USA/GLOBALE: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTATTACI

Categoria: Prove di profilometria

 

Prestazioni di abrasione della carta vetrata con un tribometro

PRESTAZIONI DI ABRASIONE DELLA CARTA VETRATA

UTILIZZANDO UN TRIBOMETRO

Preparato da

DUANJIE LI, PhD

INTRODUZIONE

La carta vetrata è costituita da particelle abrasive incollate su una faccia della carta o del tessuto. Per le particelle possono essere utilizzati diversi materiali abrasivi, come il granato, il carburo di silicio, l'ossido di alluminio e il diamante. La carta vetrata è ampiamente applicata in diversi settori industriali per creare finiture superficiali specifiche su legno, metallo e cartongesso. Spesso lavora in condizioni di contatto ad alta pressione, applicata a mano o con utensili elettrici.

IMPORTANZA DELLA VALUTAZIONE DELLE PRESTAZIONI DI ABRASIONE DELLA CARTA VETRATA

L'efficacia della carta vetrata è spesso determinata dalle sue prestazioni di abrasione in diverse condizioni. La grana, cioè la dimensione delle particelle abrasive incorporate nella carta vetrata, determina la velocità di usura e la dimensione dei graffi del materiale da levigare. Le carte abrasive con un numero di grana più alto hanno particelle più piccole, il che comporta velocità di levigatura inferiori e finiture superficiali più fini. Carte abrasive con lo stesso numero di grana, ma fatte di materiali diversi, possono avere comportamenti diversi in condizioni di asciutto o bagnato. Per garantire che la carta abrasiva prodotta abbia il comportamento abrasivo desiderato, sono necessarie valutazioni tribologiche affidabili. Queste valutazioni consentono agli utenti di confrontare quantitativamente il comportamento all'usura di diversi tipi di carta vetrata in modo controllato e monitorato, al fine di selezionare il candidato migliore per l'applicazione desiderata.

OBIETTIVO DI MISURAZIONE

In questo studio, mostriamo la capacità del Tribometro NANOVEA di valutare quantitativamente le prestazioni di abrasione di vari campioni di carta vetrata in condizioni di asciutto e bagnato.

NANOVEA

T2000

PROCEDURE DI TEST

Il coefficiente di attrito (COF) e le prestazioni di abrasione di due tipi di carta vetrata sono stati valutati dal tribometro NANOVEA T100. Come contromateriale è stata utilizzata una sfera in acciaio inossidabile 440. Le cicatrici da usura della palla sono state esaminate dopo ogni prova di usura utilizzando NANOVEA Profilatore ottico 3D senza contatto per garantire misurazioni precise della perdita di volume.

Si noti che per creare uno studio comparativo è stata scelta una sfera in acciaio inox 440 come materiale di contrasto, ma è possibile sostituire qualsiasi materiale solido per simulare una diversa condizione di applicazione.

RISULTATI DEI TEST E DISCUSSIONE

La FIGURA 1 mostra un confronto del COF della carta vetrata 1 e 2 in condizioni ambientali asciutte e bagnate. La carta vetrata 1, in condizioni di asciutto, mostra un COF di 0,4 all'inizio del test, che diminuisce progressivamente e si stabilizza a 0,3. In condizioni di bagnato, questo campione mostra un COF medio inferiore, pari a 0,27. Al contrario, i risultati del COF del campione 2 mostrano un COF a secco di 0,27 e un COF a umido di ~ 0,37. 

Si noti che l'oscillazione dei dati per tutti i grafici COF è stata causata dalle vibrazioni generate dal movimento di scorrimento della sfera contro le superfici ruvide della carta vetrata.

FIGURA 1: Evoluzione della COF durante le prove di usura.

La FIGURA 2 riassume i risultati dell'analisi delle cicatrici da usura. Le cicatrici da usura sono state misurate con un microscopio ottico e un profilatore ottico senza contatto NANOVEA 3D. Le FIGURE 3 e 4 confrontano le cicatrici da usura delle sfere SS440 usurate dopo i test di usura su carta vetrata 1 e 2 (in condizioni di bagnato e asciutto). Come mostrato nella FIGURA 4, il profilatore ottico NANOVEA cattura con precisione la topografia superficiale delle quattro sfere e le rispettive tracce di usura, che sono state poi elaborate con il software di analisi avanzata NANOVEA Mountains per calcolare la perdita di volume e il tasso di usura. Dall'immagine al microscopio e dal profilo della sfera si può osservare che la sfera utilizzata per il test della carta vetrata 1 (a secco) presenta una cicatrice di usura più grande e appiattita rispetto alle altre, con una perdita di volume pari a 0,313. mm3. Al contrario, la perdita di volume per la carta vetrata 1 (bagnata) è stata pari a 0,131 mm3. Per la carta vetrata 2 (asciutta) la perdita di volume è stata di 0,163. mm3 e per la carta vetrata 2 (bagnata) la perdita di volume è aumentata a 0,237 mm3.

Inoltre, è interessante osservare che il COF ha svolto un ruolo importante nelle prestazioni di abrasione delle carte abrasive. La carta vetrata 1 ha mostrato un COF più elevato in condizioni asciutte, portando a un tasso di abrasione più elevato per la sfera SS440 utilizzata nel test. In confronto, la maggiore COF della carta vetrata 2 in condizioni di bagnato ha portato a un tasso di abrasione più elevato. Le tracce di usura delle carte abrasive dopo le misurazioni sono mostrate in FIGURA 5.

Entrambi i Sandpapers 1 e 2 affermano di funzionare sia in ambienti asciutti che bagnati. Tuttavia, hanno mostrato prestazioni di abrasione significativamente diverse in condizioni asciutte e bagnate. NANOVEA tribometri fornire funzionalità di valutazione dell'usura quantificabili e affidabili ben controllate che garantiscono valutazioni dell'usura riproducibili. Inoltre, la capacità di misurazione del COF in situ consente agli utenti di correlare le diverse fasi di un processo di usura con l'evoluzione del COF, il che è fondamentale per migliorare la comprensione fondamentale del meccanismo di usura e delle caratteristiche tribologiche della carta vetrata.

FIGURA 2: Volume della cicatrice da usura delle sfere e COF medio in diverse condizioni.

FIGURA 3: Cicatrici di usura delle sfere dopo i test.

FIGURA 4: Morfologia 3D delle cicatrici da usura sulle sfere.

FIGURA 5: Tracce di usura sulle carte abrasive in diverse condizioni.

CONCLUSIONE

In questo studio sono state valutate le prestazioni di abrasione di due tipi di carta vetrata dello stesso numero di grana in condizioni di asciutto e bagnato. Le condizioni di servizio della carta vetrata giocano un ruolo fondamentale nell'efficacia delle prestazioni di lavoro. La carta vetrata 1 ha avuto un comportamento di abrasione significativamente migliore in condizioni di asciutto, mentre la carta vetrata 2 si è comportata meglio in condizioni di bagnato. L'attrito durante il processo di levigatura è un fattore importante da considerare per valutare le prestazioni di abrasione. Il profilatore ottico NANOVEA misura con precisione la morfologia 3D di qualsiasi superficie, come le cicatrici da usura su una sfera, garantendo una valutazione affidabile delle prestazioni di abrasione della carta vetrata in questo studio. Il Tribometro NANOVEA misura il coefficiente di attrito in situ durante un test di usura, fornendo una visione delle diverse fasi di un processo di usura. Offre inoltre test ripetibili di usura e attrito utilizzando modalità rotative e lineari conformi alle norme ISO e ASTM, con moduli opzionali per l'usura ad alta temperatura e la lubrificazione disponibili in un unico sistema pre-integrato. Questa gamma impareggiabile consente agli utenti di simulare diversi ambienti di lavoro gravosi per i cuscinetti a sfera, tra cui sollecitazioni elevate, usura e temperature elevate, ecc. Fornisce inoltre uno strumento ideale per valutare quantitativamente il comportamento tribologico dei materiali resistenti all'usura in presenza di carichi elevati.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Finitura superficiale della pelle lavorata utilizzando la profilometria 3D

PELLE LAVORATA

FINITURA SUPERFICIALE CON LA PROFILOMETRIA 3D

Preparato da

CRAIG LEISING

INTRODUZIONE

Una volta completato il processo di concia della pelle, la superficie della pelle può essere sottoposta a diversi processi di rifinitura per ottenere un aspetto e un tocco diversi. Questi processi meccanici possono includere stiratura, smerigliatura, levigatura, goffratura, rivestimento, ecc. A seconda dell'uso finale della pelle, alcuni di essi possono richiedere una lavorazione più precisa, controllata e ripetibile.

IMPORTANZA DELL'ISPEZIONE PROFILOMETRICA PER LA RICERCA E LO SVILUPPO E IL CONTROLLO QUALITÀ

A causa dell'ampia variazione e dell'inaffidabilità dei metodi di ispezione visiva, gli strumenti in grado di quantificare con precisione le caratteristiche della micro e nano-scala possono migliorare i processi di rifinizione della pelle. La comprensione della finitura superficiale della pelle in un senso quantificabile può portare a una migliore selezione dei processi di lavorazione della superficie basata sui dati per ottenere risultati di finitura ottimali. NANOVEA 3D senza contatto Profilometri utilizzano la tecnologia confocale cromatica per misurare le superfici in pelle finite e offrono la massima ripetibilità e precisione sul mercato. Dove altre tecniche non riescono a fornire dati affidabili, a causa del contatto con la sonda, della variazione della superficie, dell'angolo, dell'assorbimento o della riflettività, i profilometri NANOVEA hanno successo.

OBIETTIVO DI MISURAZIONE

In questa applicazione, il NANOVEA ST400 viene utilizzato per misurare e confrontare la finitura superficiale di due campioni di pelle diversi ma lavorati da vicino. Dal profilo della superficie vengono calcolati automaticamente diversi parametri superficiali.

In questa sede ci concentreremo sulla rugosità superficiale, sulla profondità della fossetta, sul passo della fossetta e sul diametro della fossetta per una valutazione comparativa.

NANOVEA

ST400

RISULTATI: CAMPIONE 1

ISO 25178

PARAMETRI DI ALTEZZA

ALTRI PARAMETRI 3D

RISULTATI: CAMPIONE 2

ISO 25178

PARAMETRI DI ALTEZZA

ALTRI PARAMETRI 3D

PROFONDITÀ COMPARATIVA

Distribuzione della profondità per ogni campione.
Un gran numero di fossette profonde è stato osservato in
CAMPIONE 1.

PASSO COMPARATIVO

Passo tra le fossette su CAMPIONE 1 è leggermente più piccolo
di
CAMPIONE 2, ma entrambi hanno una distribuzione simile

 DIAMETRO MEDIO COMPARATIVO

Distribuzioni simili del diametro medio delle fossette,
con
CAMPIONE 1 che mostrano in media diametri medi leggermente inferiori.

CONCLUSIONE

In questa applicazione abbiamo dimostrato come il profilometro 3D NANOVEA ST400 possa caratterizzare con precisione la finitura superficiale della pelle lavorata. In questo studio, la capacità di misurare la rugosità superficiale, la profondità delle fossette, il passo delle fossette e il diametro delle fossette ci ha permesso di quantificare le differenze tra la finitura e la qualità dei due campioni che potrebbero non essere evidenti con un'ispezione visiva.

Complessivamente non sono state riscontrate differenze visibili nell'aspetto delle scansioni 3D tra il CAMPIONE 1 e il CAMPIONE 2. Tuttavia, nell'analisi statistica si nota una chiara distinzione tra i due campioni. Il CAMPIONE 1 contiene una maggiore quantità di fossette con diametri più piccoli, profondità maggiori e passo da fossetta a fossetta più piccolo rispetto al CAMPIONE 2.

Sono disponibili ulteriori studi. Aree di interesse particolari potrebbero essere ulteriormente analizzate con un modulo AFM o microscopio integrato. Le velocità del profilometro 3D NANOVEA vanno da 20 mm/s a 1 m/s per il laboratorio o la ricerca, per soddisfare le esigenze di ispezione ad alta velocità; può essere costruito con dimensioni, velocità, capacità di scansione personalizzate, conformità alla camera bianca di Classe 1, trasportatore di indicizzazione o per l'integrazione in linea o online.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Test di usura del pistone

Test di usura del pistone

Utilizzo di un tribometro

Preparato da

FRANK LIU

INTRODUZIONE

La perdita per attrito rappresenta circa 10% dell'energia totale del carburante per un motore diesel.[1]. 40-55% della perdita di attrito proviene dal sistema del cilindro di potenza. La perdita di energia dovuta all'attrito può essere ridotta con una migliore comprensione delle interazioni tribologiche che si verificano nel sistema del cilindro di potenza.

Una parte significativa della perdita di attrito nel sistema dei cilindri di potenza deriva dal contatto tra il cielo del pistone e la canna del cilindro. L'interazione tra il cielo del pistone, il lubrificante e le interfacce del cilindro è piuttosto complessa a causa dei continui cambiamenti di forza, temperatura e velocità in un motore reale. L'ottimizzazione di ogni fattore è fondamentale per ottenere prestazioni ottimali del motore. Questo studio si concentra sulla riproduzione dei meccanismi che causano le forze di attrito e l'usura alle interfacce gonna del pistone-lubrificante-camera del cilindro (P-L-C).

 Schema del sistema dei cilindri di potenza e delle interfacce gonna del pistone-lubrificante-camicia del cilindro.

[1] Bai, Dongfang. Modellazione della lubrificazione del mantello del pistone nei motori a combustione interna. Diss. MIT, 2012

IMPORTANZA DI TESTARE I PISTONI CON I TRIBOMETRI

L'olio motore è un lubrificante ben progettato per la sua applicazione. Oltre all'olio di base, per migliorarne le prestazioni vengono aggiunti additivi come detergenti, disperdenti, miglioratori di viscosità (VI), agenti antiusura/antiattrito e inibitori della corrosione. Questi additivi influenzano il comportamento dell'olio in diverse condizioni operative. Il comportamento dell'olio influisce sulle interfacce P-L-C e determina se si verifica un'usura significativa da contatto metallo-metallo o se si verifica una lubrificazione idrodinamica (usura minima).

È difficile comprendere le interfacce P-L-C senza isolare l'area dalle variabili esterne. È più pratico simulare l'evento con condizioni rappresentative della sua applicazione reale. Il NANOVEA Tribometro è l'ideale per questo. Dotato di più sensori di forza, sensore di profondità, modulo di lubrificazione goccia a goccia e stadio alternativo lineare, il NANOVEA T2000 è in grado di simulare da vicino gli eventi che si verificano all'interno di un blocco motore e di ottenere dati preziosi per comprendere meglio le interfacce P-L-C.

Modulo liquido sul tribometro NANOVEA T2000

Il modulo goccia a goccia è fondamentale per questo studio. Poiché i pistoni possono muoversi a una velocità molto elevata (superiore a 3.000 giri/min), è difficile creare un sottile film di lubrificante immergendo il campione. Per ovviare a questo problema, il modulo goccia a goccia è in grado di applicare in modo costante una quantità di lubrificante sulla superficie della gonna del pistone.

L'applicazione di un lubrificante fresco elimina anche il rischio che i contaminanti dell'usura possano influenzare le proprietà del lubrificante.

NANOVEA T2000

Tribometro ad alto carico

OBIETTIVO DI MISURAZIONE

In questa relazione verranno studiate le interfacce gonna del pistone-lubrificante-camicia del cilindro. Le interfacce saranno riprodotte eseguendo un test di usura lineare alternata con modulo di lubrificazione goccia a goccia.

Il lubrificante sarà applicato a temperatura ambiente e in condizioni di riscaldamento per confrontare le condizioni di avviamento a freddo e di funzionamento ottimale. Il COF e il tasso di usura saranno osservati per capire meglio come si comportano le interfacce nelle applicazioni reali.

PARAMETRI DEL TEST

per test tribologici su pistoni

CARICO ............................ 100 N

DURATA DEL TEST ............................ 30 minuti

VELOCITÀ ............................ 2000 giri al minuto

AMPLITUDINE ............................ 10 mm

DISTANZA TOTALE ............................ 1200 m

RIVESTIMENTO DELLA GONNA ............................ Moly-grafite

MATERIALE PERNO ............................ Lega di alluminio 5052

DIAMETRO DEL PIN ............................ 10 mm

LUBRIFICANTE ............................ Olio motore (10W-30)

APPROSSIMATIVA. PORTATA ............................ 60 mL/min

TEMPERATURA ............................ Temperatura ambiente e 90°C

RISULTATI DEL TEST DI RECIPROCITÀ LINEARE

In questo esperimento è stato utilizzato l'A5052 come materiale di contrasto. Mentre i blocchi motore sono solitamente realizzati in alluminio fuso come l'A356, l'A5052 ha proprietà meccaniche simili all'A356 per questa prova simulativa [2].

Nelle condizioni di prova, è stata riscontrata un'usura significativa
osservata sul mantello del pistone a temperatura ambiente
rispetto ai 90°C. I graffi profondi osservati sui campioni suggeriscono che il contatto tra il materiale statico e la gonna del pistone si verifica frequentemente durante il test. L'elevata viscosità a temperatura ambiente potrebbe impedire all'olio di riempire completamente gli spazi alle interfacce e di creare un contatto metallo-metallo. A temperature più elevate, l'olio si assottiglia e riesce a scorrere tra lo spinotto e il pistone. Di conseguenza, a temperature più elevate si osserva un'usura significativamente minore. La FIGURA 5 mostra che un lato della cicatrice da usura si è consumato molto meno dell'altro. Ciò è probabilmente dovuto alla posizione dell'uscita dell'olio. Lo spessore del film di lubrificante era maggiore su un lato rispetto all'altro, causando un'usura non uniforme.

 

 

[2] "Alluminio 5052 vs alluminio 356.0". MakeItFrom.com, makeitfrom.com/compare/5052-O-Aluminum/A356.0-SG70B-A13560-Cast-Aluminum

Il COF dei test tribologici lineari alternativi può essere suddiviso in un passaggio alto e un passaggio basso. Il passaggio alto si riferisce al campione che si muove in avanti, o in senso positivo, mentre il passaggio basso si riferisce al campione che si muove in senso inverso, o in senso negativo. La COF media per l'olio RT è stata osservata inferiore a 0,1 in entrambe le direzioni. I COF medi tra le passate sono stati di 0,072 e 0,080. Il COF medio dell'olio a 90°C è risultato diverso tra le passate. Sono stati osservati valori medi di COF pari a 0,167 e 0,09. La differenza di COF dimostra ulteriormente che l'olio è riuscito a bagnare correttamente solo un lato del perno. Si è ottenuto un COF elevato quando si è formato un film spesso tra lo spinotto e la gonna del pistone, a causa della lubrificazione idrodinamica. Si osserva un COF più basso nell'altra direzione quando si verifica una lubrificazione mista. Per ulteriori informazioni sulla lubrificazione idrodinamica e sulla lubrificazione mista, visitate la nostra nota applicativa su Curve di Stribeck.

Tabella 1: Risultati del test di usura lubrificata sui pistoni.

FIGURA 1: Grafici COF per il test di usura dell'olio a temperatura ambiente A profilo grezzo B passaggio alto C passaggio basso.

FIGURA 2: Grafici COF per il test dell'olio di usura a 90°C A profilo grezzo B passaggio alto C passaggio basso.

FIGURA 3: Immagine ottica della cicatrice da usura del test di usura dell'olio motore RT.

FIGURA 4: Volume di un foro per l'analisi della cicatrice da usura del test di usura dell'olio motore RT.

FIGURA 5: Scansione profilometrica della cicatrice da usura del test di usura dell'olio motore RT.

FIGURA 6: Immagine ottica di una cicatrice da usura da un test di usura dell'olio motore a 90°C

FIGURA 7: Volume di un foro per l'analisi della cicatrice da usura del test di usura dell'olio motore a 90°C.

FIGURA 8: Scansione profilometrica della cicatrice da usura del test di usura dell'olio motore a 90°C.

CONCLUSIONE

Sono stati condotti test di usura lineare alternata lubrificata su un pistone per simulare gli eventi che si verificano in un
motore in funzione nella vita reale. L'interfaccia gonna del pistone-lubrificante-camicia del cilindro è fondamentale per il funzionamento di un motore. Lo spessore del lubrificante all'interfaccia è responsabile della perdita di energia dovuta all'attrito o all'usura tra la gonna del pistone e la canna del cilindro. Per ottimizzare il motore, lo spessore del film deve essere il più sottile possibile, senza che il mantello del pistone e la canna del cilindro si tocchino. La sfida, tuttavia, consiste nel capire come le variazioni di temperatura, velocità e forza influiranno sulle interfacce P-L-C.

Grazie all'ampia gamma di carichi (fino a 2000 N) e velocità (fino a 15000 giri/min), il tribometro NANOVEA T2000 è in grado di simulare le diverse condizioni possibili in un motore. Possibili studi futuri su questo argomento includono il comportamento delle interfacce P-L-C in condizioni di carico costante, carico oscillante, temperatura del lubrificante, velocità e metodo di applicazione del lubrificante. Questi parametri possono essere facilmente regolati con il tribometro NANOVEA T2000 per fornire una comprensione completa dei meccanismi delle interfacce gonna del pistone-lubrificante-camicia del cilindro.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Topografia della superficie organica con un profilometro 3D portatile

TOPOGRAFIA ORGANICA DELLA SUPERFICIE

UTILIZZANDO UN PROFILOMETRO 3D PORTATILE

Preparato da

CRAIG LEISING

INTRODUZIONE

La natura è diventata una fonte di ispirazione vitale per lo sviluppo di strutture superficiali migliorate. La comprensione delle strutture superficiali presenti in natura ha portato a studi di adesione basati sulle zampe di geco, studi di resistenza basati sulla variazione della struttura di un cetriolo di mare e studi di repellenza basati sulle foglie, oltre a molti altri. Queste superfici hanno una serie di potenziali applicazioni, dal settore biomedico a quello dell'abbigliamento e automobilistico. Affinché queste superfici abbiano successo, è necessario sviluppare tecniche di fabbricazione che consentano di imitare e riprodurre le caratteristiche della superficie. È questo processo che richiede identificazione e controllo.

IMPORTANZA DEL PROFILATORE OTTICO PORTATILE 3D SENZA CONTATTO PER LE SUPERFICI ORGANICHE

Utilizzando la tecnologia Chromatic Light, NANOVEA Jr25 Portable Profilatore ottico ha una capacità superiore di misurare quasi tutti i materiali. Ciò include gli angoli unici e ripidi, le superfici riflettenti e assorbenti che si trovano nell'ampia gamma di caratteristiche superficiali della natura. Le misurazioni 3D senza contatto forniscono un'immagine 3D completa per fornire una comprensione più completa delle caratteristiche della superficie. Senza funzionalità 3D, l’identificazione delle superfici naturali si baserebbe esclusivamente sulle informazioni 2D o sull’imaging al microscopio, che non fornisce informazioni sufficienti per imitare adeguatamente la superficie studiata. Comprendere l'intera gamma delle caratteristiche della superficie, tra cui struttura, forma, dimensione, tra molte altre, sarà fondamentale per il successo della fabbricazione.

La possibilità di ottenere facilmente sul campo risultati di qualità da laboratorio apre le porte a nuove opportunità di ricerca.

OBIETTIVO DI MISURAZIONE

In questa applicazione, il NANOVEA Jr25 viene utilizzato per misurare la superficie di una foglia. Esiste un elenco infinito di parametri di superficie che possono essere calcolati automaticamente dopo la scansione 3D della superficie.

Qui si esamina la superficie 3D e si seleziona
aree di interesse da analizzare ulteriormente, tra cui
quantificare e studiare la rugosità, i canali e la topografia della superficie

NANOVEA

JR25

CONDIZIONI DI PROVA

PROFONDITÀ DELL'ALETTA

Densità media dei solchi: 16,471 cm/cm2
Profondità media dei solchi: 97,428 μm
Profondità massima: 359,769 μm

CONCLUSIONE

In questa applicazione, abbiamo mostrato come il NANOVEA Il Profilatore ottico 3D senza contatto portatile Jr25 è in grado di caratterizzare con precisione sia la topografia che i dettagli su scala nanometrica di una superficie fogliare sul campo. Da queste misurazioni 3D della superficie, è possibile identificare rapidamente le aree di interesse e analizzarle con un elenco di studi infinito (Dimensione, Ruvidità Finitura Struttura, Forma Topografia, Planarità Curvatura Planarità, Area Volume, Altezza Passo e altri). Una sezione trasversale 2D può essere facilmente scelta per analizzare ulteriori dettagli. Grazie a queste informazioni, le superfici organiche possono essere ampiamente studiate con un set completo di risorse per la misurazione delle superfici. Aree speciali di interesse possono essere ulteriormente analizzate con un modulo AFM integrato su modelli da tavolo.

NANOVEA offre anche profilometri portatili ad alta velocità per la ricerca sul campo e un'ampia gamma di sistemi da laboratorio, oltre a fornire servizi di laboratorio.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Profilo della rugosità della carta vetrata

Carta vetrata: Analisi della rugosità e del diametro delle particelle

Carta vetrata: Analisi della rugosità e del diametro delle particelle

Per saperne di più

CARTA VETRATA

Analisi della rugosità e del diametro delle particelle

Preparato da

FRANK LIU

INTRODUZIONE

La carta vetrata è un prodotto comunemente disponibile in commercio utilizzato come abrasivo. L'uso più comune della carta vetrata è quello di rimuovere i rivestimenti o di lucidare una superficie grazie alle sue proprietà abrasive. Queste proprietà abrasive sono classificate in grane, ognuna delle quali si riferisce a quanto è liscia o
finitura superficiale che si otterrà. Per ottenere le proprietà abrasive desiderate, i produttori di carta vetrata devono garantire che le particelle abrasive abbiano una dimensione specifica e una deviazione minima. Per quantificare la qualità della carta vetrata, il sistema 3D senza contatto di NANOVEA Profilometro può essere utilizzato per ottenere il parametro dell'altezza media aritmetica (Sa) e il diametro medio delle particelle di un'area campione.

IMPORTANZA DEL PROFILATORE OTTICO 3D SENZA CONTATTO PROFILATORE PER CARTA VETRATA

Quando si usa la carta vetrata, l'interazione tra le particelle abrasive e la superficie da levigare deve essere uniforme per ottenere finiture superficiali coerenti. Per quantificare questo aspetto, la superficie della carta vetrata può essere osservata con il profilatore ottico 3D senza contatto di NANOVEA per vedere le deviazioni nelle dimensioni, nell'altezza e nella distanza delle particelle.

OBIETTIVO DI MISURAZIONE

In questo studio, cinque diverse grane di carta vetrata (120,
180, 320, 800 e 2000) vengono scannerizzati con l'apparecchio
Profilatore ottico senza contatto NANOVEA ST400 3D.
La Sa viene estratta dalla scansione e la particella
La dimensione viene calcolata conducendo un'analisi dei Motifs per
trovare il loro diametro equivalente

NANOVEA

ST400

RISULTATI E DISCUSSIONE

La carta vetrata diminuisce la rugosità superficiale (Sa) e la dimensione delle particelle all'aumentare della grana, come previsto. La Sa varia da 42,37 μm a 3,639 μm. La dimensione delle particelle varia da 127 ± 48,7 a 21,27 ± 8,35. Le particelle più grandi e le alte variazioni di altezza creano un'azione abrasiva più forte sulle superfici rispetto alle particelle più piccole con basse variazioni di altezza.
Tutte le definizioni dei parametri di altezza indicati sono riportate a pagina A.1.

TABELLA 1: Confronto tra le grane della carta vetrata e i parametri di altezza.

TABELLA 2: Confronto tra le grane della carta vetrata e il diametro delle particelle.

VISTA 2D E 3D DELLA CARTA VETRATA 

Di seguito sono riportate le viste in falso colore e in 3D dei campioni di carta vetrata.
Per rimuovere la forma o l'ondulazione è stato utilizzato un filtro gaussiano di 0,8 mm.

ANALISI DEL MOTIVO

Per individuare con precisione le particelle in superficie, la soglia della scala di altezza è stata ridefinita per mostrare solo lo strato superiore della carta vetrata. È stata quindi condotta un'analisi dei motivi per individuare i picchi.

CONCLUSIONE

Il profilatore ottico 3D senza contatto di NANOVEA è stato utilizzato per ispezionare le proprietà superficiali di varie grane di carta vetrata, grazie alla sua capacità di scansionare con precisione superfici con caratteristiche micro e nano.

I parametri di altezza superficiale e i diametri equivalenti delle particelle sono stati ottenuti da ciascuno dei campioni di carta vetrata utilizzando un software avanzato per analizzare le scansioni 3D. È stato osservato che, all'aumentare della grana, la rugosità superficiale (Sa) e la dimensione delle particelle sono diminuite, come previsto.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Profilometria di misurazione dei confini della superficie di polistirolo

Misura del confine di superficie

Misurazione dei confini di superficie con la profilometria 3D

Per saperne di più

MISURAZIONE DEI CONFINI DELLA SUPERFICIE

USANDO LA PROFILOMETRIA 3D

Preparato da

Craig Leising

INTRODUZIONE

Negli studi in cui l'interfaccia di caratteristiche superficiali, modelli, forme ecc. viene valutata per l'orientamento, sarà utile identificare rapidamente le aree di interesse sull'intero profilo di misura. Segmentando una superficie in aree significative, l'utente può valutare rapidamente i confini, i picchi, le fosse, le aree, i volumi e molti altri elementi per comprendere il loro ruolo funzionale nell'intero profilo della superficie in esame. Ad esempio, come nel caso dell'imaging dei confini dei grani dei metalli, l'importanza dell'analisi è l'interfaccia di molte strutture e il loro orientamento complessivo. La comprensione di ciascuna area di interesse consente di identificare difetti o anomalie all'interno dell'area complessiva. Sebbene l'imaging dei bordi dei grani sia tipicamente studiato a una distanza superiore alle capacità del Profilometro e sia solo un'analisi di immagini 2D, è un utile riferimento per illustrare il concetto di ciò che verrà mostrato qui su una scala più ampia, insieme ai vantaggi della misurazione di superfici 3D.

IMPORTANZA DEL PROFILOMETRO 3D NON A CONTATTO PER LO STUDIO DELLA SEPARAZIONE DELLE SUPERFICI

A differenza di altre tecniche come i tastatori o l'interferometria, il Profilometro 3D senza contatto, utilizzando il cromatismo assiale, può misurare quasi tutte le superfici, le dimensioni dei campioni possono variare ampiamente a causa della stadiazione aperta e non è necessaria alcuna preparazione del campione. L'intervallo da nano a macro si ottiene durante la misurazione del profilo di superficie senza alcuna influenza da parte della riflettività o dell'assorbimento del campione, ha una capacità avanzata di misurare angoli superficiali elevati e non è prevista alcuna manipolazione dei risultati da parte del software. Misura facilmente qualsiasi materiale: trasparente, opaco, speculare, diffusivo, lucido, ruvido ecc. La tecnica del profilometro senza contatto fornisce una capacità ideale, ampia e facile da usare per massimizzare gli studi di superficie quando sarà necessaria l'analisi dei confini della superficie; insieme ai vantaggi della funzionalità combinata 2D e 3D.

OBIETTIVO DI MISURAZIONE

In questa applicazione il profilometro Nanovea ST400 viene utilizzato per misurare l'area superficiale del polistirolo. I confini sono stati stabiliti combinando un file di intensità riflessa con la topografia, acquisiti simultaneamente con il NANOVEA ST400. Questi dati sono stati poi utilizzati per calcolare diverse informazioni sulla forma e sulle dimensioni di ciascun "granello" di polistirolo.

NANOVEA

ST400

RISULTATI E DISCUSSIONE: Misura del limite di superficie 2D

Immagine topografica (sotto a sinistra) mascherata dall'immagine dell'intensità riflessa (sotto a destra) per definire chiaramente i confini dei grani. Tutti i grani di diametro inferiore a 565 µm sono stati ignorati applicando il filtro.

Numero totale di grani: 167
Area totale di proiezione occupata dai grani: 166,917 mm² (64,5962 %)
Area totale prevista occupata dai confini: (35.4038 %)
Densità dei grani: 0,646285 grani / mm2

Area = 0,999500 mm² +/- 0,491846 mm²
Perimetro = 9114,15 µm +/- 4570,38 µm
Diametro equivalente = 1098,61 µm +/- 256,235 µm
Diametro medio = 945,373 µm +/- 248,344 µm
Diametro minimo = 675,898 µm +/- 246,850 µm
Diametro massimo = 1312,43 µm +/- 295,258 µm

RISULTATI E DISCUSSIONE: Misurazione dei confini della superficie 3D

Utilizzando i dati topografici 3D ottenuti, è possibile analizzare il volume, l'altezza, il picco, il rapporto d'aspetto e le informazioni generali sulla forma di ciascun grano. Area 3D totale occupata: 2,525 mm3

CONCLUSIONE

In questa applicazione, abbiamo dimostrato come il profilometro senza contatto NANOVEA 3D possa caratterizzare con precisione la superficie del polistirolo. È possibile ottenere informazioni statistiche sull'intera superficie di interesse o su singoli grani, siano essi picchi o buchi. In questo esempio sono stati utilizzati tutti i grani più grandi di una dimensione definita dall'utente per mostrare l'area, il perimetro, il diametro e l'altezza. Le caratteristiche qui illustrate possono essere fondamentali per la ricerca e il controllo di qualità di superfici naturali e pre-fabbricate che spaziano dalle applicazioni bio-mediche a quelle di microlavorazione, oltre a molte altre. 

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Misurazione dei contorni con il profilometro di NANOVEA

Misura del profilo del battistrada in gomma

Misura del profilo del battistrada in gomma

Per saperne di più

 

 

 

 

 

 

 

 

 

 

 

 

 

MISURA DEL PROFILO DEL BATTISTRADA IN GOMMA

UTILIZZANDO IL PROFILATORE OTTICO 3D

Misura del profilo del battistrada in gomma - NANOVEA Profiler

Preparato da

ANDREA HERRMANN

INTRODUZIONE

Come per tutti i materiali, il coefficiente di attrito della gomma è legato in parte alla sua rugosità superficiale. Nelle applicazioni dei pneumatici per veicoli, la trazione sulla strada è molto importante. La rugosità della superficie e il battistrada del pneumatico svolgono entrambi un ruolo in tal senso. In questo studio vengono analizzate la rugosità della superficie e le dimensioni del battistrada.

* IL CAMPIONE

IMPORTANZA

DELLA PROFILOMETRIA 3D SENZA CONTATTO

PER GLI STUDI SULLA GOMMA

A differenza di altre tecniche come le sonde a contatto o l'interferometria, quelle di NANOVEA Profilatori ottici 3D senza contatto utilizzare il cromatismo assiale per misurare quasi tutte le superfici. 

Il sistema Profiler, grazie alla sua configurazione aperta, consente di utilizzare un'ampia varietà di campioni di dimensioni diverse e non richiede alcuna preparazione del campione. Le caratteristiche da nano a macro gamma possono essere rilevate durante una singola scansione, senza alcuna influenza da parte della riflettività o dell'assorbimento del campione. Inoltre, questi profilatori hanno la capacità avanzata di misurare angoli di superficie elevati senza richiedere la manipolazione dei risultati da parte del software.

Misurare facilmente qualsiasi materiale: trasparente, opaco, speculare, diffusivo, lucido, ruvido ecc. La tecnica di misura dei profilatori senza contatto NANOVEA 3D offre una capacità ideale, ampia e facile da usare, per massimizzare gli studi sulle superfici insieme ai vantaggi della capacità combinata 2D e 3D.

OBIETTIVO DI MISURAZIONE

In questa applicazione presentiamo il NANOVEA ST400, un profilatore ottico 3D senza contatto che misura la superficie e i battistrada di uno pneumatico di gomma.

Un'area di superficie del campione sufficientemente grande da rappresentare l'intera superficie del pneumatico è stata selezionata a caso per questo studio. 

Per quantificare le caratteristiche della gomma, abbiamo usato il software di analisi NANOVEA Ultra 3D per misurare le dimensioni del contorno, la profondità, rugosità e area sviluppata della superficie.

NANOVEA

ST400

ANALISI: PNEUMATICI

La vista 3D e la vista a falsi colori dei battistrada mostrano il valore della mappatura dei disegni delle superfici 3D. Fornisce agli utenti uno strumento immediato per osservare direttamente le dimensioni e la forma dei battistrada da diverse angolazioni. L'analisi avanzata dei contorni e l'analisi dell'altezza dei gradini sono entrambi strumenti estremamente potenti per misurare le dimensioni precise delle forme dei campioni e del design.

ANALISI AVANZATA DEI CONTORNI

ANALISI DELL'ALTEZZA DEL GRADINO

ANALISI: SUPERFICIE IN GOMMA

La superficie della gomma può essere quantificata in numerosi modi utilizzando gli strumenti software integrati, come mostrato nelle figure seguenti a titolo di esempio. Si può osservare che la rugosità superficiale è di 2,688 μm e che l'area sviluppata rispetto all'area proiettata è di 9,410 mm² contro 8,997 mm². Queste informazioni ci permettono di esaminare la relazione tra la finitura superficiale e la trazione di diverse formulazioni di gomma o anche di gomma con diversi gradi di usura superficiale.

CONCLUSIONE

In questa applicazione, abbiamo mostrato come il sistema NANOVEA Il profilatore ottico 3D senza contatto può caratterizzare con precisione la rugosità superficiale e le dimensioni del battistrada della gomma.

I dati mostrano una rugosità superficiale di 2,69 µm e un'area sviluppata di 9,41 mm² con un'area proiettata di 9 mm². Sono state utilizzate diverse dimensioni e raggi dei battistrada in gomma. misurato anche.

Le informazioni presentate in questo studio possono essere utilizzate per confrontare le prestazioni di pneumatici con diversi disegni del battistrada, formulazioni o diversi gradi di usura. I dati qui riportati rappresentano solo una parte della calcoli disponibili nel software di analisi Ultra 3D.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Analisi della superficie delle scaglie di pesce mediante profilatore ottico 3D

Analisi della superficie delle scaglie di pesce mediante profilatore ottico 3D

Per saperne di più

ANALISI DELLA SUPERFICIE DELLE SCAGLIE DI PESCE

utilizzando il PROFILATORE OTTICO 3D

Profilometro a squame di pesce

Preparato da

Andrea Novitsky

INTRODUZIONE

La morfologia, i modelli e altre caratteristiche di una squama di pesce vengono studiati utilizzando NANOVEA Profilatore ottico 3D senza contatto. La natura delicata di questo campione biologico, insieme alle sue scanalature molto piccole e ad alto angolo, evidenzia anche l'importanza della tecnica senza contatto del profilatore. I solchi sulla squama sono chiamati circuli, e possono essere studiati per stimare l'età del pesce, e anche per distinguere periodi di diverso ritmo di crescita, simili agli anelli di un albero. Si tratta di informazioni molto importanti per la gestione delle popolazioni ittiche selvatiche al fine di prevenire la pesca eccessiva.

Importanza della profilometria 3D senza contatto per gli studi biologici

A differenza di altre tecniche come le sonde a contatto o l'interferometria, il profilatore ottico 3D senza contatto, utilizzando il cromatismo assiale, può misurare quasi tutte le superfici. Le dimensioni dei campioni possono variare notevolmente grazie alla messa in scena aperta e non è necessaria alcuna preparazione del campione. Le caratteristiche da nano a macro gamma sono ottenute durante la misurazione del profilo della superficie senza alcuna influenza da parte della riflettività o dell'assorbimento del campione. Lo strumento offre una capacità avanzata di misurare angoli di superficie elevati senza manipolazione dei risultati da parte del software. È possibile misurare facilmente qualsiasi materiale, sia esso trasparente, opaco, speculare, diffusivo, lucido o ruvido. La tecnica offre una capacità ideale, ampia e facile da usare per massimizzare gli studi sulle superfici, insieme ai vantaggi delle capacità combinate 2D e 3D.

OBIETTIVO DI MISURAZIONE

In questa applicazione, presentiamo NANOVEA ST400, un profilatore 3D senza contatto con un sensore ad alta velocità, che fornisce un'analisi completa della superficie di una scala.

Lo strumento è stato utilizzato per scansionare l'intero campione, insieme a una scansione a più alta risoluzione dell'area centrale. Per il confronto è stata misurata anche la rugosità della superficie esterna e interna della scala.

NANOVEA

ST400

Caratterizzazione superficiale 3D e 2D della scala esterna

La vista 3D e la vista a falsi colori della scala esterna mostrano una struttura complessa simile a un'impronta digitale o agli anelli di un albero. Ciò fornisce agli utenti uno strumento immediato per osservare direttamente la caratterizzazione della superficie della squama da diverse angolazioni. Vengono mostrate diverse altre misure della scala esterna e il confronto tra il lato esterno e quello interno della scala.

Profilometro 3D con scansione a scala di pesce
Profilometro 3D a scala di pesce
Profilatore ottico 3D ad altezza di passo per la scansione a scala di pesce

CONFRONTO DELLA RUGOSITÀ SUPERFICIALE

Profilometro a scala di pesce Scansione 3D

CONCLUSIONE

In questa applicazione, abbiamo mostrato come il profilatore ottico senza contatto NANOVEA 3D possa caratterizzare una squama di pesce in vari modi. 

Le superfici esterne e interne della squama possono essere facilmente distinte dalla sola rugosità superficiale, con valori di rugosità rispettivamente di 15,92μm e 1,56μm. Inoltre, è possibile ottenere informazioni precise e accurate su una squama di pesce analizzando i solchi, o circoli, sulla superficie esterna della squama. Sono state misurate le distanze delle bande di circoli dal centro focale e l'altezza dei circoli è risultata essere in media di circa 58μm. 

I dati qui riportati rappresentano solo una parte dei calcoli disponibili nel software di analisi.

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

Topografia della lente di Fresnel

LENTE FRESCA

DIMENSIONI CON LA PROFILOMETRIA 3D

Preparato da

Duanjie Li e Benjamin Mell

INTRODUZIONE

Una lente è un dispositivo ottico a simmetria assiale che trasmette e rifrange la luce. Una lente semplice è costituita da un singolo componente ottico che converge o diverge la luce. Anche se le superfici sferiche non sono la forma ideale per la realizzazione di una lente, sono spesso utilizzate come la forma più semplice che il vetro può assumere per essere molato e lucidato.

Una lente di Fresnel è costituita da una serie di anelli concentrici, che sono parti sottili di una semplice lente con una larghezza di pochi millesimi di pollice. Le lenti di Fresnel hanno un'ampia apertura e una lunghezza focale ridotta, con un design compatto che riduce il peso e il volume del materiale richiesto, rispetto alle lenti convenzionali con le stesse proprietà ottiche. Grazie alla geometria sottile della lente di Fresnel, una quantità molto ridotta di luce viene persa per assorbimento.

IMPORTANZA DELLA PROFILOMETRIA 3D SENZA CONTATTO PER L'ISPEZIONE DELLE LENTI FRESNEL

Le lenti Fresnel sono ampiamente utilizzate nell'industria automobilistica, nei fari, nell'energia solare e nei sistemi di atterraggio ottici per le portaerei. Stampare o stampare le lenti in plastica trasparente può rendere la loro produzione economicamente vantaggiosa. La qualità del servizio delle lenti di Fresnel dipende principalmente dalla precisione e dalla qualità della superficie del loro anello concentrico. A differenza della tecnica del tastatore, NANOVEA Profilatori ottici eseguire misurazioni superficiali 3D senza toccare la superficie, evitando il rischio di realizzare nuovi graffi. La tecnica della luce cromatica è ideale per la scansione precisa di forme complesse, come lenti di diverse geometrie.

SCHEMA DELLA LENTE DI FRESNEL

Le lenti Fresnel in plastica trasparente possono essere prodotte per stampaggio o per tranciatura. Un controllo qualità accurato ed efficiente è fondamentale per individuare stampi o timbri di produzione difettosi. Misurando l'altezza e il passo degli anelli concentrici, è possibile individuare le variazioni di produzione confrontando i valori misurati con quelli delle specifiche fornite dal produttore della lente.

La misurazione precisa del profilo della lente assicura che gli stampi o i timbri siano lavorati correttamente per adattarsi alle specifiche del produttore. Inoltre, lo stampo potrebbe usurarsi progressivamente nel tempo, perdendo la sua forma iniziale. Una deviazione consistente dalle specifiche del produttore della lente è un'indicazione positiva della necessità di sostituire lo stampo.

OBIETTIVO DI MISURAZIONE

In questa applicazione presentiamo NANOVEA ST400, un profilatore 3D senza contatto con un sensore ad alta velocità, che fornisce un'analisi completa del profilo 3D di un componente ottico di forma complessa. Per dimostrare le notevoli capacità della nostra tecnologia di luce cromatica, l'analisi del contorno viene eseguita su una lente Fresnel.

NANOVEA

ST400

La lente Fresnel acrilica da 2,3" x 2,3" utilizzata per questo studio è composta da 

una serie di anelli concentrici e un complesso profilo a sezione trasversale seghettata. 

Ha una lunghezza focale di 1,5" e un diametro effettivo di 2,0", 

125 scanalature per pollice e un indice di rifrazione di 1,49.

La scansione NANOVEA ST400 della lente di Fresnel mostra un notevole aumento dell'altezza degli anelli concentrici, spostandosi dal centro verso l'esterno.

2D COLORE FALSO

Rappresentazione dell'altezza

VISTA 3D

PROFILO ESTRATTO

PICCO E VALLE

Analisi dimensionale del profilo

CONCLUSIONE

In questa applicazione abbiamo dimostrato che il profilatore ottico senza contatto NANOVEA ST400 misura con precisione la topografia superficiale delle lenti Fresnel. 

Le dimensioni dell'altezza e del passo possono essere determinate con precisione dal complesso profilo dentellato utilizzando il software di analisi NANOVEA. Gli utenti possono controllare efficacemente la qualità degli stampi o dei timbri di produzione confrontando le dimensioni dell'altezza e del passo dell'anello delle lenti prodotte con le specifiche dell'anello ideale.

I dati qui riportati rappresentano solo una parte dei calcoli disponibili nel software di analisi. 

I profilatori ottici NANOVEA misurano virtualmente qualsiasi superficie in settori quali i semiconduttori, la microelettronica, il solare, le fibre ottiche, l'automotive, l'aerospaziale, la metallurgia, la lavorazione, i rivestimenti, il farmaceutico, il biomedicale, l'ambientale e molti altri.

 

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE

CQ delle parti lavorate

Ispezione delle parti lavorate

PARTI MACCHINE

ispezione dal modello CAD utilizzando la profilometria 3D

Autore:

Duanjie Li, PhD

Revisionato da

Jocelyn Esparza

Ispezione di parti lavorate con un profilometro

INTRODUZIONE

La domanda di lavorazioni meccaniche di precisione in grado di creare geometrie complesse è in aumento in tutti i settori industriali. Dai settori aerospaziale, medico e automobilistico, agli ingranaggi tecnologici, ai macchinari e agli strumenti musicali, la continua innovazione ed evoluzione spinge le aspettative e gli standard di precisione a nuovi livelli. Di conseguenza, si assiste all'aumento della domanda di tecniche e strumenti di ispezione rigorosi per garantire la massima qualità dei prodotti.

Importanza della profilometria 3D senza contatto per l'ispezione dei pezzi

Il confronto delle proprietà dei pezzi lavorati con i loro modelli CAD è essenziale per verificare le tolleranze e l'aderenza agli standard di produzione. Anche l'ispezione durante il periodo di servizio è cruciale, poiché l'usura dei pezzi potrebbe richiederne la sostituzione. L'identificazione tempestiva di eventuali deviazioni dalle specifiche richieste aiuterà a evitare costose riparazioni, interruzioni della produzione e una reputazione compromessa.

A differenza della tecnica del tastatore, la NANOVEA Profilatori ottici eseguire scansioni di superfici 3D senza contatto, consentendo misurazioni rapide, precise e non distruttive di forme complesse con la massima precisione.

OBIETTIVO DI MISURAZIONE

In questa applicazione presentiamo NANOVEA HS2000, un profilatore 3D senza contatto con un sensore ad alta velocità, che esegue un'ispezione superficiale completa di dimensioni, raggio e rugosità. 

Il tutto in meno di 40 secondi.

NANOVEA

HS2000

MODELLO CAD

Una misura precisa delle dimensioni e della rugosità superficiale del pezzo lavorato è fondamentale per assicurarsi che sia conforme alle specifiche, alle tolleranze e alle finiture superficiali desiderate. Di seguito vengono presentati il modello 3D e il disegno tecnico del pezzo da ispezionare. 

VISTA A FALSI COLORI

La vista in falsi colori del modello CAD e la superficie della parte lavorata scansionata sono confrontate in FIGURA 3. La variazione di altezza sulla superficie del campione può essere osservata dal cambiamento di colore.

Dalla scansione superficiale 3D vengono estratti tre profili 2D, come indicato in FIGURA 2, per verificare ulteriormente la tolleranza dimensionale del pezzo lavorato.

CONFRONTO TRA PROFILI E RISULTATI

I profili da 1 a 3 sono mostrati nelle FIGURE da 3 a 5. Il controllo quantitativo delle tolleranze viene effettuato confrontando il profilo misurato con il modello CAD per rispettare i rigorosi standard di produzione. I profili 1 e 2 misurano il raggio di diverse aree del pezzo lavorato curvo. La variazione di altezza del profilo 2 è di 30 µm su una lunghezza di 156 mm, il che soddisfa il requisito di tolleranza di ±125 µm. 

Impostando un valore limite di tolleranza, il software di analisi può determinare automaticamente il superamento o il fallimento del pezzo lavorato.

Ispezione di parti di macchine con un profilometro

La rugosità e l'uniformità della superficie del pezzo lavorato svolgono un ruolo importante nel garantirne la qualità e la funzionalità. La FIGURA 6 mostra l'area della superficie estratta dalla scansione madre del pezzo lavorato, utilizzata per quantificare la finitura superficiale. La rugosità superficiale media (Sa) è stata calcolata pari a 2,31 µm.

CONCLUSIONE

In questo studio abbiamo mostrato come il profilatore senza contatto NANOVEA HS2000, dotato di un sensore ad alta velocità, esegua un'ispezione superficiale completa di dimensioni e rugosità. 

Le scansioni ad alta risoluzione consentono agli utenti di misurare la morfologia dettagliata e le caratteristiche superficiali dei pezzi lavorati e di confrontarli quantitativamente con i loro modelli CAD. Lo strumento è inoltre in grado di rilevare qualsiasi difetto, compresi graffi e cricche. 

L'analisi avanzata dei contorni è uno strumento impareggiabile non solo per determinare se i pezzi lavorati soddisfano le specifiche stabilite, ma anche per valutare i meccanismi di guasto dei componenti usurati.

I dati qui riportati rappresentano solo una parte dei calcoli possibili con il software di analisi avanzata di cui è dotato ogni profilatore ottico NANOVEA.

 

PARLIAMO ORA DELLA VOSTRA APPLICAZIONE