanza di una corretta lubrificazione del contatto pistone-cilindro. Una forte usura danneggia rapidamente la superficie di contatto senza lubrificazione e porta a un deterioramento irreversibile della qualità del servizio e persino alla rottura del motore.
CONCLUSIONE
In questo studio mostriamo come il tribometro di Nanovea viene utilizzato per valutare il comportamento di usura da scorrimento di una coppia acciaio-metallo utilizzando il modulo Block-on-Ring secondo lo standard ASTM G77. Il lubrificante gioca un ruolo critico nelle proprietà di usura della coppia di materiali. L'olio minerale riduce il tasso di usura del blocco H-30 di un fattore di ~8×10ˆ e il COF di ~90 volte. La versatilità del Tribometro di Nanovea lo rende uno strumento ideale per misurare il comportamento dell'usura in varie condizioni di lubrificazione, alta temperatura e tribocorrosione.
Il tribometro di Nanovea offre test di usura e attrito precisi e ripetibili utilizzando modalità rotativa e lineare conformi a ISO e ASTM, con moduli opzionali di usura ad alta temperatura, lubrificazione e tribocorrosione disponibili in un unico sistema preintegrato. L'impareggiabile gamma di Nanovea è una soluzione ideale per determinare l'intera gamma di proprietà tribologiche di rivestimenti, pellicole e substrati sottili o spessi, morbidi o duri.
PARLIAMO ORA DELLA VOSTRA APPLICAZIONE
Analisi dei materiali compositi con la profilometria 3D
Importanza della profilometria senza contatto per i materiali compositi
È fondamentale ridurre al minimo i difetti in modo che i materiali compositi siano il più resistenti possibile nelle applicazioni di rinforzo. Essendo un materiale anisotropo, è fondamentale che la direzione dell'armatura sia coerente per mantenere la prevedibilità delle prestazioni. I materiali compositi hanno uno dei più alti rapporti tra resistenza e peso, che in alcuni casi li rende più resistenti dell'acciaio. È importante limitare la superficie esposta nei compositi per ridurre al minimo la vulnerabilità chimica e gli effetti di espansione termica. L'ispezione superficiale con profilometria è fondamentale per il controllo di qualità della produzione dei compositi, per garantire prestazioni elevate per un lungo periodo di servizio.
Quella di Nanovea Profilometro 3D senza contatto è diverso da altre tecniche di misurazione della superficie come i tastatori o l'interferometria. I nostri profilometri utilizzano il cromatismo assiale per misurare quasi tutte le superfici e la stadiazione aperta consente campioni di qualsiasi dimensione senza necessità di preparazione. Le misurazioni nano-macro vengono ottenute durante la misurazione del profilo superficiale con zero influenza da parte della riflettività o dell'assorbimento del campione. I nostri profilometri misurano facilmente qualsiasi materiale: trasparente, opaco, speculare, diffusivo, lucido e ruvido con la capacità avanzata di misurare angoli superficiali elevati senza manipolazione del software. La tecnica del profilometro senza contatto fornisce la capacità ideale e facile da usare per massimizzare gli studi sulla superficie del materiale composito; insieme ai vantaggi della funzionalità combinata 2D e 3D.
Obiettivo di misurazione
Il profilometro Nanovea HS2000L utilizzato in questa applicazione ha misurato la superficie di due trame di compositi in fibra di carbonio. La rugosità superficiale, la lunghezza della trama, l'isotropia, l'analisi frattale e altri parametri di superficie sono stati utilizzati per caratterizzare i compositi. L'area misurata è stata selezionata in modo casuale e si presume che sia sufficientemente grande da poter confrontare i valori delle proprietà utilizzando il potente software di analisi delle superfici di Nanovea.
Risultati e discussione
Analisi della superficie
L'isotropia mostra la direzionalità della trama per determinare i valori di proprietà attesi. Il nostro studio mostra come il composito bidirezionale sia ~60% isotropo, come previsto. Nel frattempo, il composito unidirezionale è isotropo per ~13% a causa della forte direzione del percorso della singola fibra.
La dimensione dell'armatura determina la consistenza dell'impacchettamento e la larghezza delle fibre utilizzate nel composito. Il nostro studio mostra come sia facile misurare le dimensioni della trama con una precisione al micron per garantire la qualità dei pezzi.
L'analisi della texture della lunghezza d'onda dominante suggerisce che la dimensione dei filamenti per entrambi i compositi è di 4,27 micron di spessore. L'analisi della dimensione frattale della superficie della fibra determina la levigatezza per individuare la facilità con cui le fibre si depositano in una matrice. La dimensione frattale della fibra unidirezionale è superiore a quella della fibra bidirezionale, il che può influire sulla lavorazione dei compositi.
Conclusione
In questa applicazione, abbiamo dimostrato che il profilometro senza contatto Nanovea HS2000L caratterizza con precisione la superficie fibrosa dei materiali compositi. Abbiamo distinto le differenze tra i tipi di trama della fibra di carbonio con parametri di altezza, isotropia, analisi della struttura e misurazioni della distanza, oltre a molto altro.
Le misure di superficie del nostro profilometro attenuano con precisione e rapidità i danni ai compositi, riducendo i difetti nelle parti e massimizzando la capacità dei materiali compositi. La velocità del profilometro 3D di Nanovea varia da <1 mm/s a 500 mm/s per essere adatta alle applicazioni di ricerca e alle esigenze di ispezione ad alta velocità. Il profilometro Nanovea è la soluzione
per qualsiasi esigenza di misurazione di materiali compositi.
PARLIAMO ORA DELLA VOSTRA APPLICAZIONE
Valutazione dell'usura e del graffio di fili di rame trattati superficialmente
Importanza della valutazione dell'usura e dei graffi dei fili di rame
Il rame ha una lunga storia di utilizzo nel cablaggio elettrico fin dall'invenzione dell'elettromagnete e del telegrafo. I fili di rame sono utilizzati in un'ampia gamma di apparecchiature elettroniche, come pannelli, contatori, computer, macchine commerciali ed elettrodomestici, grazie alla loro resistenza alla corrosione, alla saldabilità e alle prestazioni a temperature elevate, fino a 150°C. Circa la metà di tutto il rame estratto viene utilizzato per la produzione di conduttori di fili e cavi elettrici.
La qualità della superficie dei fili di rame è fondamentale per le prestazioni e la durata delle applicazioni. I micro difetti nei fili possono portare a un'usura eccessiva, all'innesco e alla propagazione di cricche, a una diminuzione della conduttività e a un'inadeguata saldabilità. Un adeguato trattamento superficiale dei fili di rame rimuove i difetti superficiali generati durante la trafilatura, migliorando la resistenza alla corrosione, ai graffi e all'usura. Molte applicazioni aerospaziali con fili di rame richiedono un comportamento controllato per evitare guasti imprevisti alle apparecchiature. Per valutare correttamente la resistenza all'usura e ai graffi della superficie del filo di rame sono necessarie misure quantificabili e affidabili.
Obiettivo di misurazione
In questa applicazione simuliamo un processo di usura controllata di diversi trattamenti superficiali del filo di rame. Test di graffiatura misura il carico necessario a causare la rottura dello strato superficiale trattato. Questo studio mette in mostra la Nanovea Tribometro e Collaudatore meccanico come strumenti ideali per la valutazione e il controllo qualità dei cavi elettrici.
Procedura di test e procedure
Il coefficiente di attrito (COF) e la resistenza all'usura di due diversi trattamenti superficiali sui fili di rame (filo A e filo B) sono stati valutati dal tribometro Nanovea utilizzando un modulo di usura alternativo lineare. Una sfera Al₂O₃ (6 mm di diametro) è il contromateriale utilizzato in questa applicazione. La traccia di usura è stata esaminata utilizzando Nanovea Profilometro 3D senza contatto. I parametri del test sono riepilogati nella Tabella 1.
In questo studio è stata utilizzata come esempio una sfera liscia di Al₂O₃ come materiale di contrasto. È possibile applicare qualsiasi materiale solido con forma e finitura superficiale diverse, utilizzando un dispositivo personalizzato per simulare la situazione di applicazione reale.
Risultati e discussione
Usura del filo di rame:
La Figura 2 mostra l'evoluzione della COF dei fili di rame durante i test di usura. Il filo A mostra un COF stabile di ~0,4 per tutta la durata del test di usura, mentre il filo B presenta un COF di ~0,35 nei primi 100 giri e aumenta progressivamente fino a ~0,4.
La Figura 3 confronta le tracce di usura dei fili di rame dopo i test. Il profilometro 3D senza contatto di Nanovea ha offerto un'analisi superiore della morfologia dettagliata delle tracce di usura. Consente una determinazione diretta e accurata del volume delle tracce di usura, fornendo una comprensione fondamentale del meccanismo di usura. La superficie del filo B presenta danni significativi alle tracce di usura dopo un test di usura a 600 giri. La vista 3D del profilometro mostra che lo strato trattato in superficie del filo B è stato completamente rimosso, accelerando in modo sostanziale il processo di usura. Ciò ha lasciato una traccia di usura appiattita sul filo B dove è esposto il substrato di rame. Ciò può comportare una riduzione significativa della durata di vita delle apparecchiature elettriche in cui viene utilizzato il filo B. In confronto, il filo A presenta un'usura relativamente lieve, evidenziata da una traccia di usura poco profonda sulla superficie. Lo strato trattato in superficie sul filo A non si è rimosso come quello sul filo B nelle stesse condizioni.
Resistenza ai graffi della superficie del filo di rame:
La Figura 4 mostra le tracce di graffi sui fili dopo il test. Lo strato protettivo del filo A mostra un'ottima resistenza ai graffi. Si delamina a un carico di ~12,6 N. In confronto, lo strato protettivo del filo B si è rotto a un carico di ~1,0 N. Una differenza così significativa nella resistenza ai graffi di questi fili contribuisce alle loro prestazioni all'usura, dove il filo A possiede una resistenza all'usura sostanzialmente superiore. L'evoluzione della forza normale, della COF e della profondità durante i test di graffiatura mostrati nella Fig. 5 fornisce ulteriori informazioni sul cedimento del rivestimento durante i test.
Conclusione
In questo studio controllato abbiamo presentato il tribometro Nanovea che effettua una valutazione quantitativa della resistenza all'usura dei fili di rame trattati superficialmente e il tester meccanico Nanovea che fornisce una valutazione affidabile della resistenza ai graffi dei fili di rame. Il trattamento superficiale del filo gioca un ruolo fondamentale nelle proprietà tribomeccaniche durante la sua vita. Un trattamento superficiale adeguato del filo A ha migliorato significativamente la resistenza all'usura e ai graffi, fondamentale per le prestazioni e la durata dei fili elettrici in ambienti difficili.
Il tribometro di Nanovea offre test di usura e attrito precisi e ripetibili utilizzando modalità rotative e lineari conformi agli standard ISO e ASTM, con moduli opzionali per l'usura ad alta temperatura, la lubrificazione e la tribocorrosione disponibili in un unico sistema pre-integrato. La gamma impareggiabile di Nanovea è la soluzione ideale per determinare l'intera gamma di proprietà tribologiche di rivestimenti, film e substrati sottili o spessi, morbidi o duri.
PARLIAMO ORA DELLA VOSTRA APPLICAZIONE
Tribologia del carico dinamico
Tribologia del carico dinamico
Introduzione
L'usura si verifica praticamente in ogni settore industriale e comporta costi pari a ~0,75% del PIL1. La ricerca tribologica è fondamentale per migliorare l'efficienza produttiva, le prestazioni delle applicazioni e la conservazione di materiali, energia e ambiente. Le vibrazioni e le oscillazioni si verificano inevitabilmente in un'ampia gamma di applicazioni tribologiche. Un'eccessiva vibrazione esterna accelera il processo di usura e riduce le prestazioni di servizio, portando a guasti catastrofici delle parti meccaniche.
I tribometri convenzionali a carico morto applicano carichi normali mediante pesi di massa. Questa tecnica di carico non solo limita le opzioni di carico a un carico costante, ma crea anche intense vibrazioni incontrollate a carichi e velocità elevati che portano a valutazioni limitate e incoerenti del comportamento all'usura. Una valutazione affidabile dell'effetto dell'oscillazione controllata sul comportamento all'usura dei materiali è auspicabile per la R&S e il controllo qualità in diverse applicazioni industriali.
L'innovativo carico elevato di Nanovea tribometro ha una capacità di carico massima di 2000 N con un sistema di controllo dinamico del carico. L'avanzato sistema di caricamento pneumatico dell'aria compressa consente agli utenti di valutare il comportamento tribologico di un materiale sotto carichi normali elevati con il vantaggio di smorzare le vibrazioni indesiderate create durante il processo di usura. Pertanto, il carico viene misurato direttamente senza la necessità di molle tampone utilizzate nei modelli più vecchi. Un modulo di carico oscillante con elettromagnete parallelo applica un'oscillazione ben controllata dell'ampiezza desiderata fino a 20 N e della frequenza fino a 150 Hz.
L'attrito viene misurato con elevata precisione direttamente dalla forza laterale applicata al supporto superiore. Lo spostamento viene monitorato in situ, fornendo informazioni sull'evoluzione del comportamento all'usura dei campioni di prova. Il test di usura con carico a oscillazione controllata può essere eseguito anche in ambienti di corrosione, alta temperatura, umidità e lubrificazione per simulare le reali condizioni di lavoro per le applicazioni tribologiche. Un integrato ad alta velocità profilometro senza contatto misura automaticamente la morfologia della traccia di usura e il volume di usura in pochi secondi.
Obiettivo di misurazione
In questo studio, mostriamo la capacità del tribometro a carico dinamico Nanovea T2000 di studiare il comportamento tribologico di diversi campioni di rivestimento e di metallo in condizioni di carico oscillante controllato.
Procedura di prova
Il comportamento tribologico, ad esempio il coefficiente di attrito, COF, e la resistenza all'usura di un rivestimento resistente all'usura di 300 µm di spessore è stato valutato e confrontato dal tribometro Nanovea T2000 con un tribometro convenzionale a carico morto, utilizzando una configurazione perno su disco conforme alla norma ASTM G992.
Campioni separati rivestiti di Cu e TiN contro una sfera di Al₂0₃ da 6 mm sotto oscillazione controllata sono stati valutati mediante la modalità tribologica a carico dinamico del tribometro Nanovea T2000.
I parametri del test sono riassunti nella Tabella 1.
Il profilometro 3D integrato, dotato di un sensore di linea, esegue automaticamente la scansione della pista di usura dopo i test, fornendo la misura più accurata del volume di usura in pochi secondi.
Risultati e discussione
Sistema di carico pneumatico vs. sistema a carico morto
Il comportamento tribologico di un rivestimento resistente all'usura utilizzando il tribometro Nanovea T2000 viene confrontato con un tribometro convenzionale a carico morto (DL). L'evoluzione del COF del rivestimento è illustrata nella Fig. 2. Si osserva che il rivestimento presenta un valore COF comparabile di ~0,6 durante il test di usura. Tuttavia, i 20 profili delle sezioni trasversali in diversi punti della pista di usura nella Fig. 3 indicano che il rivestimento ha subito un'usura molto più grave con il sistema a carico morto.
Le vibrazioni intense sono state generate dal processo di usura del sistema a carico morto a carico e velocità elevati. L'enorme pressione concentrata sulla superficie di contatto, combinata con un'elevata velocità di scorrimento, crea vibrazioni sostanziali del peso e della struttura che portano a un'usura accelerata. Il tribometro a carico morto convenzionale applica il carico utilizzando pesi di massa. Questo metodo è affidabile ai carichi di contatto più bassi e in condizioni di usura lievi; tuttavia, in condizioni di usura aggressiva a carichi e velocità più elevati, le vibrazioni significative fanno rimbalzare ripetutamente i pesi, dando luogo a una traccia di usura irregolare che causa una valutazione tribologica inaffidabile. Il tasso di usura calcolato è di 8,0±2,4 x 10-4 mm3/N m, con un tasso di usura elevato e un'ampia deviazione standard.
Il tribometro Nanovea T2000 è progettato con un sistema di carico a controllo dinamico per smorzare le oscillazioni. Il sistema applica il carico normale con aria compressa, riducendo al minimo le vibrazioni indesiderate che si creano durante il processo di usura. Inoltre, il controllo attivo del carico ad anello chiuso garantisce l'applicazione di un carico costante per tutta la durata del test di usura e lo stilo segue la variazione di profondità della traccia di usura. Come mostrato nella Fig. 3a, è stato misurato un profilo della traccia d'usura significativamente più coerente, che ha portato a un basso tasso di usura di 3,4±0,5 x 10-4 mm3/Nm.
L'analisi della traccia di usura mostrata nella Fig. 4 conferma che il test di usura eseguito con il sistema di caricamento pneumatico ad aria compressa del tribometro Nanovea T2000 crea una traccia di usura più uniforme e coerente rispetto al tribometro convenzionale a carico morto. Inoltre, il tribometro Nanovea T2000 misura lo spostamento dello stilo durante il processo di usura, fornendo ulteriori informazioni sull'andamento del comportamento dell'usura in situ.
Oscillazione controllata sull'usura del campione di Cu
Il modulo elettromagnetico a carico oscillante parallelo del tribometro Nanovea T2000 consente di studiare l'effetto delle oscillazioni di ampiezza e frequenza controllate sul comportamento all'usura dei materiali. La COF dei campioni di Cu è stata registrata in situ, come mostrato nella Fig. 6. Il campione di Cu mostra una COF costante. Il campione di Cu presenta una COF costante di ~0,3 durante la prima misurazione a 330 giri, a indicare la formazione di un contatto stabile all'interfaccia e di una pista di usura relativamente liscia. Con il proseguire della prova di usura, la variazione del COF indica un cambiamento nel meccanismo di usura. In confronto, le prove di usura sotto un'oscillazione di 5 N controllata in ampiezza a 50 N mostrano un comportamento diverso: il COF aumenta rapidamente all'inizio del processo di usura e mostra una variazione significativa per tutta la durata della prova. Questo comportamento del COF indica che l'oscillazione imposta nel carico normale gioca un ruolo nello stato di scorrimento instabile del contatto.
La Fig. 7 confronta la morfologia della traccia di usura misurata dal profilometro ottico integrato senza contatto. Si può osservare che il campione di Cu sottoposto a un'ampiezza di oscillazione controllata di 5 N presenta una traccia di usura molto più grande, con un volume di 1,35 x 109 µm3, rispetto a 5,03 x 108 µm3 in assenza di oscillazioni imposte. L'oscillazione controllata accelera significativamente il tasso di usura di un fattore pari a ~2,7, dimostrando l'effetto critico dell'oscillazione sul comportamento dell'usura.
Oscillazione controllata sull'usura del rivestimento TiN
La COF e le tracce di usura del campione con rivestimento in TiN sono mostrate nella Fig. 8. Il rivestimento TiN presenta comportamenti di usura significativamente diversi in condizioni di oscillazione, come indicato dall'evoluzione della COF durante le prove. Il rivestimento TiN mostra un COF costante di ~0,3 dopo il periodo di rodaggio all'inizio della prova di usura, a causa del contatto stabile di scorrimento all'interfaccia tra il rivestimento TiN e la sfera di Al₂O₃. Tuttavia, quando il rivestimento TiN inizia a cedere, la sfera di Al₂O₃ penetra attraverso il rivestimento e scivola contro il substrato di acciaio fresco sottostante. Contemporaneamente, nella pista di usura si genera una quantità significativa di detriti di rivestimento TiN duro, trasformando l'usura da scorrimento stabile a due corpi in usura da abrasione a tre corpi. Questo cambiamento delle caratteristiche di coppia del materiale porta a maggiori variazioni nell'evoluzione del COF. L'oscillazione imposta di 5 N e 10 N accelera il cedimento del rivestimento TiN da ~400 giri a meno di 100 giri. Le tracce di usura più grandi sui campioni di rivestimento TiN dopo le prove di usura con oscillazione controllata sono in accordo con tale variazione della COF.
L'avanzato sistema di carico pneumatico del Tribometro Nanovea T2000 possiede un vantaggio intrinseco come smorzatore di vibrazioni naturalmente rapido rispetto ai tradizionali sistemi a carico morto. Questo vantaggio tecnologico dei sistemi pneumatici è vero rispetto ai sistemi a carico controllato che utilizzano una combinazione di servomotori e molle per applicare il carico. Questa tecnologia garantisce una valutazione dell'usura affidabile e meglio controllata a carichi elevati, come dimostrato in questo studio. Inoltre, il sistema di carico attivo ad anello chiuso può modificare il carico normale a un valore desiderato durante i test di usura per simulare le applicazioni reali viste nei sistemi frenanti.
Invece di subire l'influenza di condizioni di vibrazione incontrollate durante i test, abbiamo dimostrato che il tribometro Nanovea T2000 a carico dinamico consente agli utenti di valutare quantitativamente i comportamenti tribologici dei materiali in diverse condizioni di oscillazione controllata. Le vibrazioni giocano un ruolo significativo nel comportamento all'usura dei campioni di rivestimento metallico e ceramico.
Il modulo di carico oscillante ad elettromagneti paralleli fornisce oscillazioni controllate con precisione ad ampiezze e frequenze prestabilite, consentendo agli utenti di simulare il processo di usura in condizioni reali, quando le vibrazioni ambientali sono spesso un fattore importante. In presenza di oscillazioni imposte durante l'usura, sia i campioni di Cu che quelli di rivestimento TiN mostrano un tasso di usura sostanzialmente aumentato. L'evoluzione del coefficiente di attrito e lo spostamento dello stilo misurato in situ sono indicatori importanti per le prestazioni del materiale durante le applicazioni tribologiche. Il profilometro 3D senza contatto integrato offre uno strumento per misurare con precisione il volume di usura e analizzare la morfologia dettagliata delle tracce di usura in pochi secondi, fornendo maggiori informazioni sulla comprensione fondamentale del meccanismo di usura.
Il T2000 è dotato di un motore autotarato, di alta qualità e ad alta coppia, con una velocità interna a 20 bit e un encoder di posizione esterno a 16 bit. Ciò consente al tribometro di fornire una gamma ineguagliata di velocità di rotazione, da 0,01 a 5000 giri/min, che possono variare a scatti graduali o in modo continuo. A differenza dei sistemi che utilizzano un sensore di coppia posizionato in basso, il tribometro Nanovea utilizza una cella di carico ad alta precisione posizionata in alto per misurare accuratamente e separatamente le forze di attrito.
I tribometri Nanovea offrono test di usura e attrito precisi e ripetibili utilizzando modalità rotative e lineari conformi alle norme ISO e ASTM (compresi i test con 4 sfere, rondelle di spinta e blocchi su anelli), con moduli opzionali per l'usura ad alta temperatura, la lubrificazione e la tribocorrosione disponibili in un unico sistema pre-integrato. La gamma impareggiabile di Nanovea T2000 è la soluzione ideale per determinare l'intera gamma di proprietà tribologiche di rivestimenti, film e substrati sottili o spessi, morbidi o duri.
PARLIAMO ORA DELLA VOSTRA APPLICAZIONE
Analisi della texture della buccia d'arancia della vernice con la profilometria 3D
Analisi della texture della buccia d'arancia della vernice con la profilometria 3D
Introduzione
Le dimensioni e la frequenza delle strutture superficiali sui substrati influenzano la qualità dei rivestimenti lucidi. La struttura a buccia d'arancia, che prende il nome dal suo aspetto, può svilupparsi a causa dell'influenza del substrato e della tecnica di applicazione della vernice. I problemi di struttura sono comunemente quantificati in base all'ondulazione, alla lunghezza d'onda e all'effetto visivo che hanno sui rivestimenti lucidi. Le texture più piccole riducono la brillantezza, mentre quelle più grandi provocano increspature visibili sulla superficie rivestita. La comprensione dello sviluppo di queste texture e la loro relazione con i substrati e le tecniche sono fondamentali per il controllo della qualità.
Importanza della profilometria per la misurazione della struttura
A differenza dei tradizionali strumenti 2D utilizzati per misurare la struttura della lucentezza, la misurazione 3D senza contatto fornisce rapidamente un'immagine 3D utilizzata per comprendere le caratteristiche della superficie, con l'ulteriore possibilità di esaminare rapidamente le aree di interesse. Senza la velocità e l'esame 3D, un ambiente di controllo della qualità si baserebbe esclusivamente su informazioni 2D che forniscono una scarsa prevedibilità dell'intera superficie. La comprensione delle texture in 3D consente di selezionare al meglio le misure di lavorazione e di controllo. La garanzia di un controllo di qualità di questi parametri si basa molto su un'ispezione quantificabile, riproducibile e affidabile. Nanovea 3D senza contatto Profilometri utilizzano la tecnologia confocale cromatica per avere la capacità unica di misurare gli angoli ripidi che si trovano durante le misure veloci. I profilometri Nanovea riescono dove altre tecniche non riescono a fornire dati affidabili a causa del contatto con la sonda, della variazione della superficie, dell'angolo o della riflettività.
Obiettivo di misurazione
In questa applicazione, il Nanovea HS2000L misura la struttura a buccia d'arancia di una vernice lucida. Ci sono infiniti parametri di superficie calcolati automaticamente dalla scansione della superficie 3D. Qui analizziamo una superficie 3D scansionata quantificando le caratteristiche della texture a buccia d'arancia della vernice.
Il Nanovea HS2000L ha quantificato i parametri di isotropia e altezza della vernice a buccia d'arancia. La texture a buccia d'arancia ha quantificato la direzione del modello casuale con un'isotropia di 94,4%. I parametri di altezza quantificano la texture con una differenza di altezza di 24,84 µm.
La curva del rapporto di portanza nella Figura 4 è una rappresentazione grafica della distribuzione della profondità. Si tratta di una funzione interattiva del software che consente all'utente di visualizzare le distribuzioni e le percentuali a diverse profondità. Il profilo estratto nella Figura 5 fornisce valori di rugosità utili per la texture a buccia d'arancia. I picchi di estrazione al di sopra di una soglia di 144 micron mostrano la texture a buccia d'arancia. Questi parametri possono essere facilmente adattati ad altre aree o parametri di interesse.
Conclusione
In questa applicazione, il profilometro 3D senza contatto Nanovea HS2000L caratterizza con precisione sia la topografia che i dettagli nanometrici della struttura a buccia d'arancia della vernice su un rivestimento lucido. Le aree di interesse delle misurazioni 3D della superficie vengono rapidamente identificate e analizzate con molte misure utili (dimensione, rugosità della finitura, topografia della forma, planarità della curvatura, area del volume, altezza del gradino, ecc.) Sezioni trasversali 2D di rapida scelta forniscono una serie completa di risorse per la misurazione della superficie sulla struttura della lucentezza. Aree speciali di interesse possono essere ulteriormente analizzate con un modulo AFM integrato. La velocità del profilometro 3D Nanovea varia da <1 mm/s a 500 mm/s per adattarsi alle applicazioni di ricerca e alle esigenze di ispezione ad alta velocità. I profilometri 3D Nanovea hanno un'ampia gamma di configurazioni per adattarsi alle vostre applicazioni.
PARLIAMO ORA DELLA VOSTRA APPLICAZIONE
Analisi della superficie 3D di un centesimo con la profilometria senza contatto
Importanza della profilometria senza contatto per le monete
La valuta è molto apprezzata nella società moderna perché viene scambiata con beni e servizi. Le monete e le banconote circolano nelle mani di molte persone. Il trasferimento costante di valuta fisica crea deformazione superficiale. Il 3D di Nanovea Profilometro scansiona la topografia delle monete coniate in anni diversi per indagare le differenze superficiali.
Le caratteristiche delle monete sono facilmente riconoscibili al grande pubblico poiché si tratta di oggetti comuni. Un centesimo è l'ideale per presentare la forza del software avanzato di analisi delle superfici di Nanovea: Mountains 3D. I dati di superficie raccolti con il nostro profilometro 3D consentono analisi di alto livello su geometrie complesse con sottrazione di superficie ed estrazione di contorni 2D. La sottrazione della superficie con una maschera, un timbro o uno stampo controllati confronta la qualità dei processi di produzione mentre l'estrazione del contorno identifica le tolleranze con l'analisi dimensionale. Il software Profilometro 3D e Montagne 3D di Nanovea indaga la topografia submicronica di oggetti apparentemente semplici, come i penny.
Obiettivo di misurazione
L'intera superficie superiore di cinque monetine è stata scansionata utilizzando il sensore di linea ad alta velocità di Nanovea. Il raggio interno ed esterno di ciascun penny è stato misurato con il software Mountains Advanced Analysis. Un'estrazione dalla superficie di ciascun penny in un'area di interesse con sottrazione diretta della superficie ha quantificato la deformazione superficiale.
Risultati e discussione
Superficie 3D
Il profilometro Nanovea HS2000 ha impiegato solo 24 secondi per scansionare 4 milioni di punti in un'area di 20 mm x 20 mm con una dimensione di passo di 10um x 10um per acquisire la superficie di un centesimo. Di seguito sono riportate una mappa dell'altezza e una visualizzazione 3D della scansione. La vista 3D mostra la capacità del sensore ad alta velocità di rilevare piccoli dettagli impercettibili all'occhio. Sulla superficie del penny sono visibili molti piccoli graffi. La texture e la rugosità della moneta viste nella vista 3D sono studiate.
I contorni del centesimo sono stati estratti e l'analisi dimensionale ha permesso di ottenere i diametri interni ed esterni del bordo. Il raggio esterno è stato in media di 9,500 mm ± 0,024, mentre il raggio interno è stato in media di 8,960 mm ± 0,032. Ulteriori analisi dimensionali che Mountains 3D può eseguire su fonti di dati 2D e 3D sono le misure di distanza, l'altezza dei gradini, la planarità e il calcolo degli angoli.
La Figura 5 mostra l'area di interesse per l'analisi di sottrazione della superficie. Il penny del 2007 è stato utilizzato come superficie di riferimento per i quattro penny più vecchi. La sottrazione della superficie dal penny del 2007 mostra le differenze tra i penny con fori/picchi. La differenza di volume totale della superficie si ottiene sommando i volumi dei fori/pezzi. L'errore RMS si riferisce al grado di concordanza tra le superfici dei penny.
Conclusione
Il sistema High-Speed HS2000L di Nanovea ha scansionato cinque monete coniate in anni diversi. Il software Mountains 3D ha confrontato le superfici di ciascuna moneta utilizzando l'estrazione dei contorni, l'analisi dimensionale e la sottrazione della superficie. L'analisi definisce chiaramente il raggio interno ed esterno tra i penny, confrontando direttamente le differenze tra le caratteristiche della superficie. Grazie alla capacità del profilometro 3D di Nanovea di misurare qualsiasi superficie con una risoluzione di livello nanometrico, combinata con le capacità di analisi di Mountains 3D, le possibili applicazioni di ricerca e controllo qualità sono infinite.
PARLIAMO ORA DELLA VOSTRA APPLICAZIONE
Finitura dimensionale e superficiale dei tubi polimerici
Importanza dell'analisi dimensionale e superficiale dei tubi polimerici
I tubi realizzati in materiale polimerico sono comunemente utilizzati in molti settori, da quello automobilistico, medico, elettrico e molte altre categorie. In questo studio, utilizzando Nanovea sono stati studiati cateteri medici realizzati con diversi materiali polimerici Profilometro 3D senza contatto per misurare la rugosità della superficie, la morfologia e le dimensioni. La rugosità della superficie è fondamentale per i cateteri, in quanto molti problemi con i cateteri, tra cui infezioni, traumi fisici e infiammazioni, possono essere collegati alla superficie del catetere. Anche le proprietà meccaniche, come il coefficiente di attrito, possono essere studiate osservando le proprietà della superficie. Questi dati quantificabili possono essere ottenuti per garantire che il catetere possa essere utilizzato per applicazioni mediche.
Rispetto alla microscopia ottica e alla microscopia elettronica, la profilometria 3D senza contatto che utilizza il cromatismo assiale è altamente preferibile per la caratterizzazione delle superfici dei cateteri grazie alla capacità di misurare angoli/curvatura, alla capacità di misurare le superfici dei materiali nonostante la trasparenza o la riflettività, alla preparazione minima del campione e alla natura non invasiva. A differenza della microscopia ottica convenzionale, l'altezza della superficie può essere ottenuta e utilizzata per l'analisi computazionale, ad esempio per trovare le dimensioni e rimuovere la forma per trovare la rugosità della superficie. La preparazione minima del campione, a differenza della microscopia elettronica, e la natura senza contatto consentono inoltre di raccogliere rapidamente i dati senza temere la contaminazione e gli errori dovuti alla preparazione del campione.
Obiettivo di misurazione
In questa applicazione, il profilometro 3D senza contatto Nanovea viene utilizzato per scansionare la superficie di due cateteri: uno in TPE (elastomero termoplastico) e l'altro in PVC (cloruro di polivinile). I parametri di morfologia, dimensione radiale e altezza dei due cateteri saranno ottenuti e confrontati.
Risultati e discussione
Superficie 3D
Nonostante la curvatura dei tubi polimerici, il profilometro senza contatto Nanovea 3D è in grado di scansionare la superficie dei cateteri. Dalla scansione effettuata, è possibile ottenere un'immagine 3D per un'ispezione visiva rapida e diretta della superficie.
La dimensione radiale esterna è stata ottenuta estraendo un profilo dalla scansione originale e adattando un arco al profilo. Questo dimostra la capacità del profilometro 3D senza contatto di condurre una rapida analisi dimensionale per applicazioni di controllo qualità. È inoltre possibile ottenere facilmente profili multipli lungo la lunghezza del catetere.
La dimensione radiale esterna è stata ottenuta estraendo un profilo dalla scansione originale e adattando un arco al profilo. Questo dimostra la capacità del profilometro 3D senza contatto di condurre una rapida analisi dimensionale per applicazioni di controllo qualità. È inoltre possibile ottenere facilmente profili multipli lungo la lunghezza del catetere.
Conclusione
In questa applicazione abbiamo mostrato come il profilometro 3D senza contatto Nanovea possa essere utilizzato per caratterizzare tubi polimerici. In particolare, sono state ottenute metrologie di superficie, dimensioni radiali e rugosità superficiale per cateteri medici. Il raggio esterno del catetere in TPE è risultato di 2,40 mm, mentre quello del catetere in PVC era di 1,27 mm. La superficie del catetere in TPE è risultata più ruvida di quella del catetere in PVC. Il Sa del TPE era di 0,9740µm rispetto a 0,1791µm del PVC. Per questa applicazione sono stati utilizzati cateteri medici, ma la profilometria 3D senza contatto può essere applicata anche a una grande varietà di superfici. I dati e i calcoli ottenibili non si limitano a quanto mostrato.
PARLIAMO ORA DELLA VOSTRA APPLICAZIONE
Categorie
- Note applicative
- Blocco sulla tribologia dell'anello
- Tribologia della corrosione
- Test d'attrito | Coefficiente d'attrito
- Test meccanici ad alta temperatura
- Tribologia ad alta temperatura
- Umidità e gas Tribologia
- Umidità Test meccanici
- Indentazione | Creep e rilassamento
- Indentazione | Fracture Toughness
- Indentazione | Durezza ed elasticità
- Indentazione | Perdita e conservazione
- Indentazione | Stress vs Strain
- Indentazione | Resistenza allo snervamento e fatica
- Test di laboratorio
- Tribologia lineare
- Test meccanico liquido
- Tribologia liquida
- Tribologia a bassa temperatura
- Test Meccanici
- Comunicato stampa
- Profilometria - Planarità e deformazione
- Profilometria | Geometria e forma
- Profilometria - Rugosità e finitura
- Profilometria | Altezza e spessore del passo
- Profilometria | Struttura e grana
- Profilometria | Volume e area
- Test di profilometria
- Tribologia anello su anello
- Tribologia rotazionale
- Scratch Testing | Fallimento dell'adesivo
- Scratch Testing | Fallimento coesivo
- Scratch Testing | Usura multi-pass
- Test del graffio | Durezza del graffio
- Tribologia del test del graffio
- Tradeshow
- Test di tribologia
- Uncategorized
Archivi
- Settembre 2023
- Agosto 2023
- Giugno 2023
- Maggio 2023
- Luglio 2022
- Maggio 2022
- Aprile 2022
- Gennaio 2022
- Dicembre 2021
- Novembre 2021
- Ottobre 2021
- Settembre 2021
- Agosto 2021
- Luglio 2021
- Giugno 2021
- Maggio 2021
- Marzo 2021
- Febbraio 2021
- Dicembre 2020
- Novembre 2020
- Ottobre 2020
- Settembre 2020
- Luglio 2020
- Maggio 2020
- Aprile 2020
- Marzo 2020
- Febbraio 2020
- Gennaio 2020
- Novembre 2019
- Ottobre 2019
- Settembre 2019
- Agosto 2019
- Luglio 2019
- Giugno 2019
- Maggio 2019
- Aprile 2019
- Marzo 2019
- Gennaio 2019
- Dicembre 2018
- Novembre 2018
- Ottobre 2018
- Settembre 2018
- Luglio 2018
- Giugno 2018
- Maggio 2018
- Aprile 2018
- Marzo 2018
- Febbraio 2018
- Novembre 2017
- Ottobre 2017
- Settembre 2017
- Agosto 2017
- Giugno 2017
- Maggio 2017
- Aprile 2017
- Marzo 2017
- Febbraio 2017
- Gennaio 2017
- Novembre 2016
- Ottobre 2016
- Agosto 2016
- Luglio 2016
- Giugno 2016
- Maggio 2016
- Aprile 2016
- Marzo 2016
- Febbraio 2016
- Gennaio 2016
- Dicembre 2015
- Novembre 2015
- Ottobre 2015
- Settembre 2015
- Agosto 2015
- Luglio 2015
- Giugno 2015
- Maggio 2015
- Aprile 2015
- Marzo 2015
- Febbraio 2015
- Gennaio 2015
- Novembre 2014
- Ottobre 2014
- Settembre 2014
- Agosto 2014
- Luglio 2014
- Giugno 2014
- Maggio 2014
- Aprile 2014
- Marzo 2014
- Febbraio 2014
- Gennaio 2014
- Dicembre 2013
- Novembre 2013
- Ottobre 2013
- Settembre 2013
- Agosto 2013
- Luglio 2013
- Giugno 2013
- Maggio 2013
- Aprile 2013
- Marzo 2013
- Febbraio 2013
- Gennaio 2013
- Dicembre 2012
- Novembre 2012
- Ottobre 2012
- Settembre 2012
- Agosto 2012
- Luglio 2012
- Giugno 2012
- Maggio 2012
- Aprile 2012
- Marzo 2012
- Febbraio 2012
- Gennaio 2012
- Dicembre 2011
- Novembre 2011
- Ottobre 2011
- Settembre 2011
- Agosto 2011
- Luglio 2011
- Giugno 2011
- Maggio 2011
- Novembre 2010
- Gennaio 2010
- Aprile 2009
- Marzo 2009
- Gennaio 2009
- Dicembre 2008
- Ottobre 2008
- Agosto 2007
- Luglio 2006
- Marzo 2006
- Gennaio 2005
- Aprile 2004