USA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT US

Kategorie: Anwendungshinweise

 

In-Situ-Morphologie

In-situ-Morphologie bei hoher Temperatur mit 3D-Profilometrie

Hohe Temperaturen können die Oberflächenstruktur, die Rauheit und die Form von Materialien verändern, was zu Fehlfunktionen und mechanischen Ausfällen von Geräten führen kann. Um die Qualität von Materialien oder Geräten zu gewährleisten, die bei hohen Temperaturen verwendet werden, sind genaue und zuverlässige in situ Die Überwachung der Morphologie der Formentwicklung bei hohen Temperaturen ist notwendig, um einen Einblick in den Mechanismus der Materialverformung zu erhalten. Darüber hinaus ist die Echtzeit-Überwachung der Oberflächenmorphologie bei hohen Temperaturen sehr nützlich für die Materialbearbeitung, beispielsweise bei der Laserbearbeitung. Die berührungslosen 3D-Profilometer von Nanovea messen die Oberflächenmorphologie von Materialien, ohne die Probe zu berühren, wodurch zusätzliche Kratzer oder Formveränderungen vermieden werden, die durch Kontakttechnologien wie z. B. gleitende Stifte verursacht werden können. Die Fähigkeit zur berührungslosen Messung ermöglicht auch die Messung der Form von geschmolzenen Proben.

In-situ-Morphologie bei hoher Temperatur

Metallurgie Nanoindentation

Metallurgiestudie eines mehrphasigen Materials mittels Nanoindentation

Metallurgie untersucht das physikalische und chemische Verhalten von metallischen Elementen sowie deren intermetallischen Verbindungen und Legierungen. Bei der Bearbeitung von Metallen durch Gießen, Schmieden, Walzen, Strangpressen und Zerspanen usw. verändern sich ihre Phasen, ihr Gefüge und ihre Textur, was zu unterschiedlichen physikalischen Eigenschaften wie Härte, Festigkeit, Zähigkeit, Duktilität und Verschleißfestigkeit führt. Die Metallographie wird häufig angewandt, um den Entstehungsmechanismus solcher spezifischen Phasen, Mikrostrukturen und Texturen zu erforschen.

Metallurgiestudie eines mehrphasigen Materials mittels Nanoindentation

Textur Glanz

Eloxiertes Aluminium Oberfläche Textur Wirkung auf Glanz

Eloxieren ist ein elektrolytisches Passivierungsverfahren, das üblicherweise angewendet wird, um Aluminium in Aluminiumoxid umzuwandeln. Das Verfahren kann die Oberflächentextur und verändert die Mikrostruktur des Metalls in der Nähe der Oberfläche. Eine solche eloxierte Aluminiumoxidschicht ist im Allgemeinen viel stärker und haftfähiger als die meisten Arten von Lacken und Metallbeschichtungen. Sie kann die Korrosions- und Verschleißbeständigkeit deutlich erhöhen und die kosmetische Wirkung der Produkte verbessern. Eloxiertes Aluminium ist bei elektronischen Geräten und Konsumgütern wie Handys, Kameras, MP3-Playern und vielen anderen weit verbreitet.

Eloxiertes Aluminium Oberfläche Textur Wirkung auf Glanz

Adhäsionseigenschaften der Goldbeschichtung

Haftung der Goldbeschichtung auf einem Quarzkristallsubstrat

Als extrem genaues Gerät misst die Quarzkristall-Mikrowaage (QCM) die Massenänderung bis auf 0,1 Nanogramm genau. Jeder Massenverlust oder jede Delamination der Elektroden auf der Quarzplatte wird vom Quarzkristall erkannt und führt zu erheblichen Messfehlern. Daher spielen die Qualität der Goldbeschichtung der Elektroden und die Unversehrtheit der Grenzflächen des Beschichtungs-/Substratsystems eine wesentliche Rolle bei der Durchführung genauer und wiederholbarer Massenmessungen. Die Website Mikrokratztest ist eine weit verbreitete vergleichende Messung zur Bewertung der relativen Kohäsions- oder Adhäsionseigenschaften von Beschichtungen auf der Grundlage eines Vergleichs der kritischen Lasten, bei denen es zu Ausfällen kommt. Sie ist ein hervorragendes Instrument für die zuverlässige Qualitätskontrolle von QCMs.

Haftung der Goldbeschichtung auf einem Quarzkristallsubstrat

QCM Oberflächenbehandlung

Oberflächenbeschaffenheit von Quarzkristall-Mikrowaagen

Eine zuverlässige Qualitätskontrolle hängt stark von einer genauen, quantifizierbaren und reproduzierbaren Oberflächenprüfung ab. Ebenheit und Oberflächenbeschaffenheit der Quarzkristall-Mikrowaage (QCM) sind entscheidend für ihre Genauigkeit, und beide Messungen in 3D garantieren eine ordnungsgemäße Fertigungsverarbeitung und Kontrollmaßnahmen. Anders als bei der Tastertechnik ist das Nanovea Profilometer führt eine berührungslose 3D-Oberflächenmessung der Probe durch. Dadurch wird das Risiko vermieden, dass Mikrokratzer auf der QCM-Oberfläche entstehen, die zu Ungenauigkeiten oder Fehlern bei der Massenmessung führen können.

Oberflächengüte Quarzkristall-Mikrowaage

Goldbeschichtung Tribologie

Beschichtungstribologie von Gold auf Quarzkristallsubstrat

Das QCM arbeitet auf der Grundlage der piezoelektrischen Eigenschaften des Quarzkristalls. Es misst die Massenänderung auf der Oberfläche bis zu 0,1 Nanogramm während der Materialabscheidung, indem es Schwankungen in der Resonanzfrequenz des Kristalls erkennt. Aufgrund der extrem empfindlichen und genauen Eigenschaften des QCM ist es von entscheidender Bedeutung, dass die beiden Elektroden auf beiden Seiten der Quarzplatte eine gute Verschleißfestigkeit aufweisen. Jeder verschleißbedingte Masseverlust an den Metallelektroden kann zu erheblichen Messfehlern führen. Daher ist eine zuverlässige und genaue Bewertung der Abnutzung mit einer Tribometer ist wichtig für die Qualitätskontrolle und die Forschung und Entwicklung von QCMs.

Beschichtungstribologie von Gold auf Quarzkristallsubstrat

pcb-oberflächentopographie & bildgebung

3D-Topographie mit Bildüberlagerung von PCB

Das immer anspruchsvollere elektronische Design und Layout von Halbleiterchips, Schaltkreisen und Systemen erfordert eine hochpräzise Fertigung und eine hervorragende Qualitätskontrolle. Im Gegensatz zu anderen Techniken wie taktilen Tastern oder Interferometrie ist das Nanovea 3D Non-Contact Profilometerkann unter Verwendung von Axialchromatismus nahezu jede Materialoberfläche messen. Nano- bis Makrobereich wird während der Oberflächenprofilmessung mit Null Einfluss von Probe Reflektivität, Absorption und hohe Oberflächenwinkel erhalten. Dies ist ideal für die Oberflächeninspektion von Leiterplatten (PCBA), die eine Vielzahl von elektronischen Komponenten aus unterschiedlichen Materialien, Reflexionsgraden und feinen Merkmalen enthalten. Darüber hinaus misst die berührungslose Profilierungstechnik die Oberflächenmerkmale, ohne die PCBA zu berühren, wodurch das Risiko einer Beschädigung der empfindlichen Schaltkreise und elektronischen Komponenten durch das Abrutschen des Taststiftes vermieden wird. Die Kombination aus hoher Präzision, hoher Geschwindigkeit, Berührungslosigkeit und Benutzerfreundlichkeit macht das Nanovea Profilometer zu einem idealen Werkzeug für die PCBA-Prüfung.

3D-Topographie mit Bildüberlagerung von PCB

Verschleißfestigkeit des Drahtes

Versagen der Kupferdrahtbeschichtung durch Tribologie

Die Oberflächenqualität von Kupferdraht ist entscheidend für seine Leistungsfähigkeit und Lebensdauer. Mikrodefekte in der Drahtoberfläche können zu übermäßigem Verschleiß, zur Entstehung und Ausbreitung von Rissen und zu unzureichender Lötbarkeit führen. Eine ordnungsgemäße Oberflächenbehandlung kann Oberflächenfehler, die beim Drahtziehen entstehen, beseitigen und die Korrosions-, Verschleiß- und Kratzfestigkeit des Kupferdrahtes verbessern. Bei vielen Anwendungen, z. B. in der Luft- und Raumfahrt und in Verkehrsflugzeugen, müssen Kupferdrähte ein kontrolliertes Verhalten zeigen, um unerwartete Ausfälle zu vermeiden. Um die Verschleiß- und Kratzfestigkeit der Kupferdrahtoberfläche quantitativ bewerten zu können, sind quantifizierbare und zuverlässige Messungen erforderlich.

Abrieb- und Kratzfestigkeit von Kupferdraht

mech. Eigenschaftszuordnung

Mechanische Eigenschaft Broadview Mapping Tool

Oben sehen Sie ein Beispiel für das zum Patent angemeldete Broadview Map Selection Tool von Nanovea. Mit diesem neuen Werkzeug kann der Benutzer eine beliebige Stelle auf einer breiten, gestochenen Oberflächenansicht der Probe auswählen. Darüber hinaus kann der Benutzer alle Testparameter an jeder Stelle auswählen, entweder für einen Test oder für ein Multi-Test-Mapping. Alle Orte und Prüfparameter können in leicht abrufbaren Rezepten gespeichert werden. Dieser bedeutende Fortschritt ermöglicht schnelle und benutzerfreundliche Untersuchungen der mechanischen Eigenschaften von Nano bis Makro. Erfahren Sie mehr in der App-Note dieses Monats: Mechanische Eigenschaftskartierung

Messung der Holzhärte

Holzhärte und Elastizitätsmodul mittels Mikroindentation

In dieser Anwendung wird der Nanovea Mechanical Tester, in Mikroindentation Modus wird zum Vergleich der mechanischen Eigenschaften von drei verschiedenen Holzsorten verwendet. Wir möchten die Fähigkeit des Nanovea Mechanical Tester zur Durchführung von Härte- und E-Modul-Prüfungen an Holzproben mit hoher Präzision und Reproduzierbarkeit demonstrieren.

Holzhärte und Elastizitätsmodul mittels Mikroindentation